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Abstract. Let Hp be the Hardy space on the bidisc and 1 < p < ∞ . For a function φ in
L∞ , we study the norm of the Hankel operator Hφ on Hp and the invertibility of the Toeplitz
operator Tφ on Hp . The latter is strongly related to weighted norm inequalities on the bidisc.

1. Introduction

Let m be the normalized Lebesgue measure on the torus T2 . For 1 � p �
∞, Lp = Lp(T2, m) denotes the Lebesgue space and Hp = Hp(T2, m) = {f ∈
Lp ; ˆf (�, n) = 0 if � < 0 or n < 0} , that is, Hp denotes the usual Hardy space
on T2 . Let Kp = {f ∈ Lp ; ˆf (�, n) = 0 if � � 0 and n � 0} . Then Kp = {f ∈
Lq ;

∫
f gdm = 0 if g ∈ Hq} where 1/p + 1/q = 1 . Put H = Hp∩L and K = Kp∩L

where L denotes the set of all trigonometric polynomials on T2. Suppose mz and mw

denote the normalized Lebesgue measures on the torus T = Tz and T = Tw . Then
T2 = Tz × Tw and m = mz × mw .

Let P be a projection from L onto H with P = 0 on K . Then P can be extended
boundedly to Lp for 1 < p < ∞ and P is an orthogonal projection when p = 2 . For
a function φ in L∞ , the Hankel operator determined by φ is

Hφ f = (I − P)(φf ) (f ∈ Hp)

and the Toeplitz operator determined by φ is

Tφ f = P(φf ) (f ∈ Hp).
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For the bounded linear operator A on Hp or Lp, ‖A‖p denotes the norm of A .
When p = 2 , and Hp is the Hardy space on the disc, Z.Nehari [10] proved that
‖Hφ‖2 = ‖φ + H∞‖ . It is not difficult to generalize this for p �= 2 , that is,

‖φ + H∞‖ � ‖Hφ‖p � ‖1 − P‖q‖φ + H∞‖.
This is different from a formula in [1, Theorem 2.11] because the Hankel operator is
different from ours. In Section 2, we generalize the formula above for ‖Hφ‖p to the
Hardy space on the bidisc. When p = 2 , this is known (see [2],[4],[8] and [9]). When
Hp is the Hardy space on the disc, R. Rochberg [13] showed that Tφ is invertible on
Hp if and only if φ = kφ0 and φ0 = h̄0/h0 where k is an invertible function in H∞

and h0 is an outer function in Hp with |h0|p satisfying the (Ap) -condition (see [10,
Theorem 1]). If p = 2 , this reduces to a theorem of H. Widom and A. Devinatz. In
Section 4, for some special symbols φ we generalize the above theorem of R.Rochberg
to the Hardy space on the bidisc. In Section 3, we define (Ap) -condition on T2 and
give a theorem of Hunt, Muckenhoupt and Wheeden on T2 . This is used in Section 4.

An order relation can be introduced in Z2 . Let Lr be a line with rational slope
r in the plane. Sr denotes all lattice points on one side of Lr , together with those
on the right side ray of Lr from the origin. When L is a real axis, that is, L = L0 ,
then S0 = {(m, 0) ; m > 0} ∪ {(m, n) ; n > 0} . When L is an imaginary axis, that
is, L = L−∞ , then S−∞ = {(0, n) ; n > 0} ∪ {(m, n) ; m > 0} . This order is
non-archimedean, and Z2 has the smallest positive element (m0, n0) in Sr . We assume
that Sr contains Z2

+ , that is, −∞ � r � 0 . When −∞ < r < 0, |m0| and |n0|
have no common factor except 1 and r = n0/m0 , and let (m1, n1) = (0, 1) . When
r = 0, (m0, n0) = (1, 0) and let (m1, n1) = (0, 1) . When r = −∞, (m0, n0) = (0, 1)
and let (m1, n1) = (1, 0) . For each half plane Sr , put

Z = Zr = zm0wn0

and
W = Wr = zm1wn1 .

Hence Z0 = W−∞ = z and W0 = Z−∞ = w , and if −∞ < r < 0 then Wr = w .
For each r with −∞ � r � 0 , put Hp

r = the norm closed linear span of
∪∞

j=−∞Zj
rHp in Lp if 1 � p < ∞ and H∞

r = the weak ∗ closed linear span of

∪∞
j=−∞Zj

rH∞ in L∞. L p
r and H p

r denote the norm closure of the set of trigonometric
polynomials and analytic polynomials, respectively, of Zr in Lp if 1 � p < ∞. L ∞

r
and H ∞

r denote the weak ∗ closure. Then

Hp
r = L p

r + L p
r W + · · · + L p

r Wn−1 + WnHp
r .

Let E be a conditional expectation from H∞
r onto L ∞

r . Then E is multiplicative
on H∞

r and H∞
r + WH∞

r is weak ∗ dense in L∞ . Hence H∞
r is an extended weak ∗

Dirichlet algebra with respect to E (see [7]). For r = 0 and r = −∞ , we will
write that Hp

0 = Hp
w, Hp

−∞ = Hp
z , WHp

0 = wHp
w, WHp

−∞ = zHp
z , L ∞

0 = L ∞
z and

L ∞
−∞ = L ∞

w where L ∞
z = L∞(Tz, dmz) and L ∞

w = L∞(Tw, dmw). Hp(Tz, dmz)
and Hp(Tw, dmw) denote one variable Hardy spaces. Let Pw be a projection from L
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onto (H∞
w ) ∩ L with Pw = 0 on wH

∞
w ∩ L , and put Pw

0 f = wPw(w̄f ). Pz and Pz
0 can

be defined similarly.
All results in this paper can be generalized easily to the Hardy space on the polydisc.

2. Hankel operator

Theorem 1 for p = 2 is known in [2],[3],[8] and [9]. Proposition 2 for p = 2 is
written in [8]. However its proof had some gap except r = 0 and r = −∞ (see[9]).

LEMMA 1. Suppose 1/p + 1/q = 1 . If h is a function in H1
r , then there exists an

f in Hp
r and a g in Hq

r such that h = f g, ‖f ‖p � ‖h‖1 and ‖g‖q � ‖h‖1 .

Proof. In Section 1, we noted that H∞
r is an extended weak ∗ Dirichlet algebra.

If h is in H1
r then χE(h)E (log |h|) > −∞ a.e. where E(h) is the support set of h .

Hence Theorem 4′ in [7] implies the lemma for p = 2 . For p �= 2 , we can prove it
similarly because Theorem 4′ can be shown for arbitrary p (see[7, Section 5]).

LEMMA 2. Suppose 1/p + 1/q = 1 . If φ is a function in L∞ , then

‖φ + H∞
r ‖ = sup{|

∫
φhdm| ; h ∈ WH1

r and ‖h‖1 � 1}

= sup{|
∫

φf gdm| ; f ∈ Hp
r , g ∈ WHq

r , ‖f ‖p � 1 and ‖g‖q � 1}

Proof. This is a result of Lemma 1 and Hahn-Banach theorem because the annihi-
lator of WH1

r in L∞ is H∞
r .

THEOREM 1. Suppose 1 < p < ∞, 1/p + 1/q = 1 and φ is function in L∞ .
Then

max(‖φ + H∞
z ‖, ‖φ + H∞

w ‖) � ‖Hφ‖
� ‖1 − P‖q{‖Pw

0‖q‖φ + H∞
w ‖ + ‖Pz

0‖q‖φ + H∞
z ‖}.

Proof. We will give the lower estimate of ‖Hφ‖ . Since z̄nHq
w = Hq

w for any
positive integer n, Hp × wHq

w = z̄nHp × wHq
w . Hence

Hp × Kq ⊃ {
∞⋃
n=0

z̄nHp} × wHq
w.

Using Lemma 2 in the second equality,

‖Hφ‖ = sup{|
∫

(1 − P)φf gdm| ; f ∈ Hp, g ∈ Lq, ‖f ‖p � 1 and ‖g‖q � 1}

� sup{|
∫

φf gdm| ; f ∈ Hp, g ∈ Kq, ‖f ‖p � 1 and ‖g‖q � 1}

� sup{|
∫

φf gdm| ; f ∈ Hp
w, g ∈ wHq

w, ‖f ‖p � 1 and ‖g‖q � 1}
= ‖φ + H∞

w ‖.
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Similarly we can show that ‖Hφ‖ � ‖φ + H∞
z ‖ .

Now we will give the upper estimate of ‖Hφ‖ . Here for F ∈ Lp and G ∈ Lq , put

〈F, G〉 =
∫

FḠdm .

‖Hφ‖ = sup{|〈Hφ f , g〉 | ; f ∈ Hp, g ∈ Lq, ‖f ‖p � 1 and ‖g‖q � 1}
= sup{|〈 φf , (I − P)g〉 | ; f ∈ Hp, g ∈ Lq, ‖f ‖p � 1 and ‖g‖q � 1}
� ‖I − P‖q sup{|〈 φf , h̄〉 | ; f ∈ Hp, h ∈ Kq, ‖f ‖p � 1 and ‖h‖q � 1}.

Since Kq = wHq
w + zHq

z , by Lemma 2

sup{|〈 φf , h̄〉 | ; f ∈ Hp, h ∈ Kq, ‖f ‖p � 1 and ‖h‖q � 1}
� sup{|〈 φf , Pw

0 h〉 | ; f ∈ Hp, h ∈ Kq, ‖f ‖p � 1 and ‖h‖q � 1}
+ sup{|〈 φf , Pz

0h〉 | ; f ∈ Hp, h ∈ Kq, ‖f ‖p � 1 and ‖h‖q � 1}
� ‖Pw

0 ‖q sup{|
∫

φf kdm| ; f ∈ Hp, k ∈ wHq
w, ‖f ‖p � 1 and ‖k‖q � 1}

+‖Pz
0‖q sup{|

∫
φf kdm| ; f ∈ Hp, k ∈ Hq

z , ‖f ‖p � 1 and ‖k‖g � 1}

� ‖Pw
0 ‖q sup{|

∫
φf kdm| ; f ∈ Hp

w, k ∈ wHq
w, ‖f ‖p � 1 and ‖k‖q � 1}

+‖Pz
0‖q sup{|

∫
φf kdm| ; f ∈ Hp

z , k ∈ zHq
z , ‖f ‖p � 1 and ‖k‖q � 1}

� ‖Pw
0 ‖q‖φ + H∞

w ‖ + ‖Pz
0‖q‖φ + H∞

z ‖.

This completes the proof.

COROLLARY 1. Suppose p = 2 and φ is a function in H∞
w . Then

‖Hφ‖ = ‖φ + H∞
z ‖.

Proof. Apply Theorem 1 as p = 2 .

COROLLARY 2. Suppose p = 2 and φ is a continuous function on T2 . Then
lim

n→∞‖Hφzn‖ = ‖φ + H∞
w ‖ and lim

n→∞‖Hφwn‖ = ‖φ + H∞
z ‖.

Proof. By Theorem 1 for p = 2 .

‖φ + H∞
w ‖ = ‖φzn + H∞

w ‖
� ‖Hφzn‖ � ‖φzn + H∞

w ‖ + ‖φzn + H∞
z ‖

= ‖φ + H∞
w ‖ + ‖φ + z̄nH∞

z ‖.

Since φ is continuous, lim
n→∞‖φ + z̄nH∞

z ‖ = 0 .
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PROPOSITION 2. Suppose 1 < p < ∞ and φ is a function in L∞ . Then

sup
−∞�r�0

‖φ + H∞
r ‖ � ‖Hφ‖ � ‖P‖p‖φ + H∞‖.

Proof. For the lower estimate of ‖Hφ‖ , the proof is almost parallel to the case of
r = 0 and −∞ which were proved in Theorem 1. When p = 2 , the proposition was
proved in [8, Theorem 1] with a gap (see [9]). The point is to prove that the linear span

of
∞⋃

n=−∞
ZnHp is dense in Hp

r when r �= 0 and r �= −∞ . For −∞ < r < 0 ,

ZHp ⊃ {zswt ; (s, t) ∈ Z2, s � m0, t � n0}

and

Z−1Hp ⊃ {zswt ; (s, t) ∈ Z2, s � −m0, t � −n0}.

where Z = Zr = zm0wn0 , r = n0/m0 and n0 < 0, m0 > 0 . Hence
∞⋃

n=−∞
ZnHp contains

{zmwn ; (m, n) ∈ Sr ∪ (the left side ray of Lr from the origin)} and the linear span of
{zmwn ; (m, n) ∈ Sr ∪ (the left side ray of Lr from the origin)} is dense in Hp

r . This

implies that the linear span of
∞⋃

n=−∞
ZnHp is dense in Hp

r .

COROLLARY3. Suppose p = 2 and φ̄ is a function in H∞
0 = {f ∈ H∞ ;

∫
f dm =

0} . Then (∫
|φ|2dm

)1/2

� ‖Hφ‖ � ‖φ‖∞.

Proof. If φ̄ is in H∞
0 , then φ̄ is orthogonal to H2

r and hence ‖φ + H∞
r ‖ �(∫

|φ|2dm

)1/2

.

COROLLARY 4. Suppose 1 < p < ∞ and φ = φwφz is a function in L∞ where
φw is unimodular in L∞(Tw, mw) and φz is unimodular in L∞(Tz, mz) . Then

max(‖φz + H∞‖, ‖φw + H∞‖) � ‖Hφ‖ � ‖P‖p‖φ + H∞‖.

Proof. This is a corollary of Proposition 2 by the following equality:

‖φzφw + H∞
z ‖ = ‖φz + H∞

z ‖ = ‖φz + H∞(Tz, mz)‖ = ‖φz + H∞‖.
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3. Weighted norm inequality

If W is a nonnegative function in L1 , then

(
1

m(E × F)

∫
E×F

W− 1
p−1 dm

)1−p

� 1
mz(E)

∫
E

dmz

(
1

mw(F)

∫
F

W− 1
p−1 dmw

)1−p

� 1
m(E × F)

∫
E×F

Wdm.

where 1 < p < ∞ and E×F is a Borel set on T2 . If W(z, w) = W1(z)W2(w) , and W1

and W2 are nonnegative functions in L1(Tz) = L1(T, mz) and L1(Tw) = L1(T, mw) ,
respectively, then

(
1

m(E×F)

∫
E×F

W− 1
p−1 dm

)1−p

=
(

1
mz(E)

∫
E

W
1

p−1

1 dmz

)1−p (
1

mw(F)

∫
F

W
− 1

p−1

2 dmw

)1−p

,

1
mz(E)

∫
E
dmz

(
1

mw(F)

∫
F

W− 1
p−1 dmw

)1−p

=
1

mz(E)

∫
E

W1dmz

(
1

mw(F)

∫
F

W
− 1

p−1

2 dmw

)1−p

and
1

m(E × F)

∫
E×F

Wdm =
1

mz(E)

∫
E

W1dmz
1

mw(F)

∫
F

W2dmw.

Suppose 1 < p < ∞ and W is a nonnegative function in L1 . We say that W
satisfies (Ap) -condition for w if there exists a positive finite constant γ such that

1
m(E × I)

∫
E×I

Wdm � γ
1

mz(E)

∫
E
dmz

(
1

mw(I)

∫
I
W− 1

p−1 dmw

)1−p

where E is a Borel set in Tz and I is an interval in Tw . Similarly (Ap) -condition
for z can be defined. If W satisfies (Ap) -condition for w and z , then we say that W
satisfies (Ap) -condition.

Using a theorem of Hunt, Muckenhoupt and Wheeden [6] on T , we give the
generalization to T2 . This is known essentially in [3]. This will be used in Section 4.

LEMMA 3. Suppose 1 < p < ∞ and W is a nonnegative function in L1 .
∫

|f |pWdm � γp
∫

|f + ḡ|pWdm (f ∈ H∞
w , g ∈ wH∞

w )

with γp independent of f and g if and only if W satisfies (Ap) -condition for w .

Proof. It is easy to see that W satisfies (Ap) -condition for w if and only if for
a.e.mz W satisfies (Ap) -condition of one variable. In a theorem of Hunt, Muckenhoupt
and Wheeden (cf. [5, Theorem 6.1 in Chapter VI]), the constant Γp of (Ap) -condition
and the constant γp of a weighted norm inequality are equivalent, that is, 0 < ε �
Γp/γp � 1/ε . This implies the lemma with Fubini’s theorem.
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THEOREM 3. Suppose 1 < p < ∞ and W is a nonnegative function in L1 .∫
|f |pWdm � γp

∫
|f + ḡ|pWdm (f ∈ H, g ∈ K)

with γp independent of f and g if and only if W satisfies (Ap) -condition.

Proof. Suppose that∫
|f |pWdm � γp

∫
|f + ḡ|pWdm (f ∈ H, g ∈ K).

Then for any nonnegative integer n ,∫
|z̄nf |pWdm � γp

∫
|z̄nf + z̄nḡ|pWdm.

Since K∞ ⊃ wH∞
w , if g ∈ wH∞

w then zng ∈ wH∞
w and z̄nf ∈ H∞

w for any n � 0 .

Since
∞⋃

n=1

z̄nH is dense in H∞
w , for F ∈ H∞

w and G ∈ wH∞
w

∫
|F|pWdm � γp

∫
|F + Ḡ|pWdm.

Now Lemma 3 implies that W satisfies (Ap) -condition for w . The same argument
implies that W satisfies (Ap) -condition for z . Conversely, suppose that W satisfies
(Ap) -condition. By Lemma 3, for the weight W we have weighted norm inequalities
for H∞

w + w̄H̄∞
w → H∞

w and H∞
z + z̄H̄∞

z → H∞
z . This implies the weighted norm

inequality for H+K̄ → H . In fact, this is a simple result of the following decomposition.
If f ∈ H and g ∈ K , then ḡ = g1 + g2 where g1 ∈ H∞

w ∩ K̄ and g2 ∈ w̄H̄∞
w ∩ K̄ ,

and so
f + ḡ = (f + g1) + g2

where f + g1 ∈ H∞
w ∩ L . Then f ∈ H∞ and g1 ∈ z̄H̄∞

z .
Our (Ap) -condition on T2 seems to be strange if we compare with that on T. A

natural (Ap) -condition on T2 may be the following : There exists a positive constant
γ such that

1
m(I × I)

∫
I×I

Wdm � γ
(

1
m(I × I)

∫
I×I

W
1

p−1 dm

)1−p

.

However this is too weak for one weighted norm inequality.

COROLLARY 5. Suppose 1 < p < ∞ and W = WwWz where Ww is a nonnegative
function in L1(Tw) and Wz is a nonnegative function in L1(Tw) .

∫
|f |pWdm � γp

∫
|f + ḡ|pwdm (f ∈ H, g ∈ K)

if and only if Ww and Wz satisfy one variable (Ap) -condition.
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4. Toeplitz operator

For φ in L∞, Tw
φ and Tz

φ are Toeplitz operators on Hp
w and Hp

z , respectively.
That is , Tw

φ f = Pw(φf ) (f ∈ Hp
w) and Tz

φ f = Pz(φf )(f ∈ Hp
z ). σ(Tφ), σ(Tw

φ ) and
σ(Tz

φ) denote the spectrums, respectively. For a nonzero function h in Hp , we call it
an outer function if ∫

log |h|dm = log |
∫

hdm|

(cf. [14, p73]). For a nonzero function h in Hp
w , we call it a w -outer function if

∫
T2

log |h|dm =
∫

T
log |

∫
T

hdmw|dmz > −∞.

Similary we can define an z -outer function. When a function in Hp is outer for w and
z , it is called weakly outer (see [11]). If h is an outer function in Hp , then h is weakly
outer.

In order to prove Lemma 4, we use a general theory of an extended weak ∗
Dirichlet algebra [7]. However we can also prove this using a general theory of a weak
∗ Dirichlet algebra. Since

∫
T
log |

∫
T

hdmw|dmz =
∫

T2

log |E (h)|dm

where E is a conditional expectation from H∞
w onto L ∞

z = H∞
w ∩ H̄∞

w , if h is a
w -outer function, then hH∞

w is dense in Hp
w [7].

LEMMA 4. Suppose 1 < p < ∞ and φ is a function in L∞ . If Tw
φ is left

invertible on Hp
w, φ = kφ0 where k is invertible in H∞

w , φ0 is a unimodular function,
and Tw

φ0
is left invertible on Hp

w .

Proof. If Tw
φ is left invertible on Hp

w , then there exist a positive constant ε such
that ∫

|φf + ḡ|pdm � ε
∫

|f |pdm

for f ∈ Hp
w and g ∈ wHp

w . As g = 0,

∫
|φ|p|f |pdm � ε

∫
|f |pdm for f ∈ Hp

w . If v

is a nonnegative function in L1 with log v ∈ L1 , then by Theorem 4 ′ in [7] v1/p = |f |
for some function f in H1

w ∩Lp . By Theorem 5 in [7], H1
w ∩Lp = Hp

w and so f ∈ Hp
w .

Hence ∫
|φ|pvdm � ε

∫
vdm

for all v ∈ L1 with v � 0 . This implies that φ is invertible in L∞ . Again by Theorem
4 ′φ = kφ0 for some k ∈ H∞

w and for some unimodular function φ0 . It is easy to
see that k is invertible in H∞

w . Since Tw
φ = Tw

φ0
Tw

k and Tw
k is invertible, Tw

φ0
is left

invertible.
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LEMMA 5. Suppose 1 < p < ∞ and φ is a function in L∞. Tw
φ is invertible on

Hp
w if and only if there exist an invertible function k in H∞

w and a w -outer function h
in Hp

w such that φ = kh̄/h and |h|p satisfies (Ap) -condition for w .

Proof. By Lemma 4, we may assume that φ is a unimodular function. If Tw
φ is

invertible on Hp
w , then there exist f ∈ Hp

w and g ∈ wHp
w such that φf = 1 + ḡ . Since

(Tw
φ )∗ is invertible on Hq

w where 1/p + 1/q = 1 , there exist f ′ ∈ Hq
w and g′ ∈ wHq

w

such that φ̄f ′ = 1 + ḡ′ . Therefore f f ′ = (1 + g) (1 + g′) belongs to Hp/2
w ∩ H̄q/2

w .

When p � 2, Hp/2
w ∩ H̄q/2

w = Hp/2
w ∩ H̄p/2

w = L
p/2
z . Hence f f ′ belongs to L

p/2
z and

so f f ′ = 1 a.e. on T2 because g, g′ ∈ wHq
w . When 1 < p < 2, Hp/2

w ∩H̄q/2
w = L

q/2
z .

This also implies f f ′ = 1 a.e. on T2 . Hence f ∈ Hp
w and f −1 ∈ Hq

w , and 1+g ∈ Hp
w

and (1 + g)−1 ∈ Hq
w . Since φ = (1+ ḡ)/f and |φ| = 1 a.e. on T2, |f | = |1 + g| a.e.

on T2 and so 1 + g = αf for some unimodular α ∈ L ∞
z . Therefore φ = h̄/h where

h = β f for some unimodular β ∈ L ∞
z . Then h is a w -outer function in Hp

w .
Since Tw

φ is invertible on Hp
w , there exist positive constants γ and ε such that

γ ‖φf + ḡ‖p � ‖Tw
φ f ‖p � ε‖f ‖p

where f ∈ H∞
w and g ∈ wH∞

w . Then

γ p
∫

|h−1f + h̄−1ḡ|p|h|pdm � εp
∫

|h−1f |p|h|pdm

and hence we can show that

γ p
∫

|F + Ḡ|p|h|pdm � εp
∫

|F|p|h|pdm

where F ∈ H∞
w and G ∈ wH∞

w , because h is w -outer. By Lemma 3, |h|p satisfies
(Ap) -condition for w .

Conversely if φ = h̄/h and |h|p satisfies (Ap) -condition for w , then by Lemma
3

γp
∫

|f + ḡ|p|h|pdm �
∫

|f |p|h|pdm (f ∈ H∞
w , g ∈ wH∞

w )

and so

γp
∫

|φhf + h̄ḡ|pdm �
∫

|hf |pdm (f ∈ H∞
w , g ∈ wH∞

w ).

Since h is a w -outer function in Hp
w, hH∞

w is dense in Hp
w by [7] and so

γp
∫

|φF + Ḡ|pdm �
∫

|F|pdm (F ∈ H∞
w , G ∈ wH∞

w ).

This implies that Tw
φ is left invertible because Lp/w̄H̄p

w
∼= Hp

w . Since [Tw
φHp

w]p ⊇
[Pw(h̄H∞

w )]p , we will prove that [Pw(h̄H∞
w )]p = Hp

w . Then the invertibility of Tw
φ

follows. For any n , we can write h =
n∑

j=0

hjw
j + wn+1kn+1 where hj ∈ L p

z (0 �

j � n) and kn+1 ∈ Hp
w . Since h is a w -outer function, |h0| > 0 a.e. on T2 and
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h0 ∈ [Pw(h̄H∞
w )]p. [Pw(h̄H∞

w )]p is invariant under multiplication by u ∈ L ∞
z and

so L p
z ⊂ [Pw(h̄H∞

w )]p . Since Pw(wh̄) = wh̄0 + h̄1, wh̄0 ∈ [Pw(h̄H∞
w )]p and so

wL p
z ⊂ [Pw(h̄H∞

w )]p. Since Pw(w2h̄) = w2h̄0 + wh̄1 + h̄2 , similarly we can show
that w2L p

z ⊂ [Pw(h̄H∞
w )]p . By repeating this method, we can prove that Hp

w ⊆
[Pw(h̄H∞

w )]p .

THEOREM 4. Suppose 1 < p < ∞ and φ is a function in L∞ . If Tφ is invertible
on Hp , then

φ = kw
h̄w

hw
= kz

h̄z

hz

where kt is invertible in H∞
t for t = w, z and ht is a t -outer function in Hp

t for
t = w, z such that |ht|p satisfies (Ap) -condition for t = w, z .

Proof. If Tφ is invertible on Hp , then there exist positive constants γ and ε such
that

γ ‖φf + ḡ‖p � ‖Tφ f ‖p � ε‖f ‖p

where f ∈ H and g ∈ K . As in the proof of Theorem 3, for any nonegative integer n

γ p
∫

|φ z̄nf + z̄ng|pdm � εp
∫

|z̄nf |pdm

where f ∈ H and g ∈ (wH∞
w ) ∩ L , and so we can show that

γ ‖φf + ḡ‖p � ε‖f ‖p

where f ∈ H∞
w and g ∈ wH∞

w . This implies that Tw
φ is left invertible on Hp

w . Since
Pw(φH∞

w ) ⊃ P(φH∞
w ) ⊃ P(φH) and TφHp = Hp, Tw

φHp
w is dense in Hp

w and so Tw
φ

is invertible on Hp
w . Now Lemma 5 implies that φ = kwh̄w/hw where kw is invertible

in H∞
w and hw is a w -outer function in Hp

w such that |hw|p satisfies (Ap) -condition
for w . The same method implies the statement about z .

COROLLARY 6. Suppose 1 < p < ∞ and φ is a function in L∞ . Then

σ(Tφ ) ⊇ σ(Tw
φ ) ∪ σ(Tz

φ).

THEOREM 5. Suppose 1 < p < ∞ .
(1) Suppose φ = h̄/h for some nonzero function h in Hp . If Tφ is left invertible

on Hp , then |h|p satisfies (Ap) -condition.
(2) Suppose k is an invertible function in H∞, h is an outer function in H∞ and

|h|p satisfies (Ap) -condition. If φ = kh̄/h , then Tφ is invertible on Hp .

Proof. (1) If Tφ is invertible on Hp , then there exists a positive constant γ such
that

γ ‖φf + ḡ‖p � ‖f ‖p (f ∈ H, g ∈ K).

As in the proof of Theorem 3, for any nonnegative integer n ,

γ p
∫

|φ z̄nf + z̄nḡ|pdm �
∫

|z̄nf |pdm
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where f ∈ H an g ∈ (wH∞
w ) ∩ L , and so we can show that

γ ‖φf + ḡ‖p � ‖f ‖p (f ∈ H∞
w , g ∈ wH∞

w ).

and

γ p
∫

|h−1f + h̄−1ḡ|p|h|pdm �
∫

|h−1f |p|h|pdm

where f ∈ H∞
w and g ∈ wH∞

w . For any F ∈ H∞
w and any G ∈ wH∞

w ,

inf
f ∈H∞

w

∫
|h−1f − F|p|h|pdm = inf

f ∈H∞
w

∫
|f − hF|pdm = 0

and

inf
g∈wH∞

w

∫
|h̄−1ḡ − Ḡ|p|h|pdm = inf

g∈wH∞
w

∫
|ḡ − h̄Ḡ|pdm = 0.

Hence

γ p
∫

|F + Ḡ|p|h|pdm �
∫

|F|p|h|pdm (F ∈ H∞
w , G ∈ wH∞

w ).

By the same argument, we can give the above inequality for H∞
z + z̄H̄∞

z instead of
H∞

w + w̄H̄∞
w . By Lemma 3, |h|p satisfies (Ap) -condition.

(2) Since Tφ = T h̄
h
Tk and Tk is invertible on Hp , we may assume that φ = h̄/h .

If |h|p satisfies (Ap) -condition, by Theorem 3
∫

|f |p|h|pdm � γp
∫

|f + ḡ|p|h|pdm (f ∈ H, g ∈ K)

and so ∫
|hf |pdm � γp

∫
|φhf + h̄ḡ|pdm (f ∈ H, g ∈ K).

Since h is outer, h−1 belongs to N∗ . Since |h|p satisfies (Ap) -condition, h−1 belongs
to N∗ ∩ Lp = Hp . This implies that hHp is dense in Hp because h ∈ H∞ . Thus

∫
|F|pdm � γp

∫
|φF + Ḡ|pdm (F ∈ H, G ∈ K).

This implies that Tφ is left invertible because Lp/[K̄]p ∼= Hp . If we can prove that
[Tφ(H)]p = [P(h̄H)]p = Hp , then the invertibity of Tφ follows.

Let h =
∞∑
j=0

hj be a homogeneous expansion of h where hj is a homoge-

neous polynomial of degree j . Since h is outer, h0 is a nonzero constant and
1 ∈ [P(h̄H)]p. P(zh̄) = zh̄0 + P(zh̄1) = zh̄0 + c for some constant c because

zh̄ = zh̄0 + zh̄1 + z
∞∑
j=2

h̄j.
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Hence z ∈ [P(h̄H)]p because 1 ∈ [P(h̄H)]p . Similarly w ∈ [P(h̄H)]p. P(z2h̄) =
z2h̄0 + P(z2h̄1 + z2h̄2) = z2h̄0 + cz + d for some constant c and d because

z2h̄ = z2h̄0 + z2(h̄1 + h̄2) + z2
∞∑
j=3

h̄j

Hence z2 ∈ [P(h̄H)]p because 1, z ∈ [P(h̄H)]p . Similarly w2 and zw belong to
[P(h̄H)]p . By repeating this method, we can prove that H ⊂ [P(h̄H)]p .

COROLLARY 7. Suppose φ = φwφz is a function in L∞ where φw ∈ L∞(Tw, mw)
and φz ∈ L∞(Tz, mz). Tφ is invertible on Hp if and only if Tφw is invertible on
Hp(Tw, mw) and Tφz is invertible on Hp(Tz, mz) .

Proof. If Tφ is invertible on Hp , then both Tφz and Tφw are invertible on Hp ,
and there exists a positive constant ε such that∫

|φf + ḡ|pdm � ε
∫

|f |pdm

for f ∈ Hp and g ∈ wH∞
w . This implies that there exists a positive constant ε′ such

that ∫
|φwf + ḡ|pdm � ε′

∫
|f |pdm

for f ∈ Hp and g ∈ wH∞
w because φ−1

z wH∞
w ⊆ wH∞

w . Hence Tφw is left invertible
on Hp(Tw, mw) . It is easy to see that TφwHp(Tw, mw) is dense in Hp(Tw, mw) . Thus
Tφw is invertible on Hp(Tw, mw) . Similarly Tφz is also invertible on Hp(Tz, mz) .

Conversely if both Tφw and Tφz are invertible on Hp(Tw, mw) and Hp(Tz, mz)
respectively, then by a theorem of R. Rochberg [13] φ = φwφz satisfies the condition in
(2) of Theorem 5. Hence Tφ is invertible on Hp .

REMARK.
(1) Suppose φ = (2 − z̄w)/(2 − zw̄) . By Theorem 4, Tw

φ and Tz
φ are invertible

on Hp
w and Hp

z , respectively.
(2) If φ is a unimodular function and ‖φ + H∞

w ‖ + ‖φ + H∞
z ‖ < 1 , then Tφ

is left invertible on H2 . For by Theorem 1 ‖Hφ‖ < 1 and so ‖1 − T∗
φTφ‖ < 1

because T∗
φTφ + H∗

φHφ = I . Suppose φa = (a − z̄w)/(a − zw̄) and |a| � 2 . Then
‖φa + H∞

w ‖ + ‖φa + H∞
z ‖ < 1 for some a and then ‖φ̄a + H∞

w ‖ + ‖φ̄a + H∞
z ‖ < 1 .

This implies that Tφa is invertible on H2 .
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