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TOEPLITZ OPERATORS AND WEIGHTED
NORM INEQUALITIES ON THE BIDISC

TAKAHIKO NAKAZI

To the memory of Professor K. Seddighi

(communicated by L. Pick)

Abstract. Let HP be the Hardy space on the bidisc and 1 < p < co. For a function ¢ in
L°° , we study the norm of the Hankel operator Hgy on HP and the invertibility of the Toeplitz

operator T on HP . The latter is strongly related to weighted norm inequalities on the bidisc.

1. Introduction

Let m be the normalized Lebesgue measure on the torus 72. For 1 < p <
o0, I7 = I7(T?,m) denotes the Lebesgue space and H? = HP(T>,m) = {f €
I7; f(¢,n) = 0if £ < 0 or n < 0}, that is, H” denotes the usual Hardy space
on T?. Let K» = {f ¢ I ; f({,n) =0 if £ <0 and n < 0}. Then K? = {f €

L1, /fgdm:OifgeH‘f} where 1/p+ 1/g=1.Put H=HPNL and K = K’NL

where L denotes the set of all trigonometric polynomials on 72. Suppose m, and m,,
denote the normalized Lebesgue measures on the torus 7 = 7, and T = T,,. Then
T =T, x T, and m = m, x m,,.

Let P be a projection from L onto H with P =0 on K. Then P can be extended
boundedly to ¥ for 1 < p < oo and P is an orthogonal projection when p = 2. For
a function ¢ in L°°, the Hankel operator determined by ¢ is

Hof = (I—=P)(¢f) (f €H)

and the Toeplitz operator determined by ¢ is
Tof = P(ef) (f € HY).
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For the bounded linear operator A on H” or L7, ||A||, denotes the norm of A.
When p = 2, and H? is the Hardy space on the disc, Z.Nehari [10] proved that
|Hsll2 = ||¢ + H*| . It is not difficult to generalize this for p # 2, that is,

16+ H=[| < [[Hollp < [[1 = Pllgll¢ + H>].

This is different from a formula in [1, Theorem 2.11] because the Hankel operator is
different from ours. In Section 2, we generalize the formula above for ||Hy||, to the
Hardy space on the bidisc. When p = 2, this is known (see [2],[4],[8] and [9]). When
H? is the Hardy space on the disc, R. Rochberg [13] showed that T, is invertible on
HP if and only if ¢ = k¢y and ¢y = ho/ho where k is an invertible function in H>
and A is an outer function in H” with |h|? satisfying the (A,)-condition (see [10,
Theorem 1]). If p = 2, this reduces to a theorem of H. Widom and A. Devinatz. In
Section 4, for some special symbols ¢ we generalize the above theorem of R.Rochberg
to the Hardy space on the bidisc. In Section 3, we define (A,)-condition on 7% and
give a theorem of Hunt, Muckenhoupt and Wheeden on T2 . This is used in Section 4.

An order relation can be introduced in Z?. Let L, be a line with rational slope
r in the plane. S, denotes all lattice points on one side of L,, together with those
on the right side ray of L, from the origin. When L is a real axis, thatis, L = Ly,
then Sy = {(m,0) ; m > 0} U {(m,n) ; n > 0}. When L is an imaginary axis, that
is, L =L_o, then S_oc = {(0,n) ; n > 0} U{(m,n) ; m > 0}. This order is
non-archimedean, and Z2 has the smallest positive element (mg, ng) in S,. We assume
that S, contains Z%r, that is, —oo < r < 0. When —co < r < 0, |mo| and |n|
have no common factor except 1 and r = ng/mg, and let (m;,n;) = (0,1). When
r=20, (mp,np) = (1,0) and let (my,n;) = (0,1). When r = —oo, (mg,n9) = (0, 1)
and let (m;,n;) = (1,0). For each half plane S, , put

Z=27 =7"w"

and
W=W,=7"w".

Hence Zy=W_o =zand Wo=Z_ =w,andif —oco<r <0 then W, =w.
For'each r with —oco < r < 0, put H’ = the norm closed linear span of
UX ZHP in I7 if 1 < p < oo and H® = the weak* closed linear span of

j=_ 00
U]‘?jfooZJ,H % in L. %P and 77 denote the norm closure of the set of trigonometric
polynomials and analytic polynomials, respectively, of Z, in L7 if 1 < p < c0. Z>°

and JZ>° denote the weak * closure. Then
H = &P + LYW+ -+ LPW L+ WH.

Let & be a conditional expectation from HZ° onto .Z,°>°. Then & is multiplicative
on H° and H° + WH is weak * dense in L>°. Hence H;° is an extended weak *
Dirichlet algebra with respect to & (see [7]). For r = 0 and r = —oo, we will
write that H) = H},, H” = H., WH} = wH},, WH” _ = zH., £>° = £ and
L2 = 42X where L>° = L>*(T,,dm;) and £° = L>(T,,dm,,). H?(T,,dm;)
and H”(T,,dm,) denote one variable Hardy spaces. Let P" be a projection from L
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onto (H®) ML with P* =0 on wH,, NL,andput Pif = wP"(sf). P* and P can
be defined similarly.
All results in this paper can be generalized easily to the Hardy space on the polydisc.

2. Hankel operator

Theorem 1 for p = 2 is known in [2],[3],[8] and [9]. Proposition 2 for p = 2 is
written in [8]. However its proof had some gap except r = 0 and r = —oco (see[9)]).

LEMMA 1. Suppose 1/p+1/q = 1. If h is a function in H!, then there exists an
finHY anda g in HY suchthat h=fg, |fl, < ||hlli and ||gllq < ||All:-

Proof. In Section 1, we noted that HZ® is an extended weak * Dirichlet algebra.
If b isin H} then ygu& (log|h|) > —oo a.e. where E(h) is the support set of h.
Hence Theorem 4’ in [7] implies the lemma for p = 2. For p # 2, we can prove it
similarly because Theorem 4’ can be shown for arbitrary p (see[7, Section 5]).

LEMMA 2. Suppose 1/p+1/q= 1. If ¢ is a function in L*°, then

; he WH) and ||h||; < 1}

H¢+*H?W|:supﬂj[¢hdm

= Sup{|/¢fgdm f €M), g e WHE, |If[l, <1 and gl <1}

Proof. This is a result of Lemma 1 and Hahn-Banach theorem because the annihi-
lator of WH! in L™ is H®.

THEOREM 1. Suppose 1 < p < oo, 1/p+1/q =1 and ¢ is function in L.
Then

max([[¢ +HZl, [|¢ +HZ|) < [|Ho|
<1t = Pllg{lIP51lqll¢ + B + [[P5llqll@ + HZ }-

Proof. We will give the lower estimate of ||Hy|. Since Z'Hj, = Hj, for any
positive integer n, H? x wHy, = 7'"HP x wH},. Hence

H? x K5 {| JZ'H"} x wH,.
n=0

Using Lemma 2 in the second equality,

ol = supl] [(1 = Phoredn] 7 € 7. g € L2, ], < 1 and [l < 1}

WV

mmﬂ/Qmmw;feHAgeK%\wu<lam|mu<1}

WV

wmﬁ/¢hwmhf61ﬂ,g€wH%Hﬂb<1fdemhél}
6+ B



432 TAKAHIKO NAKAZI

Similarly we can show that ||Hy|| > ||¢ + H®||.
Now we will give the upper estimate of ||Hy||. Here for F € L and G € L7, put

(F,G) :/Fde.

[Hyll = sup{|[(Hof,8)|:f € H", g€ L7, |[f[l, <1 and |[gll, < 1}
= sup{[(¢f, (I =P)g)|: f € H", g € L7, ||f|[, <1 and |lg[ls < 1}
17— Pllgsup{|(¢f,h)|: f € H", h€ K7, |[f[l, <1 and [lh]l, < 1}.

N

Since K9 = wHY, + zH?, by Lemma 2

sup{|(9f . 1) |; f € H", he K7, |||, <1 and [[All; < 1}
<sup{|[(@f,Pgh) | f € H', h e K7, |[f]l, <1 and ||h]l, < 1}
+sup{|[{¢f . Pih) | ; f € H', h€ K*, [, <1 and |Al, <1}

< HPKHqSHP{\/Wde\ L f € HY, ke wHE, [If[|l, < 1 and [[kfly < 1}

+\|P6||qsup{\/¢fkdm\ s f €Y ke HY Iffl, <1 and k[l < 1}
< [1P51lq sup{] /¢fkdm\ s f € H, ke wHI, I, <1 and [kfly <1}
1Pl supd [ ofkam s £ € B, ke 2B I, < 1 and (K], < 1)
< PG llglle + H2 [+ [1Pollqll¢ + HZl.
This completes the proof.
COROLLARY 1. Suppose p =2 and ¢ is a function in HS° . Then

1Holl = [l¢ +HZZ].

Proof. Apply Theorem 1 as p = 2.

COROLLARY 2. Suppose p = 2 and ¢ is a continuous function on T*>. Then
lim [[Hywr|| = |0+ H;2| and lim [[How | = [0+ HZ].

Proof. By Theorem 1 for p = 2.

lo +HF| = [oz" + HF||
[Hor || < 192" + HZ || + [l¢z" + HZ|
16+ HEE || + [|¢ + Z"HZZ .

N

Since ¢ is continuous, lim ||¢ + Z'H°|| = 0.
n—oo
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PROPOSITION 2. Suppose 1 < p < oo and ¢ is a function in L>° . Then

sup |[¢ + HX[| < [[Hyll < [[Plpl]¢ + H>||.

—oco<r<0

Proof. For the lower estimate of ||[Hy||, the proof is almost parallel to the case of
r =0 and —oo which were proved in Theorem 1. When p = 2, the proposition was
proved in [8, Theorem 1] with a gap (see [9]). The point is to prove that the linear span

of U Z'HP is dense in HY when r # 0 and r # —oco0. For —oo < r < 0,

n=—o0
ZH? O {Z'W'; (s,0) € 22, s > my, t > ng}

and
Z7HP S {FwW' (s,0) € 22, s > —mg, t > —np}.
oo
where Z = Z, = 7"w™, r = ny/mg and ny < 0, mp > 0. Hence U Z"HP contains
n=—oo

{Z"w"; (m,n) € S, U (the left side ray of L, from the origin)} and the linear span of
{z"w" ; (m,n) € S, U (the left side ray of L, from the origin)} is dense in H. This

implies that the linear span of U Z"H? is dense in HY .

n=—00

COROLLARY 3. Suppose p =2 and ¢ isafunctionin H® = {f € H>®, /fdm =

0}. Then
1/2
([10an) " <ltel < ol

Proof. If ¢ is in HS°, then ¢ is orthogonal to H? and hence ||¢ + H>|| >

(fo)”

COROLLARY 4. Suppose 1 < p < oo and ¢ = ¢,,¢, is a function in L™ where
¢ is unimodular in L (T,,,m,,) and ¢, is unimodularin L*°(T,,m;). Then

max([|¢: +H> |, [|gw + H®|)) < [[Hll < [|Plpll¢ +H>.

Proof. This is a corollary of Proposition 2 by the following equality:

1920+ BZI| = 16+ B2 = [[gc + H (T mo)| = [0 + H||
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3. Weighted norm inequality

If W is a nonnegative function in L!, then

1 1 1=r
L W_P_ldm)
(m(E X F) Jexr

I—p
1 1 1 1
< —/a’mZ (—/W Plldmw> < — Wdm.
m(E) Jg my(F) Jp m(E X F) Jexrp

where 1 < p < oo and E x F is aBorel seton T?. If W(z,w) = W;(z)Wa(w), and W,
and W, are nonnegative functions in L(T;) = L'(T,m;) and LY(T,) = L'(T,m,,),
respectively, then

(o )l 7] (s 7
W r=Tdm = /W - dm,) < /W - dmw) ,
M(EXF) Jpxrp m(E) Jg ! : my(F) Jr :

1 1 i =7 1 . =r
(ot w0 ()
mz(E) E mW(F) F mz(E) E mW(F) F

and
1

1 1
S — Wdm = —/Wldm,—/Wzdmw.
M(E X F) Jpxrp m,(E) Jg me(F) F

Suppose 1 < p < oo and W is a nonnegative function in L!. We say that W
satisfies (A,)-condition for w if there exists a positive finite constant y such that

! Wdm < y— /d ( ! /W*ﬁd )1,,
_ m <y —— m, [ —— —Tdm,,
M(E X 1) Jex m(E) Jg : my(I) J;

where E is a Borel set in T, and [ is an interval in 7). Similarly (A,)-condition
for z can be defined. If W satisfies (A,)-condition for w and z, then we say that W
satisfies (A,)-condition.

Using a theorem of Hunt, Muckenhoupt and Wheeden [6] on T, we give the
generalization to 7% . This is known essentially in [3]. This will be used in Section 4.

LEMMA 3. Suppose 1 < p < oo and W is a nonnegative function in L' .

/V|Pde<y,,/[f+g\Pde (f eHY, g e wH)?)

with v, independent of f and g if and only if W satisfies (A,) -condition for w.

Proof. 1t is easy to see that W satisfies (A4,)-condition for w if and only if for
a.e.m; W satisfies (A4,) -condition of one variable. In a theorem of Hunt, Muckenhoupt
and Wheeden (cf. [5, Theorem 6.1 in Chapter VI]), the constant I', of (A,) -condition
and the constant ¥, of a weighted norm inequality are equivalent, thatis, 0 < & <
[,/v, < 1/€. This implies the lemma with Fubini’s theorem.
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THEOREM 3. Suppose 1 < p < oo and W is a nonnegative function in L'.

/V\Pdegyp/v+g\Pde (f €H, g€K)

with ¥, independent of f and g if and only if W satisfies (Ap) -condition.
Proof. Suppose that

/V\dem < Yp/[f + gPWdm (f € H, g € K).
Then for any nonnegative integer n,
/ |Z°f PWdm < v, / |Z'f + Z'g|P Wdm.

Since K>~ D wH;?, if g € wH}? then z"¢g € wH® and Z'f € HS® forany n > 0.

oo
Since Ui’H isdense in HS°, for F € H? and G € wH®

n=1
/\F|”de <h / |F + GPWdm.

Now Lemma 3 implies that W satisfies (A,)-condition for w. The same argument
implies that W satisfies (A,)-condition for z. Conversely, suppose that W satisfies
(A,) -condition. By Lemma 3, for the weight W we have weighted norm inequalities
for H® + wH® — Hy® and HX® + ZH>® — HZ°. This implies the weighted norm
inequality for H+K — H . Infact, thisis a simple result of the following decomposition.
If f € Hand g € K, then g = g + g, where g € H° N K and g, € wH® NK,
and so
freg=(F+ga)+e&

where f + g1 € H;° N L. Then f € H™ and g, € ZH®°.

Our (A,)-condition on 7? seems to be strange if we compare with that on 7. A
natural (4,)-condition on T? may be the following : There exists a positive constant
Y such that

1 1 : I-r
_— Wdm <y (7 / Wﬂ_ldm) .
m(l xI) [ m(I xI) [

However this is too weak for one weighted norm inequality.

COROLLARY 5. Suppose 1 < p < oo and W = W,,W, where W,, is anonnegative
function in LY(T,,) and W, is a nonnegative function in L'(T,).

/{f\demgyp/{f+§|pwdm (f €H, g€K)

if and only if W,, and W, satisfy one variable (A,)-condition.
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4. Toeplitz operator

For ¢ in L*, Ty and be are Toeplitz operators on H}, and HY, respectively.
Thatis, Tyf = P*(¢f) (f € Hy,) and Tyf = PA(¢f )(f € HE). o(Ty), o(Ty) and
G(TE)) denote the spectrums, respectively. For a nonzero function 4 in H?, we call it

an outer function if
/log |h|dm = log | /hdm\

(cf. [14, p73]). For a nonzero function & in Hf,, we call it a w-outer function if

/ log |hldm = /log\/ha’mw\dmZ > —o0.
e T T

Similary we can define an z-outer function. When a function in H? is outer for w and
z, it is called weakly outer (see [11]). If & is an outer function in H? , then £ is weakly
outer.

In order to prove Lemma 4, we use a general theory of an extended weak
Dirichlet algebra [7]. However we can also prove this using a general theory of a weak
* Dirichlet algebra. Since

/10g|/hdmw|dmz :/ log |& (h)|dm
T T T2

where & is a conditional expectation from HS° onto .Z>° = H® NHY, if h is a
w-outer function, then ZHZ® is dense in HY, [7].

LEMMA 4. Suppose 1 < p < oo and ¢ is a function in L>. If Ty is left

invertible on H,, ¢ = k@y where k is invertible in HS®, ¢y is a unimodular function,
and Ty, is left invertible on H,.

Proof. If T is left invertible on H},, then there exist a positive constant € such
that

[ 167 +gram > e [ Irpam

for f € HY, and g € wH},. As g =0, /\¢|”[f|”dm2 8/[f|”dm for f e HE, . If v

is a nonnegative function in L' with logv € L', then by Theorem 4 in [7] v!/7 = |f|
for some function f in HL, N 27 . By Theorem 5in [7], H, N I» = HY, andso f € H,.

Hence
/|¢\”vdm>£/vdm

forall v € L' with v > 0. This implies that ¢ is invertible in L>° . Again by Theorem
4’ = k¢p for some k € HS® and for some unimodular function ¢y. It is easy to
see that k is invertible in HY?. Since Ty = Ty Ty and T} is invertible, Ty is left
invertible.
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LEMMA 5. Suppose 1 < p < oo and ¢ is a function in L>. T} is invertible on
HY, if and only if there exist an invertible function k in HS® and a w-outer function h
in H, such that ¢ = kh/h and |h|P satisfies (A,)-condition for w.

Proof. By Lemma 4, we may assume that ¢ is a unimodular function. If T} is
invertible on HY,, then there exist f € Hj, and g € wHY, such that ¢f = 1+ g. Since
(Ty)* is invertible on Hj, where 1/p +1/q = 1, there exist f € Hj, and g’ € wH},
such that ¢f’ = 1 + g'. Therefore ff' = (1 +g) (1 +g') belongs to HY/> nHY/?.
When p > 2, /2 na? =/ ni/? = .,iﬂzp/z. Hence ff' belongs to QZQP/Z and
so ff' =1 a.e. on T? because g, g’ € wHY. When 1 < p < 2, HY/>nHY? = 27>,
This also implies ff’ = 1 a.e. on T?>. Hence f € H), and f ! € H},,and 1+ ¢ € H,
and (1+g)~! € H},. Since ¢ = (1+g)/f and || = la.e. on T2, |f| = |1 + g| ae.
on T? andso 1+g = af for some unimodular « € £ Therefore ¢ = h/h where

h = Bf for some unimodular 8 € £ . Then & is a w-outer function in H,.
Since T:g' is invertible on HY,, there exist positive constants y and € such that

rlief +&lly = ITef 1, = ellf [l

where f € H;;” and g € wH® . Then
v [ g pdn > e [
and hence we can show that
}/”/|F+G_|”|h\pdm > 5”/|F\p|h\pdm

where F € H® and G € wHS?, because h is w-outer. By Lemma 3, |A[P satisfies
(Ap) -condition for w.

Conversely if ¢ = h/h and |h|P satisfies (A,)-condition for w, then by Lemma
3

b [+ gtpan> [ifPipan (¢ € B, ¢ € wHE)
and so

W / \Ohf + gPdm > / W Pdm (€ HZY, g € wHEE).

Since & is a w-outer function in Hi,, hH® is dense in H, by [7] and so
Y / OF + Gldm > /|F\pdm (F € H, G € wH).

This implies that T} is left invertible because L7 /wHY, = Hf,. Since [Tg’H{’V]p D
[P¥(hH;Y)],, we will prove that [P*(hH;?)], = HY,. Then the invertibility of T}

n

follows. For any n, we can write & = Zhjwj + w1 where b € ZP(0 <
=0

j < n) and k.., € Hy,. Since h is a w-outer function, |hg| > 0 a.e. on T? and
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ho € [P*(hH;?)],. [P¥(hH;?)], is invariant under multiplication by u € £ and
so &' C [PY(hH?)|,. Since P¥(wh) = who + hi, why € [PY(hH®)], and so
wL C [PY(hHP)],. Since P*(w?h) = w?hy + why + hy, similarly we can show
that w>.2¥ C [P"(hH;?)],. By repeating this method, we can prove that Hf, C
[P (RHE)]p -
THEOREM 4. Suppose 1 < p < oo and ¢ is a functionin L* . If T is invertible
on H?, then B _
h h
=ky— = k,—=
o PR
where k; is invertible in H>® for t = w,z and h; is a t-outer function in W, for
t =w,z such that |h|P satisfies (Ap)-condition for t = w, z.
Proof. If T, is invertible on H”, then there exist positive constants ¥ and € such
that
Ylof + &l = 1 Tof llp = ellf [l

where f € H and g € K. As in the proof of Theorem 3, for any nonegative integer n
v [lozf + 2gram> e [ |2 pam
where f € H and g € (wH:°) N L, and so we can show that

rlief +&ll, = elf ll,

where f € H{ and g € wH{? . This implies that Ty is left invertible on H}, . Since
PY(¢H;) D P(9H}®) D P(¢H) and TyH? = H”, TyHY, is dense in H, and so T}
is invertible on HY,. Now Lemma 5 implies that ¢ = kywhyy /h,, where k, is invertible
in HY® and h,, is a w-outer function in HY, such that |h, [P satisfies (A,)-condition
for w. The same method implies the statement about z.

COROLLARY 6. Suppose 1 < p < oo and ¢ is a function in L*°. Then

o(Ty) 2 o(Ty) U o(T5).

THEOREM 5. Suppose 1 < p < oo.

(1) Suppose ¢ = h/h for some nonzero function h in HP. If Ty is left invertible
on HP, then |h|’ satisfies (A,) -condition.

(2) Suppose k is an invertible functionin H>, h is an outer function in H> and
|h|P satisfies (A,)-condition. If ¢ = kh/h, then Ty is invertible on HP .

Proof. (1) If T, is invertible on H?, then there exists a positive constant y such
that

riief +&ll, = Ifll,  (F €H, g €K).
As in the proof of Theorem 3, for any nonnegative integer n,

v / 02°f + Z'gldm > / 2F [Pdm
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where f € H an g € (WHZ°) N L, and so we can show that

vlof +elp = Ifll,  (F € B, g € wHE).
and
v [ R g [y papan
where f € H® and g € wH;? . For any F' € H;® and any G € wH®,

it /|h i FIhfrdm = inf /v hF|Pdm = 0

and
inf /\ GPlhrdm = _int /\g RGlrdm = 0.

gewHS®

Hence
yp/\F+G|p|h\pdm > /|F\”\h|”dm (FeHY, GewHY).

By the same argument, we can give the above inequality for H>® 4+ zZHS® instead of
H® +wH;®. By Lemma 3, |h|? satisfies (A,)-condition.
(2) Since Ty = T; T and Ty is invertible on H” , we may assume that ¢ = h/h.
h

If |n|P satisfies (A,)-condition, by Theorem 3

[ruran<y, [ +griran ¢ g k)
and so
[ rtan <y, [lon +hgpan ¢ e, g <),

Since & is outer, h~! belongsto N, . Since |h|P satisfies (A,)-condition, h~! belongs
to N, N L7 = HP. This implies that #H? is dense in H? because h € H>° . Thus

/ |F|Pdm < yp/|¢F+ GPdm (F € H, G € K).

This implies that T, is left invertible because L*/[K]|, = HP. If we can prove that
[Ty(H)], = [P(hH)], = HP, then the invertibity of T, follows.

Let h = Zhj be a homogeneous expansion of & where h; is a homoge-
Jj=0
neous polynomial of degree j. Since h is outer, hy is a nonzero constant and
1 € [P(hH)),. P(zh) = zho + P(zhi) = zho + ¢ for some constant ¢ because

zh = zhy + zh +ZZEJ
=2
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Hence z € [P(hH)], because 1 € [P(hH)|,. Similarly w € [P(hH)],. P(Zh) =
2ho + P(z°hy + 722ha) = 72ho + cz + d for some constant ¢ and d because

Ph=22ho + 22 (hy + hy) + 22 Zﬁj
=3
Hence 72 € [P(hH)|, because 1, z € [P(hH)],. Similarly w? and zw belong to
[P(hH)], . By repeating this method, we can prove that H C [P(hH)], .

COROLLARY 7. Suppose ¢ = ¢,¢. is a function in L> where ¢, € L>°(T,,, m,,)
and ¢, € L>(T;,m;). Ty is invertible on HP if and only if Ty, is invertible on
HP(T,,,my,) and Ty, is invertible on HP (T, m;).

Proof. If Ty is invertible on H”, then both Ty, and Ty, are invertible on H”,
and there exists a positive constant € such that

[ 167 +gpam > e [ Irpan

for f € H? and g € wHZ°. This implies that there exists a positive constant €’ such
that

/ 0f + &Pdm > ¢’ / If [Pdm

for f € H? and g € wH® because ¢ 'wHS® C wH®. Hence Ty, is left invertible
on H?(T,,m,). Itis easy to see that Ty H"(T,,m,) is dense in H?(T,,m,,). Thus
Ty, is invertible on H?(T,,, m,,). Similarly T,, is also invertible on H?(T;,m.).

Conversely if both Ty, and T,, are invertible on HP(T,,,m,,) and H?(T,,m;)
respectively, then by a theorem of R. Rochberg [13] ¢ = ¢,,¢, satisfies the condition in
(2) of Theorem 5. Hence T, is invertible on H? .

REMARK.

(1) Suppose ¢ = (2 —zw)/(2 — zw). By Theorem 4, Ty and T, are invertible
on HY, and HY, respectively.

(2) If ¢ is a unimodular function and [|¢ + H;?|| + ||¢ + H2°|| < 1, then T
is left invertible on H*. For by Theorem 1 |[Hy|| < 1 and so || — T;T| < 1
because TyTy + HyHy = I. Suppose ¢, = (a — z‘w)/_(a —zw) and _\a| > 2. Then
|60 +H2|| + ||¢, + H°|| < 1 for some a and then ||¢, + H°|| + |9, + H|| < 1.
This implies that T, is invertible on H?.
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