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A SYSTEM OF GENERALIZED AUXILIARY PROBLEMS

PRINCIPLE AND A SYSTEM OF VARIATIONAL INEQUALITIES

RAM U. VERMA

(communicated by Th. Rassias)

Abstract. The approximation-solvability of a system of nonlinear variational and quasivariational
inequalities (SNVQVI)

〈F1(x∗, y∗), x − x∗〉 � 0 for all x ∈ X,

and
〈F2(x∗, y∗), g(y) − g(y∗)〉 � 0 for all g(y) ∈ Y,

where X and Y , respectively, are nonempty closed convex subsets of Rm and Rn and related
F1 : X × Y → Rm and F2 : X × Y → Rn are any mappings such that F = (F1,F2) is
g - γ -partially relaxed monotone, is presented. Here g : Rn → Rn is any mapping.

1. Introduction

It was Cohen [2], who first introduced the auxiliary problem principle to de-
scribe and analyze iterative optimization algorithms such as gradient or subgradient as
well as decomposition/coordination algorithms, and later applied this approach to the
approximation-solvability of a class of nonlinear mixed variational inequalities involv-
ing strongly monotone mappings in a reflexive Banach space setting. In this particular
case, the estimate for the approximate solutions turns out to be a standard contraction
type and so the sequence of approximate solutions converges to a given solution of the
original nonlinear variational inequality. This auxiliary problem principle may work for
other mappings but the outcome for the estimates may be totally different, for instance
in the works of Zhu and Marcotte [22] for cocoercive mappings and of Verma [18]
for partially relaxed monotone mappings, where the estimates are forced to hold for a
finite-dimensional normed linear spaces, because of the limitations to the convergence
analysis. If we choose some cocoercive or a partially relaxed monotone mapping in a
reflexive Banach or a Hilbert space setting, the estimates turn out in such a manner that
one can obtain only a bounded sequence which can have only a weakly convergent sub-
sequence, unlike in a finite-dimensional normed space such as Rn . Motivated by these
developments, Verma [18] applied a generalized version of Cohen’s auxiliary problem
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principle to the approximation-solvability of a class of mixed variational inequalities
involving the partially relaxed monotone mappings — a computationoriented class —
introduced by Verma [16] — which is more general than cocoercive and strongly mono-
tone mappings — in a finite dimensional Hilbert space / Rn space setting and the
convergence analysis is similar to that of Zhu and Marcotte [22].

We intend in this paper to discuss, based on a generalized auxiliary problems
principle, the approximation-solvability of a system of nonlinear variational and quasi-
variational inequalities involving the g - γ -partially relaxed monotone mappings in Rn .
The obtained results complement similar investigations by Cohen [2], Zhu and Marcotte
[22], and Verma [16, 18, 19]. For more select details on variational inequalities and
related algorithms, we recommend [1- 22].

Let 〈 · , ·〉 and || · || denote, respectively, the scalar product and the Euclidean
norm on Rn . Let K be a nonempty closed convex subset of Rn and T : K → Rn any
mapping on K . For a positive definite matrix M , the matrix norm is defined by

||x||M = 〈Mx, x〉 1/2.

A mapping T : K → Rn is said to be α -cocoercive [19] if for all x , y ∈ K , we have

||x − y||2 � α2||T(x) − T(y)||2 + ||α(T(x) − T(y)) − (x − y)||2,
where α > 0 is a constant.

A mapping T : K → Rn is called α -cocoercive [3, 9] if there exists a constant
α > 0 such that

〈T(x) − T(y), x − y〉 � α||T(x) − T(y)||2 for all x, y ∈ K.

A mapping T : K → Rn is called g -α -cocoercive if there exists a constant α > 0
such that

〈T(x) − T(y), g(x) − g(y)〉 � α||T(x) − T(y)||2 for all x, y ∈ K,

where g : Rn → Rn is any mapping.
T is called r -strongly monotone if for each x , y ∈ K , we have

〈T(x) − T(y), x − y〉 � r||x − y||2 for a constant r > 0.

This implies that
||T(x) − T(y)|| � r||x − y||,

that is, T is r -expanding, and when r = 1 , it is expanding. This class of mappings
satisfies the following implications:

the r-monotonicity

↓
the r-expansiveness

↓
the expansiveness
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A mapping T : K → Rn is called g - r -strongly monotone if for each x , y ∈ K , we
have

〈T(x) − T(y), g(x) − g(y)〉 � r||g(x) − g(y)||2 for a constant r > 0,

where g : Rn → Rn is any mapping.
This implies that

||T(x) − T(y)|| � r||g(x) − g(y)||,
that is, T is g - r -expanding, and when r = 1 , it is g -expanding. This class of
mappings satisfies the following implications:

the g-r-monotonicity

↓
the g-r-expansiveness

↓
the g-expansiveness

A mapping T : K → Rn is called r -relaxed monotone if there exists a constant r > 0
such that

〈T(x) − T(y), x − y〉 � −r||x − y||2 for all x, y ∈ K.

The mapping T is called β -Lipschitz continuous (or β -Lipschitzian) if there exists a
constant β � 0 such that

||T(x) − T(y)|| � β ||x − y|| for all x, y ∈ K.

A mapping T : K → Rn is called g -β -Lipschitz continuous if there exists a constant
β > 0 such that

||T(x) − T(y)|| � β ||g(x) − g(y)|| for all x, y ∈ K,

where g : Rn → Rn is any mapping.
We note that if T is α -cocoercive and expanding, then T is α -stronglymonotone.

On the top of that, if T is α -strongly monotone and β -Lipschitz continuous, then T
is (α/β2) -cocoercive for β > 0 . Clearly, every α -cocoercive mapping T is (1/α) -
Lipschitz continuous.

LEMMA 1.1. For all elements v , w ∈ K , we have

||v||2 + 〈 v, w〉 � −(1/4)||w||2.
A mapping T : K → Rn is said to be γ -partially relaxed monotone [16] if for all x ,
y , z ∈ K , we have

〈T(x) − T(y), z − y〉 � −γ ||z − x||2 for γ > 0.

PROPOSITION 1.1 [16]. Let T : K → Rn be an α -cocoercive mapping on K .
Then T is (1/4α) -partially relaxed monotone.
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PROPOSITION 1.2. Let T : K → Rn be an α -partially relaxed monotone mapping
on K . Then T is not, in general, (1/4α) -cocoercive, that is, the converse of Proposition
1.1 is not true in general.

Proof. Since T is α -partially relaxed monotone, applying Lemma 1.2, we have
for all x , y , z ∈ K that

〈T(x) − T(y), x − y〉 = 〈T(x) − T(y), z − y〉 + 〈T(x) − T(y), x − z〉
� −α||z − x||2 + 〈T(x) − T(y), x − z〉
= −α{||z − x||2 + (1/α)〈T(x) − T(y), z − x〉 }
� (1/4α)||T(x) − T(y)||2,

that means, T is not (1/4α) -cocoercive.
A mapping T : K → Rn is said to be r -partially strongly monotone [16] if for all

x , y , z ∈ K , we have

〈T(x) − T(y), z − y〉 � r||x − y||2 for r > 0.

A mapping T : K → Rn is said to be γ - r -partially relaxed-strongly monotone [16] if
for all x , y , z ∈ K , we have

〈T(x) − T(y), z − y〉 � −γ ||z − x||2 + r||x − y||2 for constants γ , r > 0.

A mapping T : K → Rn is said to be γ - r -partially relaxed-relaxed monotone [16] if
for all x , y , z ∈ K , we have

〈T(x) − T(y), z − y〉 � −γ ||z − x||2 − r||x − y||2 for constants γ , r > 0.

A mapping T : K → Rn is said to be g - γ -partially relaxed relaxed monotone [16] if
for all x , y , z ∈ K , we have

〈T(x) − T(y), g(z) − g(y)〉 � −γ ||g(z) − g(x)||2 for γ > 0,

where g : Rn → Rn is any mapping.
A mapping T : K → Rn is said to be g - r -partially strongly monotone [16] if for

all x , y , z ∈ K , we have

〈T(x) − T(y), g(z) − g(y)〉 � r||g(x) − g(y)||2 for r > 0.

A mapping T : K → Rn is said to be g - γ - r -partially relaxed-strongly monotone [16]
if for all x , y , z ∈ K , we have

〈T(x)−T(y), g(z)−g(y)〉 � −γ ||g(z)−g(x)||2 +r||x−y||2 for constants γ , r > 0.

A mapping T : K → Rn is said to be g - γ - r -partially relaxed-relaxed monotone [16]
if for all x , y , z ∈ K , we have

〈T(x) − T(y), g(z) − g(y)〉 � −γ ||g(z) − g(x)||2 − r||g(x) − g(y)||2
for constants γ , r > 0.
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PROPOSITION 1.3. Let T : K → Rn be an g -α -cocoercive mapping on K . Then
T is g - (1/4α) -partially relaxed monotone.

Proof. For all x , y , z ∈ K , we have

〈T(x) − T(y), g(z) − g(y)〉
= 〈T(x) − T(y), g(x) − g(y)〉 + 〈T(x) − T(y), g(z) − g(x)〉
� α||T(x) − T(y)||2 + 〈T(x) − T(y), g(z) − g(x)〉
= α{||T(x) − T(y)||2 + (1/α)〈T(x) − T(y), g(z) − g(x)〉 }
� −(1/4α)||g(z) − g(x)||2,

that is, T is g - (1/4α) -partially relaxed monotone.

PROPOSITION 1.4. Let T : K → Rn be a g -α -partially relaxed monotone map-
ping on K . Then T is not, in general, g - (1/4α) -cocoercive, that is, the converse of
Proposition 1.3 is not true in general.

Proof. Since T is g -α -partially relaxedmonotone, applying Lemma1.2, we have
for all x , y , z ∈ K that

〈T(x) − T(y), g(x) − g(y)〉
= 〈T(x) − T(y), g(z) − g(y)〉 + 〈T(x) − T(y), g(x) − g(z)〉
� −α||g(z) − g(x)||2 + 〈T(x) − T(y), g(x) − g(z)〉
= −α{||g(z) − g(x)||2 + (1/α)〈T(x) − T(y), g(z) − g(x)〉 }
� (1/4α)||T(x) − T(y)||2,

that means, T is not g - (1/4α) -cocoercive.
We remark that the class of g -partially relaxed monotone mappings satisfies the

following implications:

the g-r-partial relaxed-strong monotonicity

↓
the g-γ -r-partial relaxed monotonicity

↓
the g-γ -partial relaxed monotonicity

Before we conclude the section, we need to extend the notion of the γ -partial relaxed
monotonicity to the case of a pair of Rm and Rn . Let X and Y , respectively, be
nonempty closed convex subsets of Rm and Rn . Let F1 : X × Y → Rm and F2 :
X × Y → Rn be any mappings such that the mapping F : X × Y → Rm ×Rn is defined
by

F(x, y) = (F1(x, y), F2(x, y)) for all (x, y) ∈ X × Y.

A mapping F : X × Y → Rm × Rn is said to be g - γ -partially relaxed monotone if
there exists a constants γ > 0 such that for all x1 , x2 ∈ X and for all y1 , y2 , y3 ∈ Y ,
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we have

〈F1(x1, y1) − F1(x2, y2), x1 − x2〉 + 〈F2(x1, y1) − F2(x2, y2), g(y3) − g(y2)〉
� −γ ||g(y3) − g(y1)||2,

where g : Rn → Rn is any mapping.
We consider a system of nonlinear variational and quasivariational inequalities

(SNVQVI)
〈F1(x∗, y∗), x − x∗〉 � 0 for all x ∈ X, (1.1)

and
〈F2(x∗, y∗), g(y) − g(y∗)〉 � 0 for all g(y) ∈ Y. (1.2)

2. Algorithms and solvability

Beforewe discuss the approximation-solvabilityof SNVQVI (1.1)–(1.2), we need
to describe the system of algorithms [21] as follows: for given initial iterates x0 ∈ X
and y0 ∈ Y , we have

〈F1(xk+1, yk), x − xk+1〉 � 0 for all x ∈ X, (2.1)

and

〈 ρ(F2(xk+1, yk) + M(g(yk+1)) − M(g(yk)), g(y) − g(yk+1)〉
+ 〈 h′(yk+1) − h′(yk), g(y) − g(yk+1)〉 � 0 for all g(y) ∈ Y,

(2.2)

where h′ is g -b -strongly monotone and g - c -Lipschitz continuous on Y , and M is a
symmetric matrix.

For M = 0 in (2.1)–(2.2), we have a system of algorithms as follows: for given
initial iterates x0 ∈ X and y0 ∈ Y , compute

〈F1(xk+1, yk), x − xk+1〉 � 0 for all x ∈ X, (2.3)

and

〈 ρF2(xk+1, yk) + h′(yk+1) − h′(yk), g(y) − g(yk+1)〉 � 0 for all g(y) ∈ Y, (2.4)

where h′ is g -b -strongly monotone and g - c -Lipschitz continuous on Y. Here h′

denotes the derivative of h .

LEMMA 2.1 [18]. Let h : K → R be continuously differentiable on a convex subset
K of Rn . Then we have the following conclusions:

(i) If the gradient h′ is g - b -strongly monotone, then

h(x) − h(y) � 〈 h′(y), g(x) − g(y)〉 + (b/2)||g(x) − g(y)||2

for all x, y ∈ K and g(x), g(y) ∈ K .



A SYSTEM OF GENERALIZED AUXILIARY PROBLEMS PRINCIPLE . . . 449

(ii) If the gradient h′ is g - c -Lipschitz continuous, then

h(x) − h(y)〈 h′(y), g(x) − g(y)〉 + (c/2)||g(x) − g(y)||2

for all x, y ∈ K and g(x), g(y) ∈ K , where g : Rn → Rn is any mapping such that for
any t � 0 , g(tx) = tg(x) .

The proof is included for the sake of the completeness.

Proof. (i) For any x , y ∈ K , we define a function

Φ(t) := h((1 − t)x + ty) − h(x) − t〈 h′(x), g(y) − g(x)〉 for t ∈ [0, 1].

Then we have

Φ′(t) = 〈 h′((1 − t)x + ty) − h′(x), g(y) − g(x)〉
and

Φ(1) −Φ(0) =h(y) − h(x) − 〈 h′(x), g(y) − g(x)〉

=
∫ 1

0
Φ′(t)dt (by the Fundamental theorem of calculus)

�
∫ 1

0
(1/t)b||t(g(y) − g(x))||2dt

=(b/2)||g(y)− g(x)||2.
(ii) For any x , y ∈ K , we define a function

Φ(t) := h((1 − t)x + ty) − h(x) − t〈 h′(x), g(y) − g(x)〉 for t ∈ [0, 1].

Then we have

Φ′(t) = 〈 h′((1 − t)x + ty) − h′(x), g(y) − g(x)〉
and

Φ(1) −Φ(0) =h(y) − h(x) − 〈 h′(x), g(y) − g(x)〉

=
∫ 1

0
Φ′(t)dt (by the Fundamental theorem of calculus)

�
∫ 1

0
|Φ′(t)|dt

�
∫ 1

0
c||t(g(y) − g(x))|| ||(g(y) − g(x))||dt

=(c/2)||(g(y) − g(x))||2.

For g ≡ I , we arrive at [22]:
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LEMMA 2.2. Let h : K → R be continuously differentiable on a convex subset K
of Rn . Then we have the following conclusions:

(i) If the gradient h′ is b -strongly monotone, then

h(x) − h(y) � 〈 h′(y), x − y〉 + (b/2)||x− y||2 for all x, y ∈ K.

(ii) If the gradient h′ is c -Lipschitz continuous, then

h(x) − h(y) � 〈 h′(y), x − y〉 + (c/2)||x − y||2 for all x, y ∈ K.

We are just about ready to present, based on (2.1)–(2.2), the approximation-
solvability of the SNVQVI problem (1.1)–(1.2) involving g - γ -partially relaxedmono-
tone mappings in Euclidean spaces.

THEOREM 2.1. Let F1 : X × Y → Rm be r(y) -expanding in its first variable and
g - s -Lipschitzian in its second variable. Suppose that F = (F1, F2) is g - γ -partially
relaxed monotone and F2 is g -μ -Lipschitz continuous in its second variable. Then
the sequence {(xk, yk)} generated by the algorithm (2.1)–(2.2) converges to a solution
of the SNVQVI (1.1)–(1.2) for g expansive and

0 < ρ < (b/2γ )/[1 − (λ min(M)/2γ )] if b(λ min(G)) − 2ργ > 0
and

0 < ρ < ∞ if b(λ min(G)) − 2ργ � 0,

where G = I + (ρ/b)M is positive definite.

Proof. Proof. Assume (x∗, y∗) is a solution of the SNVQVI (1.1)–(1.2) and
define a function Λ∗ by

Λ∗(g(y)) :=h(y∗) − h(y) − 〈 h′(y), g(y∗) − g(y)〉
+ ρ/2〈M(g(y)− g(y∗)), g(y) − g(y∗)〉

� (b/2)||g(y∗) − g(y)||2 + ρ/2〈M(g(y) − g(y∗)), g(y) − g(y∗)〉
= (b/2)||g(y)− g(y∗)||2G for g(y) ∈ Y,

where G = I + (ρ/b)M is positive definite.
Now we can write

Λ∗(g(yk)) − Λ∗(g(yk+1)) = h(yk+1) − h(yk) − 〈 h′(yk), g(yk+1) − g(yk)〉
+ 〈 h′(yk+1) − h′(yk), g(y∗) − g(yk+1)〉
+ ρ/2〈M(g(yk) − g(y∗)), g(yk) − g(y∗)〉
− ρ/2〈M(g(yk+1) − g(y∗)), g(yk+1) − g(y∗)〉

� (b/2)||g(yk) − g(yk+1)||2
+ ρ〈F2(xk+1, yk), g(yk+1) − g(y∗)〉
+ ρ〈M(g(yk+1) − g(yk)), g(yk+1) − g(y∗)〉
+ ρ/2〈M(g(yk) − g(y∗)), g(yk) − g(y∗)〉
− ρ/2〈M(g(yk+1) − g(y∗)), g(yk+1) − g(y∗)〉 .

(2.3)
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for y = y∗ in (2.2).
If we replace y by yk+1 in (1.2) and combine with (2.3), we obtain

Λ∗(g(yk)) − Λ∗(g(yk+1)) � (b/2)||g(yk+1) − g(yk)||2 + ρ〈F2(xk+1, yk)

− F2(x∗, y∗), g(yk+1) − g(y∗)〉
+ ρ〈M(g(yk+1) − g(yk)), g(yk+1) − g(y∗)〉
+ ρ/2〈M(g(yk) − g(y∗)), g(yk) − g(y∗)〉
− ρ/2〈M(g(yk+1) − g(y∗)), g(yk+1) − g(y∗)〉

= (b/2)||g(yk+1) − g(yk)||2 + ρ〈F2(xk+1, yk) − F2(x∗, y∗), g(yk+1) − g(y∗)〉
+ ρ/2〈M(g(yk) − g(yk+1)), g(yk) − g(yk+1)〉 .

(2.4)

Setting x = xk+1 in (1.1) and x = x∗ in (2.1) and combining with (2.4) yields

Λ∗(g(yk)) − Λ∗(g(yk+1)) � (b/2)||g(yk+1) − g(yk)||2
+ ρ{〈F2(xk+1, yk) − F2(x∗, y∗), g(yk+1) − g(y∗)〉
+ 〈F1(xk+1, yk) − F1(x∗, y∗), xk+1 − x∗〉 }
+ ρ/2〈M(g(yk) − g(yk+1)), g(yk) − g(yk+1)〉 .

(2.5)

It follows from the g - γ -partial relaxed monotonicity of F that

Λ∗(g(yk)) − Λ∗(g(yk+1)) � (b/2)||g(yk+1) − g(yk)||2 − ργ ||g(yk+1) − g(yk)||2
+ ρ/2〈M(g(yk) − g(yk+1)), g(yk) − g(yk+1)〉
= (b/2)||g(yk+1) − g(yk)||2G − ργ ||g(yk+1) − g(yk)||2
� (b/2)λ min(G)||g(yk+1) − g(yk)||2 − ργ ||g(yk+1) − g(yk)||2
= (1/2)[bλ min(G) − 2ργ ]||g(yk+1) − g(yk)||2. (2.6)

Under the conditions of theorem, Λ∗(g(yk)) − Λ∗(g(yk+1)) is positive and so the
sequence {Λ∗(g(yk))} is strictly decreasing for yk 
= yk+1 . As a result, {Λ∗(g(yk))}
converges to some number. This yields that difference of two successive terms tends to
zero, and so we have

||g(yk+1) − g(yk)|| → 0 as k → ∞.

Since Λ∗(g(yk)) � (b/2)||g(yk) − g(y∗)||2 and the sequence {Λ∗(g(yk))} is strictly
decreasing, we can claim that the sequence {g(yk)} is bounded. Thus, there exists a
subsequence {g(yk′)} which converges to a limit point g(y′) of the sequence {g(yk)}
on Y . Since g is expansive, it implies

{yk′} → y′ as k → ∞.

Next, assume that x(y) satisfies

〈F1(x(y), y), x − x(y)〉 � 0 for all x ∈ X, (2.7)
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and x′ = x(y′) . Since F1 is r(y) -expanding in its first variable and g - s -Lipschitz
continuous in its second variable, it implies

r(y)||x(yk) − x(y′)|| � ||F1(x(yk), yk) − F1(x(y′), y′) � s||g(yk) − g(y′)|| → 0.

that is, x(y) is continuous in y. As {yk′} → y′ , it implies xk′+1 → x′ , and so
(x′, y′) satisfies (1.1) for (x∗, y∗) = (x′, y′) . Since ||g(yk+1) − g(yk)|| → 0 and,
{g(yk)} → g(y′) and {yk} → y′ as k → ∞ , taking limit in (2.2) yields that (x′, y′)
satisfies (1.2) as well. Thus, (x′, y′) is a solution of the SNVQVI (1.1)–(1.2).

To show the entire sequence {(xk, yk)} → (x′, y′) , assume (x∗, y∗) = (x′, y′) .
Then, since h′ is g -b -strongly monotone and g - c -Lipschitz continuous, it yields

(b/2)||g(y′) − g(yk)||2 � Λ∗(g(yk)) � (c/2)||g(y′) − g(yk)||2 (by Lemma 2.1).

This and the convergence of the subsequence {g(yk′)} to g(y′) yields the convergence
of the entire sequence {g(yk)} to g(y′) . As a result, the expansiveness of g implies
that the entire sequence {yk} converges to y′ . This along with the continuity of x(y)
ensures the convergence of the entire sequence {xk+1} to x′ . This completes the proof.

Theorem 2.1 also holds for F1 being r(y) -strongly monotone in the first variable.

For M = 0 , Theorem 2.1 reduces to Verma [18, Theorem 2.1]:

THEOREM 2.2. Let F1 : X × Y → Rm be r(y) -expanding in its first variable and
g - s -Lipschitzian in its second variable. Suppose that F = (F1, F2) is g - γ -partially
relaxed monotone and F2 is g -μ -Lipschitz continuous in its second variable. Then
the sequence {(xk, yk)} generated by the algorithm (2.3)–(2.4) converges to a solution
of the SNVQVI (1.1)–(1.2) for 0 < ρ < b/2γ and for g expanding.

We remark that one can obtain the extension of the algorithmic system (2.1)–(2.2)
as follows: for given initial iterates x0 ∈ X and y0 ∈ Y , find xk+1 and xk+1 such that

〈F1(xk+1, yk), x − xk+1〉 � 0 for all x ∈ X, (2.8)

and

〈 ρ(F2(xk+1, yk) + L(yk+1) − L(yk) + M(g(yk+1)) − M(g(yk)), g(y) − g(yk+1)〉
+〈 h′(yk+1) − h′(yk), g(y) − g(yk+1)〉 � 0 for all g(y) ∈ Y, (2.9)

where h′ is g - b -strongly monotone and g - c -Lipschitz continuous on Y , M is a
symmetric matrix and L : Y → Rn is any mapping.
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