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Abstract. We consider the problem of frictional contact between an elastic body and an obstacle,
say a foundation. The elastic constitutive law is assumed to be nonlinear and the contact is
modeled with a simplified version of Coulomb’s law of dry friction. The novelty consists in
the fact that the coefficient of friction depends on the slip. We present two alternative yet
equivalent weak formulations of the problem and establish existence, uniqueness and continuous
dependence results. The proofs are based on a new result obtained in [10] in the study of elliptic
quasivariational inequalities. Moreover, we study the behavior of the solution with respect to the
coefficient of friction and obtain a convergence result.

1. Introduction

We investigate a model for the process of frictional contact between an elastic
body, which is acted upon by volume forces and surface tractions, and an obstacle, say
a foundation. Situations which involve such type of problems abound in industry and
everyday life. The contact of the braking pads with the wheel, the tire with the road and
the piston with skirt are just three simple examples. Because of the importance of this
process a considerable effort has been made in its modelling and numerical simulations
and the engineering literature concerning this topic is extensive.

An early attempt to study frictional contact problems for elastic and viscoelastic
materials within the framework of variational inequalities was made in [4]. Steady–
state as well as time–dependent frictional contact problems for linearly and nonlinearly
elastic materials may be found in [14]. In both these two books existence and uniqueness
results for static contact problems using a simplified version of Coulomb’s law of dry
friction may be found. Important results in the study of the Signorini contact problem
with non–local versions of Coulomb’s law were obtained in [1, 3, 12], among others.

An important step in the understanding of the stick–slip phenomenon was done in
[15] where it is pointed out that the coefficient of friction μ varies with the tangential
displacement, i.e.

μ = μ(|uτ |).
In this way a part of the elasto–plastic deformation of the interface is captured in the
model. Stick–slip is then a result of the slip weakening, i.e. the fall of the friction force
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with slip. Generally speaking, the dependence of the friction forces upon the surface
displacements is usually accepted when the slip is very small on laboratory scales (see
for instance [13] and [16]).

The study of an elastostatic contact problem with slip dependent friction was
presented in [6]. There, a linear elastic constitutive law has been considered and the
existence of a weak solution to the model was provedby studying the local minima of the
energy function. The uniqueness of the solution as well as its continuous dependence
upon the loads have also been discussed.

The aim of this paper is to complete the study of the elastic contact problem
presented in [6]. Thus, we consider here the case of nonlinear elastic constitutive laws,
we relax the assumptions on the coefficient of friction and we use new arguments to
study two variational formulations of the problem, in terms of the displacement and
the stress field, respectively. For the variational problem in displacements we prove
the existence of the solution using a new result obtained recently in [10]. Then, we
present an equivalence result which allows us to deduce the existence of the solution
for the variational problem in terms of stress. We also investigate the uniqueness of the
solution as well as its dependence with respect to the external data and with respect to
the coefficient of friction.

The paper is structured as follows. In Section 2 we state the mechanical problem
and discuss the frictional contact conditions. In Section 3 we present the notation and
preliminary material, list the assumption on the problem data, derive the variational
formulations of the model and state our main results, Theorems 3.2–3.4. The proofs
are established in Section 5 and are based on an abstract result in the study of elliptic
quasivariational inequalities that we recall in Section 4. Finally, in Section 6 we study
the dependence of the weak solution with respect to the coefficient of friction and prove
a convergence result.

2. Problem statement

In this section we describe a model for the process and we discuss the boundary
conditions. The physical setting is as follows. An elastic body occupies a bounded
domain Ω ⊂ IRd (d = 2, 3 ) with a Lipschitz boundary Γ , partitioned into three disjoint
measurable parts Γ1 , Γ2 and Γ3 such that meas (Γ1) > 0 . A volume force of density
f0 acts in Ω and a surface traction of density f2 acts on Γ2 . The body is clamped on
Γ1 and thus the displacement field vanish there. On Γ3 the body is in contact with an
obstacle, the so–called foundation. We model the contact with a simplified version of
Coulomb’s law of dry friction, already used in [6], in which the coefficient of friction
depends on the slip. Finally, we denote by Sd the space of second order symmetric
tensors on IRd , or equivalently, the space of the symmetric matrices of order d .

The classical formulation of the contact problem is the following.

PROBLEM P. Find a displacement field u : Ω → IRd and a stress field σ : Ω → Sd
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such that

σ = F(ε(u)) in Ω, (2.1)
Divσ + f0 = 0 in Ω, (2.2)
u = 0 on Γ1, (2.3)
σν = f2 on Γ2, (2.4)
σν = S on Γ3, (2.5)⎧⎨

⎩
|στ | � μ(|uτ |) |S|,
|στ | � μ(0) |S| if uτ = 0, on Γ3.

στ = −μ(|uτ |)|S| uτ
|uτ | if uτ �= 0

(2.6)

In (2.1)–(2.6) and below, in order to simplify the notation, we usually do not
indicate explicitely the dependenceof various functions on the spatial variable x∈Ω∪Γ .
Equality (2.1) represents the elastic constitutive law of the material in which F is a
given nonlinear function and ε(u) denotes the small strain tensor; (2.2) represents
the equilibrium equation, (2.3) and (2.4) are the displacement and traction boundary
conditions, respectively, in which ν denotes the unit outward normal on Γ and σν
represents the Cauchy stress tensor. Finally, (2.5) and (2.6) represent the contact
boundary conditions.

Condition (2.5) states that the normal stress σν is prescribed on Γ3 since here
S denotes a given function. Condition (2.6) represents the associate friction law in
which στ is the tangential stress, uτ denotes the tangential displacement and μ is the
coefficient of friction. This law should be seen either as a mechanical model suitable
for the proportional loadings or as a first approximation of a more realistic model, based
on a friction law involving the time derivative of uτ (see for instance [2], [9]). Note
that in (2.6) the coefficient of friction depends on the slip |uτ | , which leads to a new
and nonstandard mathematical problem.

3. Variational formulations and main results

In this section we derive two variational formulations for the mechanical problem
(2.1)–(2.6), list the assumptions on the data and state our main existence and uniqueness
results. To this end we need to introduce notation and preliminary material. We define
the inner products and the corresponding norms on IRd and Sd by

u · v = uivi, |v| = (v · v)1/2, ∀u, v ∈ IRd,

σ · τ = σijτij, |τ| = (τ · τ)1/2, ∀σ, τ ∈ Sd .

Here and below, i, j = 1, 2, . . . , d , and the summation convention over repeated
indices is adopted. Moreover, in the sequel, the index that follows a comma indicates a
partial derivative, e.g., ui,j = ∂ui/∂xj .

We now introduce function spaces for the variables. Let

H = {u = (ui) | ui ∈ L2(Ω)}, H1 = {u = (ui) | ui ∈ H1(Ω)},
H = {σ = (σij) | σij = σji ∈ L2(Ω)}, H1 = {σ ∈ H | σij,j ∈ H}.
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The spaces H , H , H1 and H1 are real Hilbert spaces endowedwith the inner products
given by

(u, v)H =
∫
Ω

uivi dx, (u, v)H1 = (u, v)H + (ε(u), ε(v))H ,

(σ, τ)H =
∫
Ω
σijτij dx, (σ, τ)H1 = (σ, τ)H + (Div σ, Div τ)H ,

respectively. Here ε : H1 → H and Div : H1 → H are the deformation and the
divergence operators, defined by

ε(u) = (εij(u)), εij(u) =
1
2

(ui,j + uj,i), Div σ = (σij,j).

The associated norms on the spaces H , H , H1 and H1 are denoted by | · |H , | · |H ,
| · |H1 and | · |H1 , respectively.

Let HΓ = H1/2(Γ)d and let γ : H1 → HΓ be the trace map. For every element
v ∈ H1 , we also use the notation v for the trace γ v of v on Γ and we denote by vν
and vτ the normal and tangential components of v on Γ given by

vν = v · ν, vτ = v − vνν. (3.1)

Let H′
Γ be the dual of HΓ and let 〈 ·, ·〉 denote the duality pairing between H′

Γ and
HΓ . For every σ ∈ H1 , σν can be defined as the element in H′

Γ which satisfies

〈σν, γ v〉 = (σ, ε(v))H + (Divσ, v)H ∀ v ∈ H1. (3.2)

Denote by σν and στ the normal and tangential traces of σ , respectively. If σ is
continuously differentiable on Ω ∪ Γ , then

σν = (σν) · ν, στ = σν − σνν, (3.3)

〈σν, γ v〉 =
∫
Γ
σν · v da (3.4)

for all v ∈ H1 , where da is the surface measure element.
In the sequel we use V to denote the closed subspace of H1 defined by

V = {v ∈ H1 | v = 0 on Γ1}.
Since meas (Γ1) > 0 , the following Korn’s inequality holds:

|ε(v)|H � cK |v|H1 ∀ v ∈ V, (3.5)

see, e.g., [11]. Here cK denotes a positive constant which depends only on Ω and Γ1 .
On V we consider the inner product given by

(u, v)V = (ε(u), ε(v))H (3.6)

and let | · |V be the associated norm. It follows from Korn’s inequality (3.5) that | · |H1

and | · |V are equivalent norms on V . Therefore (V, | · |V) is a real Hilbert space.
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Moreover, by the Sobolev’s trace theorem and (3.5) we have a positive constant c0

depending only on the domain Ω , Γ1 and Γ3 such that

|v|L2(Γ3) � c0|v|V ∀v ∈ V. (3.7)

In the study of the mechanical problem (2.1)–(2.6) we assume that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) F : Ω× Sd → Sd .
(b) There exists M > 0 such that

|F(x, ε1) − F(x, ε2)| � M|ε1 − ε2|
∀ ε1, ε2 ∈ Sd , a.e. x ∈ Ω.

(c) There exists m > 0 such that
(F(x, ε1) − F(x, ε2)) · (ε1 − ε2) � m |ε1 − ε2|2
∀ ε1, ε2 ∈ Sd , a.e. x ∈ Ω.

(d) For any ε ∈ Sd , x 
→ F(x, ε) is Lebesgue measurable on Ω.
(e) The mapping x 
→ F(x, 0) ∈ H .

(3.8)

f0 ∈ H , f2 ∈ L2(Γ2)d. (3.9)

S ∈ L∞(Γ3) and |S|L∞(Γ3) > 0. (3.10)
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) μ : Γ3 × IR+ → IR+.
(b) There exists cμ1 � 0 and cμ2 � 0 such that

|μ(x, r)| � cμ1 |r| + cμ2 for all r ∈ IR+, a.e. x ∈ Γ3.
(c) The mapping x 
→ μ(x, r) is Lebesgue measurable

on Γ3, for all r ∈ IR+.
(d) The mapping r 
→ μ(x, r) is continuous on IR+, a.e. x ∈ Γ3.

(3.11)

⎧⎨
⎩

There exists Lμ � 0 such that
(μ(x, r1) − μ(x, r2)) (r2 − r1) � Lμ |r1 − r2|2
∀r1, r2 ∈ IR+, a.e. x ∈ Γ3.

(3.12)

We make in the sequel some comments on the assumptions (3.8)–(3.12).
First, using the condition (3.8), we see that for all τ ∈ H the function x 
→

F(x, τ(x)) belongs to H and hence we may consider F as an operator defined on H
with the range on H . Moreover, F : H → H is a strongly monotone Lipschitz
continuous operator and therefore F is invertible and its inverse F−1 : H → H is
also a strongly monotone Lipschitz continuous operator.

We note that condition (3.8) is satisfied in the case of the linear elastic constitutive
law

σij = aijkhεkh(u), (3.13)

provided that aijkh ∈ L∞(Ω) and there exists α > 0 such that

aijkh(x) ξhξl � α|ξ|2 ∀ξ ∈ Sd , a.e. x ∈ Ω.
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To provide examples of nonlinear constitutive laws which satisfy (3.8), for every tensor
ξ ∈ Sd we denote by tr ξ the trace of ξ and by ξD the deviatoric part of ξ given by

tr ξ = ξii, ξD = ξ − 1
d
(tr ξ)Id,

where Id represents the identity tensor of the second order. Let K denote a nonempty
closed convex set in Sd and let PK represent the projection mapping. We also consider
a fourth order symmetric and positively defined tensor E : Sd → Sd and we take

F(ξ) = E ξ +
1
λ

(ξ − PKξ) ∀ξ ∈ Sd , (3.14)

where λ > 0 . Using the properties of the projection mapping, it is straightforward to
see that the elasticity operator F given by (3.14) satisfies condition (3.8). Constitutive
laws of the form (3.14) have been considered by many authors, see e.g. [8], [14] and
[17].

A second example of nonlinear elastic equations of the form (2.1) is provided
by nonlinear Hencky materials (for detail, cf. e.g., [18]). For a Hencky material, the
stress–strain relation is given by

σ = K0tr ε(u) Id + ψ(|εD(u)|2) εD(u),

so that the elasticity operator is

F(ξ) = K0tr ξ Id + ψ(|ξD|2) ξD ∀ξ ∈ Sd . (3.15)

Here, K0 > 0 is a material coefficient, the function ψ is assumed to be piecewise
continuously differentiable, and there exist positive constants c1 , c2 , d1 and d2 , such
that for s � 0 ,

ψ(s) � d1, −c1 � ψ ′(s) � 0, c2 � ψ(s) + 2ψ ′(s) s � d2. (3.16)

The elasticity operator F defined in (3.15) satisfies condition (3.8) provided that
conditions (3.16) hold (for detail, c.f. e.g. [5]). We conclude that our results below
apply for the constitutive laws (3.13), (3.14) and (3.15).

Next, we remark that (3.9) and (3.10) are standard regularity assumptions on the
given forces and tractions. Condition |S|L∞(Γ3) > 0 is imposed here in order to obtain
a genuine frictional problem. Indeed, if S = 0 a.e. on Γ3 then by (2.5) and (2.6) it
follows that the Cauchy stress vector vanish on Γ3 and therefore problem (2.1)–(2.6)
becomes a classical displacement–traction problem which can be studied using standard
arguments.

We observe that the assumption (3.11) on the coefficient of friction μ are pretily
general. Clearly, these assumptions are satisfied if μ is a bounded function which is
continuously differentiable with respect to the second variable, as it was considered in
[6].

We also remark that assumtions (3.11) and (3.12) are satisfied if μ : Γ3 → IR+
and μ ∈ L∞(Γ3) . This case corresponds to the case when the coefficient of friction
does not depend on the slip. Problem (2.1)–(2.6) with this assumption was studied in
[4], [14], in the case of linear elastic materials.
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To obtain variational formulations of problem P we need to introduce further
notations. Thus, using Riesz’s representation theorem, we define f ∈ V by

(f, v)V =
∫
Ω

f0 v dx +
∫
Γ2

f2 v da +
∫
Γ3

S vν da ∀v ∈ V, (3.17)

and let j : V × V → IR be the functional

j(u, v) =
∫
Γ3

μ(|uτ |)|S||vτ | da ∀u, v ∈ V. (3.18)

Keeping in mind assumptions (3.9)–(3.11) it follows that the integrals in (3.17) and
(3.18) are well defined.

For all η ∈ V , set

Σ(η) = {τ ∈ H | (τ, ε(v))H + j(η, v) � (f, v)V ∀ v ∈ V} (3.19)

and let D(T) be the subset of H defined by

D(T) = {τ ∈ H | ∃ v ∈ V such that F(ε(v)) = τ}. (3.20)

Note that, taking v = ±ϑ with ϑ ∈ D(Ω)d in (3.19), it follows that

τ ∈ Σ(η) =⇒ Div τ + f0 = 0 in Ω. (3.21)

Moreover, from (3.8) and Korn’s inequality (3.5) it follows that the operator
F ◦ ε : V → D(T) is invertible. Let T : D(T) → V denote its inverse. We obtain:

v = T(τ) ⇐⇒ F(ε(v)) = τ. (3.22)

We have the following result.

LEMMA 3.1. If {u, σ} are sufficiently smooth functions satisfying (2.1)– (2.6) ,
then

u ∈ V, (σ, ε(v) − ε(u))H + j(u, v) − j(u, u)

� (f, v − u)V ∀ v ∈ V, (3.23)

σ ∈ D(T) ∩ Σ(u), (τ − σ, ε(u))H � 0 ∀ τ ∈ Σ(u). (3.24)

Proof. The regularity u ∈ V follows from (2.3). Let v ∈ V . Using (3.1)–(3.4),
(2.2)–(2.5) we have

(σ, ε(v))H = (f0, v)H + (f2, γ v)L2(Γ2)d + (S, vν)L2(Γ3) +
∫
Γ3

στ · vτ da (3.25)

and, keeping in mind (2.6) yields
∫
Γ3

στ · vτ da � −
∫
Γ3

μ(|uτ |)|S||vτ | da. (3.26)
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Using (3.25), (3.26), (3.17) and (3.18) we deduce that

(σ, ε(v))H + j(u, v) � (f, v)V . (3.27)

The regularity σ ∈ D(T) ∩ Σ(u) is now a consequence of (2.1), (3.19), (3.20) and
(3.27). Moreover, from (2.6) and (3.18) we obtain∫

Γ3

στ · uτ da = −j(u, u). (3.28)

Taking v = u in (3.25) and using again (3.17) and (3.28) it follows that

(σ, ε(u))H + j(u, u) = (f, u)V . (3.29)

The inequalities in (3.23) and (3.24) are now a consequence of (3.27), (3.29) and
(3.19). �

Lemma 3.1, (2.1) and (3.22) lead us to consider the following two variational
problems.

PROBLEM. P1 Find a displacement field u : Ω → IRd such that

u ∈ V, (F(ε(u)), ε(v) − ε(u))H + j(u, v) − j(u, u)

� (f, v − u)V ∀ v ∈ V. (3.30)

PROBLEM. P2 Find a stress field σ : Ω → Sd such that

σ ∈ D(T) ∩ Σ(T(σ)), (F−1(σ), τ − σ)H � 0 ∀ τ ∈ Σ(T(σ)). (3.31)

We note that problems P1 and P2 are formally equivalent to the mechanical
problem P . Indeed, if u represents a sufficiently regular solution of the variational
problem P1 and σ is defined by σ = F(ε(u)) then, using the arguments of [4], it
follows that {u, σ} is a solution of problem P . Similarly, if σ represents a regular
solution of the variational problem P2 and u ∈ V is given by σ = F(ε(u)) then, using
the same arguments, it follows that {u, σ} is a solution of the mechanical problem P .
For this reason we may consider problems P1 and P2 as variational formulations of
the mechanical problem P .

Our main results, which we establish in the next section are the following.

THEOREM 3.2. Assume that conditions (3.8)– (3.10) hold. Then:
1) Under the assumption (3.11) , problem P1 has at least a solution.
2) Under the assumptions (3.11) and (3.12) , there exists L0 > 0 depending

only on Ω, Γ1, Γ3, F and S such that if Lμ < L0 then problem P1 has a unique
solution which depends Lipschitz continuously on f ∈ V .

THEOREM 3.3. Assume that conditions (3.8)– (3.11) hold. Then:
1) If u is a solution of problem P1 then the function σ = F(ε(u)) is a solution

of problem P2 .
2) Conversely, if σ is a solution of problem P2 then the element u = T(σ) is a

solution of problem P1 .



ANALYSIS OF AN ELASTIC CONTACT PROBLEM WITH SLIP DEPENDENT COEFFICIENT OF FRICTION 473

THEOREM 3.4. Assume that conditions (3.8)– (3.10) hold. Then:
1) Under the assumption (3.11) , problem P2 has at least one solution.
2) Under the assumptions (3.11) and (3.12) , if Lμ < L0 where L0 is defined

as in Theorem 3.1 , then problem P2 has a unique solution which depends Lipschitz
continuously on f ∈ V .

We conclude that, under assumptions (3.8)–(3.11), the mechanical problem (2.1)–
(2.6) has a unique weak solution {u, σ} . This solution is unique and depends Lipschitz
continuous on the data f0 and f2 if (3.12) holds with a sufficiently small constant Lμ or
if the coefficient of friction is a given positive bounded function which does not depend
on the slip. Finally, keeping in mind (3.21) and (3.9), we remark that if σ solves
problem P2 then σ ∈ H1 .

4. An abstract existence and uniqueness result

To prove Theorem 3.2 we need an abstract result on elliptic quasivariational in-
equalities that we recall in this section, for the convenience of the reader.

Everywhere in this section V will represent a real Hilbert space endowed with
the inner product (·, ·)V and the associated norm | · |V . We denote by “⇀ ” the weak
convergence on V . Let A : V −→ V be a nonlinear operator, j : V × V −→ IR and
f ∈ V . With these data we consider the following quasivariational inequality: find
u ∈ V such that

(Au, v − u)V + j(u, v) − j(u, u) � (f, v − u)V ∀v ∈ V. (4.1)

In order to solve (4.1) we assume that A is strongly monotone and Lipschitz contiu-
nous, i.e. ⎧⎪⎪⎨

⎪⎪⎩

(a) there exists m > 0 such that
(Au − Av, u − v)V � m|u − v|2V ∀u, v ∈ V;

(b) there exists M > 0 such that
|Au − Av|V � M|u − v|V ∀u, v ∈ V.

(4.2)

The function j satisfies

j(η, ·) : V −→ IR is a convex functional on V , for all ξ ∈ V. (4.3)

Keeping in mind (4.3), it is well known that there exists the directional derivative j′2
given by

j′2(η, u; v) = lim
λ↓0

1
λ

[
j(η, u + λv) − j(η, u)

]
∀ξ, u, v ∈ V. (4.4)

We now formulate additional conditions on the function j .
⎧⎪⎪⎨
⎪⎪⎩

For every sequence {un} ⊂ V with |un|V → ∞
and every sequence {tn} ⊂ [0, 1] one has

lim inf
n→∞

[ 1
|un|2V

j′2(tnun, un;−un)
]

< m.
(4.5)
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⎧⎪⎪⎨
⎪⎪⎩

For every sequence {un} ⊂ V with |un|V → ∞
and every bounded sequence {ηn} ⊂ V one has

lim inf
n→∞

[ 1
|un|2V

j′2(ηn, un;−un)
]

< m.
(4.6)

⎧⎪⎨
⎪⎩

For all sequences {un} ⊂ V and {ηn} ⊂ V such that un ⇀ u ∈ V,
ηn ⇀ η ∈ V and for every v ∈ V , the inequality below holds
lim sup

n→∞
[j(ηn, v) − j(ηn, un)] � j(η, v) − j(η, u).

(4.7)

{
j(u, v) − j(u, u) + j(v, u) − j(v, v) � β |u − v|2V ∀u, v ∈ V,
for some β ∈ IR with β < m.

(4.8)

In the study of the quasivariational inequality (4.1) we have the following result.

THEOREM 4.1. Let (4.2)– (4.3) hold. Then:
1) Under the assumptions (4.5)– (4.7) there exists at least one element u ∈ V

which solves (4.1) .
2) Under the assumptions (4.5)– (4.8) , problem (4.1) has unique solution u =

uf which depends Lipschitz continuously on f with the Lipschitz constant (m− β)−1 .

Theorem 4.1 has been obtained recently in [10] and therefore we do not provide
here the details of the proof. We just specify that the proof is obtained in several steps
and it is based on standard arguments of elliptic variational inequalities and topological
degree theory. A trait of novelty of Theorem 4.1 consists, in our knowledge, in the
consideration of conditions (4.5) and (4.6), formulated in terms of the directional
derivative of the functional j .

5. Proof of the main results

In this section we provide the proofs of Theorem 3.2–3.4. We start with the proof
of Theorem 3.2 which will be carried out in several steps. We assume in the sequel that
(3.8)–(3.11) hold. We remark that j satisfies the condition (4.3). Moreover, we have
the following results.

LEMMA 5.1. The functional j satisfies the assumptions (4.5) , (4.6) and (4.7) .

Proof. Let η, u ∈ V and let λ ∈]0, 1] . Using (3.18) it results that

j(η, u − λu) − j(η, u) = −λ
∫
Γ3

μ(|ητ |)|S||uτ |da

and, keeping in mind (4.4) we deduce

j′2(η, u;−u) � 0 ∀η, u ∈ V. (5.1)

We conclude by (5.1) that j satisfies conditions (4.5) and (4.6).
Let now consider the sequences {un} ⊂ V , {ηn} ⊂ V such that un ⇀ u ∈ V

and ηn ⇀ η ∈ V . Using the compactness property of the trace map, (3.11) and
Krasnoselski’s theorem (see for instance [7]) it follows that

μ(|ηnτ |) → μ(|ητ |) in L2(Γ3),
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|unτ | → |uτ | in L2(Γ3).

Therefore, we deduce that

j(ηn, v) → j(η, v) ∀v ∈ V, j(ηn, un) → j(η, u),

which shows that the functional j satisfies the condition (4.7). �

LEMMA 5.2. If (3.12) holds, then the functional j satisfies the inequality

j(u, v) − j(u, u) + j(v, u) − j(v, v) � c2
0Lμ |S|L∞(Γ3)|u − v|2V ∀u, v ∈ V. (5.2)

Proof. Let u, v ∈ V . Using (3.12) and (3.18) it follows that

j(u, v) − j(u, u) + j(v, u) − j(v, v) =
∫
Γ3

|S|
(
μ(|uτ |) − μ(|vτ |)

)(
|vτ | − |uτ |

)
da � Lμ |S|L∞(Γ3)

∫
Γ3

|uτ − vτ |2da.

Using now (3.7) in the previous inequality we deduce (5.2). �
We have now all the ingredients to prove Theorems 3.2–3.4.

Proof of Theorem 3.2. 1) Using condition (3.8), we see that for all τ ∈ H the
function x 
→ F(x, τ(x)) belongs to H and hence we may consider F as an operator
defined on H with the range on H . Moreover, using Riesz’s representation theorem
we may define the operator A : V → V by the relation

(Au, v)V = (F(ε(u)), ε(v))H ∀u, v ∈ V. (5.3)

Keeping in mind (3.8) (b),(c) and (3.6) we deduce that A satisfies the conditions
(4.2). We also recall that the functional j given by (3.18) satisfies the condition (4.3).
Thus, using Lemma 5.1 and Theorem 4.1.1) we deduce that problem P1 has at least a
solution u ∈ V .

2) Let (3.12) hold and let

L0 =
m

c2
0|S|L∞(Γ3)

. (5.4)

Clearly L0 depends only on Ω , Γ1 , Γ3 , F and S . Let now assume that Lμ < L0 .
Then, there exists β ∈ IR such that c2

0Lμ |S|L∞(Γ3) < β < m . Using (5.2) we conclude
that the functional j satisfies condition (4.8). Therefore, by Theorem 4.1.2) we obtain
that problem P1 has a unique solution which depends Lipschitz continuously on f . �

Proof of Theorem 3.3. 1) Let u be a solution of problem P1 and let

σ = F(ε(u)). (5.5)

It follows from (3.20) and (3.22) that

σ ∈ D(T) and T(σ) = u. (5.6)
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Taking now v = 2u and v = 0 in (3.30) and using (5.5) we obtain

(σ, ε(u))H + j(u, u) = (f, u)V . (5.7)

Using now (3.30), (5.6) and (5.7) we deduce that σ ∈ Σ(T(σ)) . Moreover, from
(3.19), (5.5) and (5.7) we deduce the inequality in (3.31) which proves that σ is a
solution of problem P2 .

2) Conversely, let σ be the solution of problem P2 and let u = T(σ) ∈ V . Using
(3.22) we deduce that (5.5) holds and, moreover, by (3.31) we find

(τ − σ, ε(u))H � 0 ∀ τ ∈ Σ(u). (5.8)

Using now the subdifferentiability of the seminorm j(u, ·) on V and (3.6) we deduce
that there exists τ̃ ∈ H such that

(τ̃, ε(v) − ε(u))H + j(u, v) − j(u, u) � (f, v − u)V ∀ v ∈ V. (5.9)

Taking v = 2u and v = 0 in (5.9) we obtain

(τ̃, ε(u))H + j(u, u) = (f, u)V . (5.10)

From (3.19), (5.9) and (5.10), it follows that τ̃ ∈ Σ(u) . Therefore, taking τ = τ̃ in
(5.8) and using again (5.10) we deduce

(f, u)V � (σ, ε(u))H + j(u, u).

The converse inequality follows from (3.19) since σ ∈ Σ(T(σ)) and T(σ) = u .
Therefore, we conclude that

(σ, ε(u))H + j(u, u) = (f, u)V . (5.11)

Using again (3.19) we have

(σ, ε(v))H + j(u, v) � (f, v)V (5.12)

and from (5.5), (5.11) and (5.12) it results that u is a solution of the problem P1 . �

Proof of Theorem 3.4. Theorem 3.4 is now a straightforward consequence of
Theorems 3.2 and 3.3. �

6. A continuous dependence result

Next, we investigate the behavior of the weak solution to the problem (2.1)–(2.6)
with respect to perturbations of the coefficient of friction μ . To this end, let us suppose
in the sequel that conditions (3.8)–(3.12) hold with Lμ < L0 , where L0 is given by
(5.4). Therefore, using the results in Section 3 we deduce that problem P1 has a
unique solution u ∈ V and problem P2 has a unique solution σ ∈ H1 . Moreover,
σ = F(ε(u)) . For every α � 0 , let μα be a perturbation of μ which satisfies (3.11)
and (3.12) with the constant Lαμ < L0 . Let us also introduce the functionals jα , which
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are obtained by replacing μ by μα in j , and let Σα(η) be given by (3.19), replacing
j by jα . We consider now the following problems.

PROBLEM. Pα
1 For α � 0 , find a displacement field uα : Ω → IRd such that

uα ∈ V, (F(ε(uα)), ε(v)−ε(uα))H + jα(uα , v)−jα(uα , uα)

� (f, v−uα)V ∀ v ∈ V. (6.1)

PROBLEM. Pα
2 For α � 0 , find a stress field σα : Ω → Sd such that

σα ∈ D(T) ∩ Σα(T(σα)), (F−1(σα), τ−σα)H � 0 ∀ τ ∈ Σα(T(σα)). (6.2)

Using Theorems 3.2 and 3.4 we deduce that for each α � 0 problems Pα
1 and Pα

2
have a unique solution uα ∈ V and σα ∈ H1 , respectively. Moreover, by Theorem
3.3 it follows that σα = F(ε(uα)) . Suppose now that the coefficient of friction satisfy
the following assumption:

⎧⎨
⎩

There exists θ : IR+ → IR+ such that:
(a) |μα(x, t) − μ(x, t)| � θ(α) |t| ∀ t ∈ IR+, a.e. on Γ3;
(b) lim

α→0
θ(α) = 0.

(6.3)

We have the following result.

THEOREM 6.1. Let (6.3) hold. Then

uα → u in V, σα → σ in H1 as α → 0. (6.4)

Proof. Let α � 0 . Using (3.30) and (6.1) we obtain

(F(ε(uα)) − F(ε(u)), ε(uα) − ε(u))H

� j(u, uα) − j(u, u) + jα(uα , u) − jα(uα , uα)

=
∫
Γ3

|S|(μ(|uτ |) − μα(|uα
τ |)

)
(|uα

τ | − |uτ |) da.

Thus, using (3.6) and (3.8), we deduce

m |uα − u|2V
�

∫
Γ3

|S|{(μ(|uα
τ |) − μα(|uατ |)

)
+

(
μ(|uτ |) − μ(|uατ |)

) } (|uατ | − |uτ |) da.
(6.5)

Taking into account (6.3)(a) and (3.12), yields

m |uα − u|2V
� θ(α)|S|L∞(Γ3) |uα |L2(Γ3)d |uα − u|L2(Γ3)d + |S|L∞(Γ3)Lμ |uα − u|2L2(Γ3)d

and, using (3.7), it follows that

(m − c2
0Lμ |S|L∞(Γ3))|uα − u|V � c2

0θ(α)|S|L∞(Γ3) |uα |V . (6.6)
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On the other hand, taking v = 0 in (6.1) we obtain

(F(ε(uα)), ε(uα))H � −jα(uα , uα) + (f, uα)V � (f, uα)V (6.7)

and, using (3.8), we have

m|uα |2V � (F(ε(uα)) − F(0), ε(uα))H . (6.8)

Combining now (6.7) and (6.8), by (3.6) we deduce

|uα |V � 1
m

(|f|V + |F(0)|H ) ∀α � 0. (6.9)

Keeping in mind that Lμ < L0 , using (6.9), (6.6) and (5.4), we find

|uα − u|V � Kθ(α), (6.10)

where K > 0 is a generic constant. Moreover, since σ = F(ε(u)) and σα =
F(ε(uα)) , it follows that

|σα − σ|H � M|uα − u|V .

Now, by (3.21) we have Divσα = Div σ = −f0 and, using the previous inequality, we
obtain

|σα − σ|H1 = |σα − σ|H � M|uα − u|V . (6.11)

The convergence result (6.4) is now a consequence of (6.10), (6.11) and (6.3)(b). �
In addition to the mathematical interest in the result presented in Theorem 6.1, it

is of importance in applications, as it indicates that small inaccuracies in the contact
conditions lead to small inaccuracies in the solution.
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