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MATRIX INEQUALITIES BY MEANS OF BLOCK MATRICES

FUZHEN ZHANG

(communicated by G. Styan)

Abstract. We first show a weak log-majorization inequality of singular values for partitioned
positive semidefinite matrices which will imply some existing results of a number of authors, then
present some basic matrix inequalities and apply them to obtain a number of matrix inequalities
involving sum, ordinary product and Hadamard product.

1. Introduction

One of the most useful tools for deriving matrix inequalities is to utilize block
matrices; usually they are 2 x 2 in most applications. In this paper, we shall show a
weak log-majorization inequality of singular values for partitioned positive semidefinite
matrices, from which some classical and recent results of Bhatia and Kittaneh [4], Wang,
Xiand Zhang [12], and Zhan [13] will follow. We shall also develop a new technique that
is complementary to the Schur complement; while by making use of Schur complements,
a number of determinantal, trace, and other inequalities are exhibited in [16]. With the
new technique we add more inequalities to these in [16].

We denote the eigenvalues of an n x n complex matrix X by [;(X), i=1,2,...,n,
and arrange them in modulus decreasing order |[;(X)| = |L(X)| = -+ = |L(X)].
The singular values of an m x n matrix X are denoted by oy(X),...,0,(X) and

are also arranged in decreasing order. Note that o0;(X) = [;(|X|) for each i, where
IX| = (X*X)2 . We further write

1(X) = (h(X), L(X), ..., (X)), o) = (01(X), 02(X), ..., Ou(X)).

The leading principal k x k& submatrix of a matrix X is denoted by [X].

Write X > 0 if X is a positive semidefinite matrix and X > Y if X and Y are
Hermitian matrices such that X — Y > 0. The strict inequality X > 0 denotes the
positive definiteness of X. Let X o Y = (x;y;) be the Hadamard (Schur) product of
matrices X and Y of the same size and X* the conjugate transpose of X .
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For complex vector x = (x1,x2, .. .,%,), wedenote |x| = (Jxi|, |x2], ..., |xu|), and
for vectors x = (x1,x2,...,x,) and y = (y1,¥2,...,V,) With nonnegative components
in decreasing order, we write logx <,, logy to mean

k

k
Hx,- él_[y,-7 k=1,2,...,n.
i=1

i=1

As is well known, logx <,, logy yields x <,, y (see, e.g., [3, p. 42]). The latter means

The subscript “w" is dropped off in either <,, if equality holds when k = n.

2. A Weak Log-Majorization Inequality

THEOREM 1. Let A, B, and C be complex matrices such that

A B

where A is m xm, C is n X n, and B is m X n. Let rank (B) = r. Then
log o(B) < logu, (1)
where U= (U1, U, . . ., Uy) with W; = max{l;(A),:(C)} if i <r, 0 otherwise. Thus
o(B) <, u. (2)
Andif A, B, and C are all square of the same size, then

log|I(B)| <w log . 3)

Proof. We may assume that B £ 0. Let B = UDV* be a singular value decom-
position of the matrix B, where D = diag(oy(B),...,0,(B)),and U and V are m x r
and n X r partial unitary matrices, respectively, i.e., U*U = V*V = I,. Then

us 0 A B uoy\ (UAU D >0
0o v B* C ov ), D vV )~

Taking the leading principal k£ x k submatrix of each block, 1 < k < r, we have

AUl D)
( Dl [v*ckvn)w'

It follows that, by taking determinant for each block,

det[D]? < det([U*AU]) det([V*CV];).
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Or equivalently, foreach 1 < k < r,

k k
[[o:B)* < [t Avl)L(V= V).
i=1 i=1

By the eigenvalue interlacing theorem (see, e.g., [17, p. 222-224]), we arrive at

k k k
[ToB)? <Ju@uc) <[w

i=1 i=1

The desired inequality (1), thus (2), follows immediately by taking square roots. (3) is
similarly obtained by letting B = WTW™*, where T is an upper triangular matrix with
diagonal entries {,(B), l»(B), ...,I,(B) and W is unitary. [

COROLLARY 1. Let A >0, B > 0 be of size n x n. Then forany z € C

log 6(A — [z|B) =<, log 6(A + zB) <,, log o(A + |z|B). (4)

Proof. For the second part, by (1), it is sufficient to notice that

A+z2|B A+zB
A+7*B A+ 7B

whereas the first part is proven by using the elementary inequality (see [12] or [13])
L=z <|l—2 <1+]g. O
(4) has just appeared in [13]. It refines the majorization inequality [12]
logo(A — B) <, logo(A + B)
and implies the weaker inequality for unitarily invariant norms || - ||ui [4]
1A — |z[Bllui < [|A + zBllui < [|A + [z[B]|ui-
We note that the following matrix inequalities do not hold in general:
A — [2|B| < |A — zB| <A+ |z|B.

For a counterexample, take z = i,

4 2 12
A_<2 1) and B_<2 4).

Then I(JA—B|) = (3,3), I(|A+iB|) = (6.951---,1.294---), and I(A+B) = (9, 1).
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COROLLARY 2. Let A be any n X n complex matrix. Then

log|i(A)| < logo(A). (5)

Proof. By (3), it is sufficient to notice that

A" A

Inequality (5) is the well known Weyl’s inequality (see, e.g., [7, p. 171]).
REMARK 2.1. Note that u in (1) and (3) cannot be replaced by o(A) or o(C).

REMARK 2.2. In the proof of the theorem, we used the result [9, p. 142] that

(;* Lé ) >0 = det(B*B) < detAdetC,

where A, B, and C square matrices of the same size. (This does not hold in general
if B is rectangular.) Using this result, one can also give a very simple proof to the
determinantal inequality [9, p. 144]: Let [; be complex numbers and A; > 0. Then

|det(liA1 + - - - + LAy | < det(|l1|Ar + - - + | k|Ax).
This is because

k
LA LA
Z( LA;  |li|A; > 0.

3. Some Basic Inequalities

L H K . . .

Block matrices in the form ( K H ) have played a pivotal role in proving some
matrix inequalities. We shall give some elementary matrix inequalities by applying a
result on the block matrix to some partitioned positive semidefinite matrices and then
to further derive inequalities on sum, ordinary and Hadamard products.

Let H and K be (complex) Hermitian matrices of the same size. Then

H K
<KH>>0 < H > 1K (6)

This is seen by noticing the matrix identity via nonsingular congruence (similarity)

A E -5 )

Obviously the eigenvalues of the block matrix in (6) are those of H + K. A proof
of (6) for the real case is given in [5] via quadratic forms, and a characterization of
the matrices K, which comprise a convex set, for the given H by trace inequalities is
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presented in [2]. A majorization inequality of the eigenvalues of the matrices H and K
in (6) is seen in [14]:
U(K)| <w I(H), (7)
which is strengthened as, by Theorem 1,
log |[I(K)| <\ logI(H), (8)
while the (stronger) eigenvalue pairwise dominant inequalities
(K)| < Li(H)

donothold forall i, though |[;(K)| < [;(H). (Thus H > +K # H > |K|.) Moreover,
by using the block matrix in (6) and the Albert theorem [1], one has

H>+K = K=HH'K=KH'H,

where H™ is the Moore-Penrose generalized inverse of H .
We now give our basic inequalities that easily follow from (6).

THEOREM 2. Let A, B, and C be n-square complex matrices such that
A B
> 0.
<B* C > >0

A%C > +(B*xB) )

Then, with % for + or o,

and, if AB=BA,
A3CA? > B*B. (10)

Proof. Since the block matrix via a permutation congruence is also positive semi-
definite, we have (by the Schur Hadamard product theorem; see, e.g., [17, p. 192])

A B N C B\ (AxC B*xB >0

B* C B A “\B*xB AxC )7 7
(9) thus follows from (6). For (10), notice that if B commutes with A, then B
commutes with A? (see, e.g., [6, p. 322] or [17, p. 165]). Let A be nonsingular. Then

C>B*A'B=B*A"A"'B=A"IB*BA?,
from which, by pre- and post-multiplying both sides by Az, we arrive at the desired
inequality. The singular case of A follows from a continuity argument. [
With the assumption of the theorem, we note the following.

REMARK 3.1. For the sumin (9), the inequality A+ C > +(B+ B*) is also proven
by observing

(I,jzl)(é‘* i)(il) =A+(B+B")+C>0.
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REMARK 3.2. Applying (8) to (9), we have explicitly
log |l(B + B*)| <, logl(A + C)
and
log |{(B o B*)| <, logl(A o C).
In particular,
|det(B + B*)| < det(A + C)

and
| det(B o B*)| < det(A o C).

REMARK 3.3. The condition AB = BA for (10) is not removable in general, and
B and B* on the right hand side cannot be switched. It is easy to find an example that

I B * *
(B* C>>0:>C>BB, but C % BB*.

REMARK 3.4. If the matrices B and C in the theorem commute, then

C?AC? > BB".
4. Applications

Applications of Theorem 2 to some frequently used 2 x 2 block positive semidef-
inite matrices result in some interesting inequalities. We present some as examples.
Assume in the following that matrices A, B, and C are all n-square (some results
also hold for the rectangular case). We itemize with the block positive semidefinite
matrices followed by immediate inequalities and comments.
Inequalities of one matrix:

1. (? A11>>0,f0ranyA>O,gives

). 2I<A+A"L,

lii). I<AoA~L.
Comments: These are existing inequalities. Alternative proof of the first one is
by a unitary diagonalization of A, while the second one’s proof does not come
that easy; it usually needs to prove Ao A~! > (Ao A™1) ! first (see, e.g, [8]).
If A and B are both positive definite and n-square, by noticing that

AT N B' 1\ [AoB ! I >0
1 A7 I B) ™ I AloB )77

we obtain a result of Visick ([10, Theorem 5 ii]):

AoB '4+BoA~l>2I
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A 0'1[

2i). |A+A*| <2011;

2ii). |AoA*| < o7l

Comments: A direct proof for 2i) and 2ii) without using the theorem may not
work out as smoothly, though they are weaker than the following inequality 3i).

2. < al A ) > 0, where oy is the largest singular value of (any) A, implies

3. < AP *é* _ > >0, forany A and a € [0, 1], gives
A |ArpI-e)
3i). JAxA*| < |AP% % |AFP0-9)
Comments: Taking o« = 1, we have the comparison of sum and ordinary product
A+A"| <A*A+1
and the comparison of the Hadamard product and ordinary product
[AoA*| <A*Aol.
In particular, if A is positive semidefinite, with the above A replaced by Az,
247 <A+1, A? oA <Aol = diag(A).
And taking o = % , we have the inequalities involving sum and the two products
A+ AT <A+ A7), [AoAT| < [Afo|AT].
(Note: Neither |[A + B| < |A| + |B| nor |A o B| < |A] o |B| holds in general.)

Inequalities of two or three matrices:
4 A B >0, forany A > 0 and any B, gives
. B* B*A—IB = Y y y > g
4i). £(B*xB*) <A« (B*A_IB).
Comments: If B = I, then the block matrix is the same as the one in 1). Taking

B = J, the all one matrix, and switching A and A~!, one obtains a lower bound

for the inverse of A : 1
—J <AL,
Z(A)

where X(A) = > aj; is the sum of all entries of A. Note also that for any A > 0

(? z(AJ—l)J > = 0.

With a similar block matrix for B > 0, one obtains a lower bound for A o B:
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i 1 > 0, for A, B > 0 and any contraction matrix C, gives
B:C*A:
5i). (A2CB?) (B2C*Az) < A *B.
Comments: Taking B = C = I for the Hadamard product yields A70A? < Aol
as seen in 3). 5i) is equivalentto (ACB) (BCA) < A? % B?. Setting C = I gives
AB + BA < A% + B? and its Hadamard companion AB o BA < A2 0 B2,
A*A A*B
B*A B*B
6i). £(A*B*B*A) <A*AxBB.
Comments: The Hadamard product case of 6i) is seen in [10, Corollary 12]. In

particular, if we take B = I for the Hadamard product, then +(A*0A) < A*Aol.
Letting A > 0 and setting B = A~! results in 1ii).

<I+A*A A* + B*

) > 0, forany A and B, gives

A+4+B I+ BB*

7i). (A+B)o(A+B)* < (I+A*A)o (I+ BB*).
Comments: This Hadamard product matrix inequality is compared to the con-
ventional product matrix inequality (by taking Schur complement)

) > 0, forany A and B, gives

(A+B)(I+A*A)"'(A+ B)* <1+ BB*.

A*oB* B*Bol ) > 0, forany A and B, gives

8i). AoB+A*oB* <AA*ol+ B*Bol;

8ii). AoA*oBoB* < AA*oB*Bol.

Comments: For A > 0 and B > 0, 8i) gives the inequality of means for
Hadamard product

<AA*OI AoB

A? +B?
o
2
It follows that for any correlation matrices A and B (with diagonal entries 1)

AoB< 1.
Az oB: <.
Notice that AA* < 011. We put B = A’, the transpose of A in 8ii). Then
AoA* oA oA < ol

<AA*0BB* AoB

A* o B I > > 0, forany A and B, gives

9i). (AoB)(A* o B*) < AA* o BB*.

Comments: This has appeared in [15] and in a recent paper [10, Theorem 4].
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10 < |A|o|B] A*oB*

’ AoB |A*|o|B*|
10i). |[Ao B+ A* o B*| < |A| o |B| + |A*| o |B*|;

10ii). |[AoA* o Bo B*| < |A| o |A*| o |B| o |B¥|.
Comments: By taking B to be a matrix of 0 and 1, one can get the inequalities
for the specified entries of A. For example, if B is a permutation matrix, then
|B| = |B*| =1 and one gets the inequalities that compare any diagonal (entries)
of A to the diagonals of |A| and |A*|. And one may also obtain inequalities for

submatrices of A by setting B = ( 2 (()) > .

> > 0, forany A and B, gives

B*A B*AB
11i). B*A+ AB < A+ B*AB;
11ii). B*AoAB < Ao (B*AB).
Comments: Setting B = A yields the inequalities of shifting A

20 <A+ AP k=12,

11. < A 4B ) > 0, forany A > 0 and any n X m matrix B, implies

and
AT o AL CA0 AT k=1,2,....
Inequalities of generalized inverses:
+
12. <Ai‘A A:& ) >0, forany A > 0, gives

12i). AoAT > ATAo0AAT;
12ii). A+AT > ATA + AAT.

Comments: These are compared to the inequality of Visick in [11, p. 282]:

AoA" > (AAT 0 AAT) (Ao A1) T(AAT 0 AAT).

Combining the above block matrices via sum or Hadamard product, one may get
more block positive semidefinite matrices and thus more inequalities. For instance, if
A >0 and B > 0, both n-square, then

I A o B I _(IoB Io0A >0
A A? I B! ) \IoA A%20B™! ) T

A0B7 ' > (IoA)(IoB) '(I0A) = (diagA)?(diagB) .
Note that the right hand side involves only the diagonal entries of A and B. In addition,
for any correlation matrix A and nonsingular correlation matrix B

Thus

A’oB7 ' > 1.

More inequalities are available by substituting the above matrices with matrices
involving Kronecker product and by using the fact that the Hadamard product is a
principal submatrix of the Kronecker product when the matrices are square. One also
gets majorization inequalities by applying Theorem 1 to the above block matrices.
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