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Abstract. We first show a weak log-majorization inequality of singular values for partitioned
positive semidefinite matrices which will imply some existing results of a number of authors, then
present some basic matrix inequalities and apply them to obtain a number of matrix inequalities
involving sum, ordinary product and Hadamard product.

1. Introduction

One of the most useful tools for deriving matrix inequalities is to utilize block
matrices; usually they are 2 × 2 in most applications. In this paper, we shall show a
weak log-majorization inequality of singular values for partitioned positive semidefinite
matrices, from which some classical and recent results of Bhatia and Kittaneh [4], Wang,
Xi and Zhang [12], and Zhan [13] will follow. We shall also develop a new technique that
is complementary to the Schur complement;while bymaking use of Schur complements,
a number of determinantal, trace, and other inequalities are exhibited in [16]. With the
new technique we add more inequalities to these in [16].

We denote the eigenvalues of an n×n complexmatrix X by li(X) , i = 1, 2, . . . , n,
and arrange them in modulus decreasing order |l1(X)| � |l2(X)| � · · · � |ln(X)|.
The singular values of an m × n matrix X are denoted by σ1(X), . . . ,σn(X) and
are also arranged in decreasing order. Note that σi(X) = li(|X|) for each i , where
|X| = (X∗X)

1
2 . We further write

l(X) = (l1(X), l2(X), . . . , ln(X)), σ(X) = (σ1(X),σ2(X), . . . ,σn(X)).

The leading principal k × k submatrix of a matrix X is denoted by [X]k .
Write X � 0 if X is a positive semidefinite matrix and X � Y if X and Y are

Hermitian matrices such that X − Y � 0 . The strict inequality X > 0 denotes the
positive definiteness of X . Let X ◦ Y = (xijyij) be the Hadamard (Schur) product of
matrices X and Y of the same size and X∗ the conjugate transpose of X .
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For complex vector x = (x1, x2, . . . , xn) , we denote |x| = (|x1|, |x2|, . . . , |xn|) , and
for vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) with nonnegative components
in decreasing order, we write log x ≺w log y to mean

k∏
i=1

xi �
k∏

i=1

yi, k = 1, 2, . . . , n.

As is well known, log x ≺w log y yields x ≺w y (see, e.g., [3, p. 42]). The latter means

k∑
i=1

xi �
k∑

i=1

yi, k = 1, 2, . . . , n.

The subscript “w " is dropped off in either ≺w if equality holds when k = n .

2. A Weak Log-Majorization Inequality

THEOREM 1. Let A, B, and C be complex matrices such that
(

A B
B∗ C

)
� 0,

where A is m × m, C is n × n , and B is m × n . Let rank (B) = r . Then

logσ(B) ≺w logμ, (1)

where μ = (μ1,μ2, . . . ,μn) with μi = max{li(A), li(C)} if i � r , 0 otherwise. Thus

σ(B) ≺w μ. (2)

And if A, B, and C are all square of the same size, then

log |l(B)| ≺w logμ. (3)

Proof. We may assume that B �= 0 . Let B = UDV∗ be a singular value decom-
position of the matrix B , where D = diag(σ1(B), . . . ,σr(B)) , and U and V are m× r
and n × r partial unitary matrices, respectively, i.e., U∗U = V∗V = Ir . Then

(
U∗ 0
0 V∗

) (
A B
B∗ C

) (
U 0
0 V

)
=

(
U∗AU D

D V∗CV

)
� 0.

Taking the leading principal k × k submatrix of each block, 1 � k � r , we have
(

[U∗AU]k [D]k
[D]k [V∗CV]k

)
� 0.

It follows that, by taking determinant for each block,

det[D]2k � det([U∗AU]k) det([V∗CV]k).
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Or equivalently, for each 1 � k � r ,

k∏
i=1

σi(B)2 �
k∏

i=1

li([U∗AU]k)li([V∗CV]k).

By the eigenvalue interlacing theorem (see, e.g., [17, p. 222–224]), we arrive at

k∏
i=1

σi(B)2 �
k∏

i=1

li(A)li(C) �
k∏

i=1

μ2
i .

The desired inequality (1), thus (2), follows immediately by taking square roots. (3) is
similarly obtained by letting B = WTW∗ , where T is an upper triangular matrix with
diagonal entries l1(B), l2(B), . . . , ln(B) and W is unitary. �

COROLLARY 1. Let A � 0 , B � 0 be of size n × n . Then for any z ∈ C

logσ(A − |z|B) ≺w logσ(A + zB) ≺w logσ(A + |z|B). (4)

Proof. For the second part, by (1), it is sufficient to notice that

(
A + |z|B A + zB
A + z∗B A + |z|B

)
� 0;

whereas the first part is proven by using the elementary inequality (see [12] or [13])

|1 − |z|| � |1 − z| � 1 + |z|. �

(4) has just appeared in [13]. It refines the majorization inequality [12]

logσ(A − B) ≺w logσ(A + B)

and implies the weaker inequality for unitarily invariant norms ‖ · ‖ui [4]

‖A − |z|B‖ui � ‖A + zB‖ui � ‖A + |z|B‖ui.

We note that the following matrix inequalities do not hold in general:

|A − |z|B| � |A − zB| � A + |z|B.

For a counterexample, take z = i ,

A =
(

4 2
2 1

)
and B =

(
1 2
2 4

)
.

Then l(|A−B|) = (3, 3), l(|A+ iB|) = (6.951 · · · , 1.294 · · · ) , and l(A+B) = (9, 1).
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COROLLARY 2. Let A be any n × n complex matrix. Then

log |l(A)| ≺ logσ(A). (5)

Proof. By (3), it is sufficient to notice that( |A∗| A
A∗ |A|

)
� 0. �

Inequality (5) is the well known Weyl’s inequality (see, e.g., [7, p. 171]).

REMARK 2.1. Note that μ in (1) and (3) cannot be replaced by σ(A) or σ(C) .

REMARK 2.2. In the proof of the theorem, we used the result [9, p. 142] that(
A B
B∗ C

)
� 0 ⇒ det(B∗B) � detA detC,

where A, B, and C square matrices of the same size. (This does not hold in general
if B is rectangular.) Using this result, one can also give a very simple proof to the
determinantal inequality [9, p. 144]: Let li be complex numbers and Ai � 0 . Then

| det(l1A1 + · · · + lkAk)| � det(|l1|A1 + · · · + |lk|Ak).

This is because
k∑

i=1

( |li|Ai liAi

l̄iAi |li|Ai

)
� 0.

3. Some Basic Inequalities

Block matrices in the form

(
H K
K H

)
have played a pivotal role in proving some

matrix inequalities. We shall give some elementary matrix inequalities by applying a
result on the block matrix to some partitioned positive semidefinite matrices and then
to further derive inequalities on sum, ordinary and Hadamard products.

Let H and K be (complex) Hermitian matrices of the same size. Then(
H K
K H

)
� 0 ⇔ H � ±K. (6)

This is seen by noticing the matrix identity via nonsingular congruence (similarity)[
1√
2

(
I −I
I I

)](
H K
K H

) [
1√
2

(
I I
−I I

)]
=

(
H − K 0

0 H + K

)
.

Obviously the eigenvalues of the block matrix in (6) are those of H ±K . A proof
of (6) for the real case is given in [5] via quadratic forms, and a characterization of
the matrices K , which comprise a convex set, for the given H by trace inequalities is
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presented in [2]. A majorization inequality of the eigenvalues of the matrices H and K
in (6) is seen in [14]:

|l(K)| ≺w l(H), (7)

which is strengthened as, by Theorem 1,

log |l(K)| ≺w log l(H), (8)

while the (stronger) eigenvalue pairwise dominant inequalities

|li(K)| � li(H)

do not hold for all i , though |l1(K)| � l1(H) . (Thus H � ±K �⇒ H � |K|.) Moreover,
by using the block matrix in (6) and the Albert theorem [1], one has

H � ±K ⇒ K = HH+K = KH+H,

where H+ is the Moore-Penrose generalized inverse of H .
We now give our basic inequalities that easily follow from (6).

THEOREM 2. Let A, B, and C be n -square complex matrices such that(
A B
B∗ C

)
� 0.

Then, with � for + or ◦ ,
A � C � ±(B∗ � B) (9)

and, if AB = BA ,
A

1
2 CA

1
2 � B∗B. (10)

Proof. Since the block matrix via a permutation congruence is also positive semi-
definite, we have (by the Schur Hadamard product theorem; see, e.g., [17, p. 192])

(
A B
B∗ C

)
�

(
C B∗

B A

)
=

(
A � C B∗ � B
B∗ � B A � C

)
� 0.

(9) thus follows from (6). For (10), notice that if B commutes with A , then B
commutes with A

1
2 (see, e.g., [6, p. 322] or [17, p. 165]). Let A be nonsingular. Then

C � B∗A−1B = B∗A− 1
2 A− 1

2 B = A− 1
2 B∗BA− 1

2 ,

from which, by pre- and post-multiplying both sides by A
1
2 , we arrive at the desired

inequality. The singular case of A follows from a continuity argument. �
With the assumption of the theorem, we note the following.

REMARK 3.1. For the sum in (9), the inequality A+C � ±(B+B∗) is also proven
by observing

(I,±I)
(

A B
B∗ C

)(
I
±I

)
= A ± (B + B∗) + C � 0.
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REMARK 3.2. Applying (8) to (9), we have explicitly

log |l(B + B∗)| ≺w log l(A + C)

and
log |l(B ◦ B∗)| ≺w log l(A ◦ C).

In particular,
| det(B + B∗)| � det(A + C)

and
| det(B ◦ B∗)| � det(A ◦ C).

REMARK 3.3. The condition AB = BA for (10) is not removable in general, and
B and B∗ on the right hand side cannot be switched. It is easy to find an example that(

I B
B∗ C

)
� 0 ⇒ C � B∗B, but C �� BB∗.

REMARK 3.4. If the matrices B and C in the theorem commute, then

C
1
2 AC

1
2 � BB∗.

4. Applications

Applications of Theorem 2 to some frequently used 2× 2 block positive semidef-
inite matrices result in some interesting inequalities. We present some as examples.

Assume in the following that matrices A , B , and C are all n -square (some results
also hold for the rectangular case). We itemize with the block positive semidefinite
matrices followed by immediate inequalities and comments.
Inequalities of one matrix:

1.

(
A I
I A−1

)
� 0 , for any A > 0 , gives

1i). 2I � A + A−1 ;
1ii). I � A ◦ A−1 .
Comments: These are existing inequalities. Alternative proof of the first one is
by a unitary diagonalization of A , while the second one’s proof does not come
that easy; it usually needs to prove A ◦ A−1 � (A ◦ A−1)−1 first (see, e.g, [8]).
If A and B are both positive definite and n -square, by noticing that(

A I
I A−1

)
◦

(
B−1 I
I B

)
=

(
A ◦ B−1 I

I A−1 ◦ B

)
� 0,

we obtain a result of Visick ([10, Theorem 5 ii]):

A ◦ B−1 + B ◦ A−1 � 2I.
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2.

(
σ1I A∗

A σ1I

)
� 0, where σ1 is the largest singular value of (any) A , implies

2i). |A + A∗| � 2σ1I ;
2ii). |A ◦ A∗| � σ2

1 I.
Comments: A direct proof for 2i) and 2ii) without using the theorem may not
work out as smoothly, though they are weaker than the following inequality 3i).

3.

( |A|2α A∗

A |A∗|2(1−α)

)
� 0 , for any A and α ∈ [0, 1] , gives

3i). |A � A∗| � |A|2α � |A∗|2(1−α) .
Comments: Taking α = 1 , we have the comparison of sum and ordinary product

|A + A∗| � A∗A + I

and the comparison of the Hadamard product and ordinary product

|A ◦ A∗| � A∗A ◦ I.

In particular, if A is positive semidefinite, with the above A replaced by A
1
2 ,

2A
1
2 � A + I, A

1
2 ◦ A

1
2 � A ◦ I = diag(A).

And taking α = 1
2 , we have the inequalities involving sum and the two products

|A + A∗| � |A| + |A∗|, |A ◦ A∗| � |A| ◦ |A∗|.
(Note: Neither |A + B| � |A| + |B| nor |A ◦ B| � |A| ◦ |B| holds in general.)

Inequalities of two or three matrices:

4.

(
A B
B∗ B∗A−1B

)
� 0 , for any A > 0 and any B , gives

4i). ±(B � B∗) � A � (B∗A−1B).
Comments: If B = I , then the block matrix is the same as the one in 1). Taking
B = J , the all one matrix, and switching A and A−1 , one obtains a lower bound
for the inverse of A :

1
Σ(A)

J � A−1,

where Σ(A) =
∑

aij is the sum of all entries of A . Note also that for any A > 0
(

A J
J Σ(A−1)J

)
� 0.

With a similar block matrix for B > 0 , one obtains a lower bound for A ◦ B :

A ◦ B � 1
Σ(A−1)Σ(B−1)

J.
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5.

(
A A

1
2 CB

1
2

B
1
2 C∗A

1
2 B

)
� 0, for A, B � 0 and any contraction matrix C , gives

5i). (A
1
2 CB

1
2 ) � (B

1
2 C∗A

1
2 ) � A � B.

Comments: Taking B = C = I for the Hadamard product yields A
1
2 ◦A

1
2 � A◦ I

as seen in 3). 5i) is equivalent to (ACB)� (BCA) � A2 �B2. Setting C = I gives
AB + BA � A2 + B2 and its Hadamard companion AB ◦ BA � A2 ◦ B2.

6.

(
A∗A A∗B
B∗A B∗B

)
� 0 , for any A and B , gives

6i). ±(A∗B � B∗A) � A∗A � B∗B .
Comments: The Hadamard product case of 6i) is seen in [10, Corollary 12]. In
particular, if we take B = I for the Hadamard product, then ±(A∗◦A) � A∗A◦ I .
Letting A > 0 and setting B = A−1 results in 1ii).

7.

(
I + A∗A A∗ + B∗

A + B I + BB∗

)
� 0 , for any A and B , gives

7i). (A + B) ◦ (A + B)∗ � (I + A∗A) ◦ (I + BB∗).
Comments: This Hadamard product matrix inequality is compared to the con-
ventional product matrix inequality (by taking Schur complement)

(A + B)(I + A∗A)−1(A + B)∗ � I + BB∗.

8.

(
AA∗ ◦ I A ◦ B
A∗ ◦ B∗ B∗B ◦ I

)
� 0 , for any A and B , gives

8i). A ◦ B + A∗ ◦ B∗ � AA∗ ◦ I + B∗B ◦ I ;
8ii). A ◦ A∗ ◦ B ◦ B∗ � AA∗ ◦ B∗B ◦ I.
Comments: For A � 0 and B � 0 , 8i) gives the inequality of means for
Hadamard product

A ◦ B � A2 + B2

2
◦ I.

It follows that for any correlation matrices A and B (with diagonal entries 1)

A
1
2 ◦ B

1
2 � I.

Notice that AA∗ � σ1I. We put B = At , the transpose of A in 8ii). Then

A ◦ A∗ ◦ At ◦ A � σ4
1 I.

9.

(
AA∗ ◦ BB∗ A ◦ B
A∗ ◦ B∗ I

)
� 0 , for any A and B , gives

9i). (A ◦ B)(A∗ ◦ B∗) � AA∗ ◦ BB∗.

Comments: This has appeared in [15] and in a recent paper [10, Theorem 4].
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10.

( |A| ◦ |B| A∗ ◦ B∗

A ◦ B |A∗| ◦ |B∗|
)

� 0 , for any A and B , gives

10i). |A ◦ B + A∗ ◦ B∗| � |A| ◦ |B| + |A∗| ◦ |B∗| ;
10ii). |A ◦ A∗ ◦ B ◦ B∗| � |A| ◦ |A∗| ◦ |B| ◦ |B∗|.
Comments: By taking B to be a matrix of 0 and 1, one can get the inequalities
for the specified entries of A . For example, if B is a permutation matrix, then
|B| = |B∗| = I and one gets the inequalities that compare any diagonal (entries)
of A to the diagonals of |A| and |A∗| . And one may also obtain inequalities for

submatrices of A by setting B =
(

0 0
J 0

)
.

11.

(
A AB

B∗A B∗AB

)
� 0 , for any A � 0 and any n × m matrix B , implies

11i). B∗A + AB � A + B∗AB ;
11ii). B∗A ◦ AB � A ◦ (B∗AB) .
Comments: Setting B = Ak yields the inequalities of shifting A

2Ak+1 � A + A2k+1, k = 1, 2, . . . ,

and
Ak+1 ◦ Ak+1 � A ◦ A2k+1, k = 1, 2, . . . .

Inequalities of generalized inverses:

12.

(
A AA+

A+A A+

)
� 0 , for any A � 0 , gives

12i). A ◦ A+ � A+A ◦ AA+ ;
12ii). A + A+ � A+A + AA+ .
Comments: These are compared to the inequality of Visick in [11, p. 282]:

A ◦ A+ � (AA+ ◦ AA+)(A ◦ A+)+(AA+ ◦ AA+).

Combining the above block matrices via sum or Hadamard product, one may get
more block positive semidefinite matrices and thus more inequalities. For instance, if
A � 0 and B > 0 , both n -square, then(

I A
A A2

)
◦

(
B I
I B−1

)
=

(
I ◦ B I ◦ A
I ◦ A A2 ◦ B−1

)
� 0.

Thus
A2 ◦ B−1 � (I ◦ A)(I ◦ B)−1(I ◦ A) = (diagA)2(diagB)−1.

Note that the right hand side involves only the diagonal entries of A and B . In addition,
for any correlation matrix A and nonsingular correlation matrix B

A2 ◦ B−1 � I.

More inequalities are available by substituting the above matrices with matrices
involving Kronecker product and by using the fact that the Hadamard product is a
principal submatrix of the Kronecker product when the matrices are square. One also
gets majorization inequalities by applying Theorem 1 to the above block matrices.
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