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INTEGRAL MEAN ESTIMATES FOR

POLYNOMIALIS WITH RESTRICTED ZEROS

ABDUL AZIZ AND WALI MOHAMMAD SHAH

(communicated by N. Govil)

Abstract. Let P(z) be a polynomial of degree n which does not vanish in the disk |z| < K . For
K = 1 , it is known that for 0 < q < ∞ ,
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In this paper we present a generalization of this result by considering the case K � 1 . We shall
also prove a similar result for polynomialis having all their zeros in |z| � K , where K � 1 .

1. Introduction and statement of results

Let P(z) be a polynomial of degree at most n , then for each R � 1 and q > 0 ,

max
|z|=R

|P(z)| � Rn max
|z|=1

|P(z)| (1)

and {
1
2π

∫ 2π
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∣∣qdθ

}1/q
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{
1
2π
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0

∣∣P(eiθ)
∣∣qdθ

}1/q

. (2)

Inequality (1) is a simple deduction from the maximum modulus principle (see [11,
p. 346], or [8, Vol. 1, p. 137, prob. III 269]) and inequality (2) is a simple consequence
of a classical result of Hardy [6] (see for example [9, Theorem 5.5]).

In both (1) and (2) equality holds only for P(z) = czn , c �= 0 , i. e., when all the
zeros of P(z) lie at the origin. Inequality (1) can be obtained by letting q → ∞ in
inequality (2). The inequalities (1) and (2) can be sharpened if we restict ourselves to
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a class of polynomials having no zeros in |z| < 1 . In fact, if P(z) �= 0 for |z| < 1 ,
then it was shown by Ankeny and Rivlin [1] that (1) can be replaces by

max
|z|=R>1

|P(z)| � Rn + 1
2

max
|z|=1

|P(z)|, (3)

where the corresponding refinement of (2) namely{
1
2π

∫ 2π

0

∣∣P(Reiθ)
∣∣qdθ

}1/q

� cq

{
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2π

∫ 2π

0

∣∣P(eiθ)
∣∣qdθ

}1/q

, R > 1, (4)

where

cq =

{
1
2π

∫ 2π

0

∣∣1 + Rneiα ∣∣qdα
}1/q /{

1
2π

∫ 2π

0

∣∣1 + eiα ∣∣qdα
}1/q

,

was provedby Boas andRahman [5] for 1 � q < ∞ . Recently Rahman and Schmeisser
[10] have shown that (4) remains true for 0 < q < 1 as well. It can be easily seen that
if we let q → ∞ in (4), we get inequality (3).

Here we consider a class of polynomials having no zeros in |z| < K , where K � 1
and prove the following generalization of (4).

THEOREM 1. If P(z) is a polynomial of degree n having all its zeros in |z| �
K � 1 , then for every R > 1 and q > 0 ,{

1
2π

∫ 2π

0

∣∣P(Reiθ)
∣∣qdθ

}1/q

� Bq

{
1
2π

∫ 2π

0

∣∣P(eiθ)
∣∣qdθ

}1/q

, (5)

where

Bq =

{
1
2π

∫ 2π

0

∣∣1 + Rneiα ∣∣qdα
}1/q /{

1
2π

∫ 2π

0

∣∣1 + tKeiα ∣∣qdα
}1/q

with tK =
(1 + RK

R + K

)n
.

Inequality (5) reduces to (4) for 0 < q < ∞ when K = 1 .

REMARK 1. Letting q → ∞ in (5), it follows that if P(z) is a polynomial of
degree n having all its zeros in |z| � K � 1 , then for R > 1 ,

max
|z|=R

|P(z)| � (R + K)n(Rn + 1)
(1 + RK)n + (R + K)n

max
|z|=1

|P(z)|. (6)

Inequality (6) is a generalilzation of a result of Ankeny and Rivlin [1], proved by Aziz
[4].

If P(z) has all its zeros in |z| � 1 , then for each q > 0 ,

n

{∫ 2π

0

∣∣P(eiθ)
∣∣qdθ

}1/q

�
{∫ 2π

0

∣∣1 + eiθ ∣∣qdθ
}1/q

max
|z|=1

|P′(z)|. (7)



INTEGRAL MEAN ESTIMATES FOR POLYNOMIALIS WITH RESTRICTED ZEROS 493

Inequality (7) is due to Malik [7]. As an extension of (7) Aziz [3] proved that if P(z)
has all zeros in |z| � K , where K � 1 , then for each q > 1 ,

n

{∫ 2π

0

∣∣P(eiθ)
∣∣qdθ

}1/q

�
{∫ 2π

0

∣∣1 + Kneiθ ∣∣qdθ
}1/q

max
|z|=1

|P′(z)|. (8)

Since in the proof of the inequality (8), the inequality (4) proved by Boas and Rahman
for 1 � q < ∞ was used, it was not clear, whether the restriction on q was indeed
essential. Here we use Theorem 1 to show that the restriction on q is not needed. In
fact we establish the following generalization of (7) which shows that (8) remains true
for 0 < q < 1 also. We prove

THEOREM 2. If P(z) is a polynomial of degree n having all its zeros in |z| � K ,
where K � 1 , then for each q > 0 ,

n

{∫ 2π

0

∣∣P(eiθ)
∣∣qdθ

}1/q

�
{∫ 2π

0

∣∣1 + Kneiθ ∣∣qdθ
}1/q

max
|z|=1

|P′(z)|. (9)

The result is best possible and equality holds for the polynomial P(z) = αzn + βKn ,
where |α| = |β | .

2. Lemmas

The proof of Theorem 1 is based on a result of Arestov which we shall describe
first.

For δ = (δ0, δ1, . . . , δn) ∈ cn+1 and

P(z) =
n∑

j=0

ajz
j,

we define

ΛδP(z) =
n∑

j=0

δjajz
j.

The operator Λδ is said to be admissible, if it preserves one of the following
properties:

(i) P(z) has all its zeros in {z ∈ C : |z| � 1}
(ii) P(z) has all its zeros in {z ∈ C : |z| � 1} .
The result of Arestov may now be stated as follows:

LEMMA 1. [2. Theorem 4]. Let φ(x) = ψ(log x) , where ψ is a convex nonde-
creasing function on R . Then for all polynomials P(z) of degree at most n and each
admissible operator Λδ∫ 2π

0
φ
(∣∣ΛδP(eiθ)

∣∣)dθ �
∫ 2π

0
φ(c(δ, n)|P(eiθ)|)dθ, (10)
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where
c(δ, n) = max(|δ0|, |δn|).

In particular, Lemma 1 applies whith φ : x → xq for every q ∈ (0,∞) and
φ : x → log x as well. Therefore, we have{

1
2π

∫ 2π

0

∣∣ΛδP(eiθ)
∣∣qdθ

}1/q

� c(δ, n)

{
1
2π

∫ 2π

0

∣∣P(eiθ)
∣∣qdθ

}1/q

, 0 < q < ∞.

(11)
We also need

LEMMA 2. If P(z) is a polynomial of degree n , which does not vanish for |z| � K ,
K � 1 . Then for all R � 1 , r � 1 and for every θ , 0 � θ < 2π ,

|P(Rreiθ)| �
(Rr + K

r + RK

)n∣∣RnP
(reiθ

R

)∣∣. (12)

Proof. Since all the zeros of P(z) lie in |z| � K , K � 1 , we write

P(z) = c
n∏

j=1

(z − Rje
iθj) where Rj � K, j = 1, 2, . . . , n.

Therefore, for all r � 1 , R � 1 and for every θ with 0 � θ < 2π , we have∣∣∣∣ P(Rreiθ)

RnP( reiθ
R )

∣∣∣∣ =
n∏

j=1

∣∣∣∣Rreiθ − Rjeiθj

reiθ − RRjeiθj

∣∣∣∣
=

n∏
j=1

∣∣∣∣Rrei(θ−θj) − Rj

rei(θ−θj) − RRj

∣∣∣∣
=

n∏
j=1

(
R2r2 + R2

j − 2RrRj cos(θ − θj)
r2 + R2R2

j − 2RrRj cos(θ − θj)

)1/2

. (13)

Now, after a short calculation one can easily verify that for every r � 1 and R � 1 ,

R2r2 + R2
j − 2RrRj cos(θ − θj)

r2 + R2R2
j − 2RrRj cos(θ − θj)

�
(

Rr + Rj

r + RRj

)2

. (14)

Since Rj � K , we see that
Rr + Rj

r + RRj
� Rr + K

r + KR
. (15)

From (13), (14) and (15), it follows that∣∣∣∣ P(Reiθ)

RnP( reiθ
R )

∣∣∣∣ �
(

Rr + K
r + RK

)n

,

for all r � 1 � R and for every θ , 0 � θ < 2π , from which the desired result follows
immediately.
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3. Proofs of the theorems

Proof of Theorem 1. Since the polynomial P(z) has all its zeros in |z| � K � 1 ,
it follows from Lemma 2 that for every R � 1 and for |z| = r < 1

|P(Rz)| �
(

R|z| + K
|z| + RK

)n

|RnP(z/R)|. (16)

If R = 1 , then Theorem 1 is trivial, so we assume that R > 1 . Now, it can be easily
verified that

R|z| + K
|z| + RK

< 1, for |z| = r < 1 and R > 1.

Using this in (16), we get

|P(Rz)| < |RnP(z/R)| for |z| < 1 and R > 1. (17)

Let F(z) = P(Rz) + eiαRnP(z/R) . We show for every α , 0 � α < 2π and R > 1 ,
that polynomial F(z) does not vanish in |z| < 1 . If this is not true, then there is a point
z = z0 with |z0| < 1 , such that F(z0) = 0 . This gives

0 = F(z0) = P(Rz0) + eiαRnP(z0/R), where |z0| < 1.

This implies
|P(Rz0)| = |RnP(z0/R)| where |z0| < 1,

which clearly contradicts (17). Hence all zeros of F(z) = P(Rz) + eiαRnP(z/R) lie
in |z| � 1 , for every α , 0 � α < 2π and R > 1 . This shows that the operator Λδ
defined by

ΛδP(z) = (1 + eiαRn)a0 + (R + eiαRn−1)a1z + · · · + (Rn + eiα)anz
n

= P(Rz) + eiαRnP(z/R) (18)

is an admissible operator. Applying (11), we obtain for 0 < q < ∞
∫ 2π

0
|P(Reiθ) + eiαRnP(eiθ/R)|qdθ � |Rneiα + 1|q

∫ 2π

0
|P(eiθ)|qdθ. (19)

Integrating both sides of (19) with respect to α from 0 to 2π , we get for 0 < q < ∞ ,

∫ 2π

0

∫ 2π

0

∣∣P(Reiθ) + eiαRnP
(eiθ

R

)∣∣qdα dθ �
∫ 2π

0
|Rneiα + 1|qdα

∫ 2π

0
|P(eiθ)|qdθ.

(20)
Now for every real α and t � s � 1 , it can be easily verified that |t + eiα | � |S + eiα | ,
which implies for every q > 0 ,∫ 2π

0
|t + eiα |qdα �

∫ 2π

0
|S + eiα |qdα. (21)
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Taking r = 1 in Lemma 2, it follows from (12) that

∣∣∣RnP(eiθ/R)
P(Reiθ)

∣∣∣ �
(1 + RK

R + K

)n
= tK � 1, (22)

for every θ , 0 � θ < 2π and R > 1 .

We take t =
∣∣∣RnP(eiθ/R)

P(Reiθ)

∣∣∣ and S = tK , then from (22), t � tK � 1 and we get

with the help of (21),

∫ 2π

0
|P(Reiθ) + eiαRnP(eiθ/R)|qdα = |P(Reiθ)|q

∫ 2π

0

∣∣∣∣1 +
eiαRnP(eiθ/R)

P(Reiθ)

∣∣∣∣
q

dα

= |P(Reiθ)|q
∫ 2π

0

∣∣∣∣eiα
∣∣∣RnP(eiθ/R)

P(Reiθ)

∣∣∣ + 1

∣∣∣∣
q

dα

� |P(Reiθ)|q
∫ 2π

0
|tKeiα + 1|qdα.

Using this in (20), we conclude that for 0 < q < ∞ ,

∫ 2π

0
|tKeiα + 1|qdα

∫ 2π

0
|P(Reiθ)|qdθ �

∫ 2π

0
|Rneiα + 1|qdα

∫ 2π

0
|P(eiθ)|qdθ,

which immediately leads to (5) and this completes the proof of Theorem 1.

Proof of Theorem 2. The proof of Theorem 2 is identical with the proof of The-
orem 1 of [3], except instead of using result of Boas and Rahman (inequality (4)) for
1 � q < ∞ , we use Theorem 1 with K = 1 for 0 < q < ∞ . We omit the details.
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