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AN INTEGRAL INEQUALITY

LÁSZLÓ HORVÁTH

(communicated by A. M. Fink)

Abstract. In this paper we consider a general integral inequality in measure spaces. It is motivated
by some individual integral inequalities which have fundamental applications in the study of some
Gronwall type integral inequalities and the corresponding integral equations. The treatment of
the problem shows that the connection between these special integral inequalities is even closer
than what their proofs indicates.

1. Introduction

Let (X, A ,μ) be a measure space. As in [4, 5], we say that the function S : X → A
satisfies the condition (C) if

(C1) x /∈ S(x), x ∈ X,

(C2) if y ∈ S(x), then S(y) ⊂ S(x), x ∈ X,

(C3) {(x1, x2) ∈ X2 | x2 ∈ S(x1)} is μ × μ measurable.

In [4, 5] we studied Gronwall type integral inequalities and the corresponding
integral equations in measure spaces. The key to the treatment is the following integral
inequality.

THEOREM 1.1. (See [4]) Let (X, A ,μ) be a measure space, and let S : X → A
satisfy the condition (C). If f : X → R is a nonnegative and μ integrable function on
X , then

∫
X

⎛
⎜⎝

∫

S(x1)

⎛
⎜⎝. . .

⎛
⎜⎝

∫

S(xn−1)

f (x1) . . . f (xn)dμ(xn)

⎞
⎟⎠ . . .

⎞
⎟⎠ dμ(x2)

⎞
⎟⎠ dμ(x1)

� 1
n!

⎛
⎝

∫

X

f dμ

⎞
⎠

n

, n = 2, 3, . . . .
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A special case of the previous theorem was considered by Fink [3], and it was
used to prove a Wendroff type integral inequality. Gronwall type integral inequalities
in higher dimensions and systems of multidimensional Volterra integral equations was
investigated by Beesack [1, 2]. The arguments depend on the next integral inequality.

THEOREM 1.2. (See [1]) Let I = {x ∈ R
p | a � x � b}, and let f : I → R be a

nonnegative and Lebesgue integrable function on I . Then

x∫
a

⎛
⎜⎝f (t)

⎛
⎝

t∫
a

f

⎞
⎠

n−1
⎞
⎟⎠ dt � 1

n

⎛
⎝

x∫
a

f

⎞
⎠

n

, x ∈ I, n = 1, 2, . . . .

These two integral inequalities which provide the starting point for much of the
discussion in the above-mentioned papers, are particular cases of a general integral
inequality. This inequality is the main result of the paper. It contains the essence of
Theorem 1.1 and Theorem 1.2.

2. Preliminaries

Let N
+ denote the set of positive integers.

Throughout this section, (X, A ,μ) will denote a measure space, and S : X → A
will be regarded as a function satisfying the condition (C).

In what follows, A is a σ algebra, and the μ integrable functions over A ∈ A
are considered to be almost measurable on A . The n -fold product of (X, A ,μ) is
denoted by (Xn, A n,μn) , and it is interpreted as in [4, 5].

The results of this section are technical preliminaries to the main theorem.

DEFINITION 2.1. (a) For A ⊂ X and n ∈ N
+ , let

Hn(A) = {(x1, . . . , xn) ∈ Xn | x1 ∈ A and xk ∈ S(xk−1), k = 2, . . . , n} .

(b) For A ⊂ X and m, n ∈ N
+ , let

Bm,n(A) =
{
(x1, . . . , xm, xm+1, . . . , xm+n) ∈ Xm+n | xk ∈ A, k = 1, . . . , m

and xm+l ∈ S(xm), l = 1, . . . , n} .

LEMMA 2.1. (a) For each A ∈ A and for each n ∈ N
+ , Hn(A) ∈ A n .

(b) For each A ∈ A and for each m, n ∈ N
+ , Bm,n(A) ∈ A m+n .

Proof. (a) See [4], p. 185.
(b) Suppose first that m = 1 . Since B1,1(A) = H2(A) , the case n = 1 being part

of (a). Let n ∈ N
+ such that the result holds, and let

h : Xn+2 → Xn+2, h(x1, . . . , xn+2) = (x1, xn+2, x3, . . . , xn+1, x2).

Then

B1,n+1(A) = (B1,n(A) × X) ∩ {
(x1, . . . , xn+2) ∈ Xn+2 | xn+2 ∈ S(x1)

}
=
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= (B1,n(A) × X) ∩ h(H2(x) × Xn),

and hence, by the induction hypothesis, B1,n+1(A) ∈ A 1+(n+1) .
By combining this with

Bm,n(A) = Am−1 × B1,n(A), m > 1, n ∈ N
+,

we obtain the result. �
We now introduce the important notion of the set Vl1,...,ln(A) .

DEFINITION 2.2. (a) For a set A and n ∈ N
+ , let Dn(A) be the n -fold Cartesian

product of A .
(b) For A ⊂ X and n ∈ N

+ we use Cn(A) to denote either Hn(A) or Dn(A) .
Let n ∈ N

+, li ∈ N
+, i = 1, . . . , n , and let p = l1 + . . . + ln .

(c) For (x(1,1), . . . , x(1,l1), . . . , x(n,1), . . . , x(n,ln)) ∈ Xp , let xi = (x(i,1), . . . , x(i,li)) ∈
Xli , i = 1, . . . , n .

(d) For A ⊂ X , Vl1,...,ln(A) means one of the following sets
{
(x1, . . . , xn) ∈ Xp | x1 ∈ Cl1(A) and xk ∈ Clk (S(x(k−1,lk−1))), k = 2, . . . , n

}
.

The integer li is said to be H-type (D-type) if Cli(·) = Hli(·) (Cli(·) = Dli(·)) .

REMARK 2.1. If li and li+1 are H-type, then

Vl1,...,ln(A) = Vl1,...,li−1,li+li+1,li+2,...,ln(A).

LEMMA 2.2. For each A ∈ A , Vl1,...,ln(A) ∈ A p .

Proof. We argue by induction on n . Since Vl1(A) = Hl1(A) or Vl1(A) = Dl1(A) ,
the case n = 1 follows from Lemma 2.1(a). Suppose n ∈ N

+ for which the result
holds, and let li ∈ N

+, i = 1, . . . , n + 1 . If ln+1 is H-type, then

Vl1,...,ln+1(A) = (Vl1,...,ln(A) × Xln+1) ∩ (Xp−1 × Hln+1+1(X)),

while if ln+1 is D-type, then

Vl1,...,ln+1(A) = (Vl1,...,ln(A) × Xln+1) ∩ Bp,ln+1(X),

and therefore the result follows from the induction hypothesis and Lemma 2.1. �
We now introduce some additional notions. Their signficance is given primarily

by the main theorem.

DEFINITION 2.3. We consider a set Vl1,...,ln(A) , where A ⊂ X .
(a) Let Il1,...,ln denote the set of indices

{(1, 1), . . . , (1, l1), . . . , (n, 1), . . . , (n, ln)} ,

with the total ordering relation (i, j) < (k, l) defined to mean that either i < k or i = k
and j < l .
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The set of the permutations of Il1,...,ln is denoted by Pp .
(b) We say that the permutations π ∈ Pp and τ ∈ Pp are equivalent if for every li

with type D,

f i(π(i, 1)) = τ(i, 1), . . . , f i(π(i, li − 1)) = τ(i, li − 1),

where f i is the unique order preserving function from ({π(i, 1), . . . , π(n, ln)}, <) onto
({τ(i, 1), . . . , τ(n, ln)}, <) .

It is clear that this is an equivalence relation on Pp which is denoted by E .
(c) For each π ∈ Pp , let hπ : Xp → Xp ,

hπ(x(1,1), . . . , x(1,l1), . . . , x(n,1), . . . , x(n,ln)) = (xπ(1,1), . . . , xπ(1,l1), . . . , xπ(n,1), . . . , xπ(n,ln)).

LEMMA 2.3. We consider a set Vl1,...,ln(A) , where A ⊂ X .
(a) Let π, τ ∈ Pp , let π be equivalent to τ under E , and let

(i, j) = min {(k, l) ∈ Il1,...,ln | π(k, l) �= τ(k, l)} .

Then either li is H-type or li is D-type and j = li .

(b) Each equivalence class corresponding to E has
n∏

i=1
ci elements, where

ci =
(li + . . . + ln)!

(li+1 + . . . + ln)!
if li is H − type (f or i = n, cn = ln!),

and
ci = 1 + li+1 + . . . + ln if li is D − type (f or i = n, cn = 1).

Proof. These two results follow immediately from the definition of the equiva-
lence relation E. Computation of the number in (b) is based upon easy combinatorial
considerations. �

LEMMA 2.4. We consider a set Vl1,...,ln(A) , where A ⊂ X .
Let (x1, . . . , xn) ∈ Vl1,...,ln(A) , and let (i, j) , (k, l) ∈ Il1,...,ln with (i, j) < (k, l) . If

either li is H-type or li is D-type and j = li , then S(x(k,l)) ⊂ S(x(i,j)) .

Proof. We first assume that k = i . Then j < l , so that li is H-type, and hence

x(i,l) ∈ S(x(i,l−1)), . . . , x(i,j+1) ∈ S(x(i,j)).

It therefore follows from the condition (C2) that

S(x(i,l)) ⊂ S(x(i,l−1)) ⊂ . . . ⊂ S(x(i,j+1)) ⊂ S(x(i,j)).

Suppose now that i < k and li is H-type. Then we can show, as above (using the
definition of Vl1,...,ln(A) ), that

i. if lk is H-type then

S(x(k,l)) ⊂ S(x(k,l−1)) ⊂ . . . ⊂ S(x(k,1)) ⊂ S(x(k−1,lk−1)) ⊂ . . . ⊂ S(x(i,li)) ⊂ . . . ⊂ S(x(i,j)),
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ii. if lk is D-type then

S(x(k,l)) ⊂ S(x(k−1,lk−1)) ⊂ . . . ⊂ S(x(i,li)) ⊂ . . . ⊂ S(x(i,j)).

Finally, let i < k , and let li be D-type and j = li . In this case we can use what
we have already proved and the remark that x(i+1,1) ∈ S(x(i,li)) implies S(x(i+1,1)) ⊂
S(x(i,li)) .

The proof is complete. �

3. Main results

By using the notions of the set Vl1,...,ln(X) and the equivalence relation E , we are
now able to establish the following integral inequality.

THEOREM 3.1. Let n ∈ N
+, li ∈ N

+, i = 1, . . . , n , and let p = l1 + . . . + ln .
Let f : Xp → R be a nonnegative and μp integrable function on Xp , and suppose that
there exists an equivalence class Q corresponding to the equivalence relation E such
that for each π ∈ Q, we have f ◦ hπ = f . Then∫

Vl1,...,ln (X)

f dμp � 1
|Q|

∫

Xp

f dμp,

where |Q| means the number of elements in Q (see Lemma 2.3(b)).

Proof. First we show that if π, τ ∈ Q and π �= τ , then

h−1
π (Vl1,...,ln(X)) ∩ h−1

τ (Vl1,...,ln(X)) = Ø.

Suppose on the contrary that

(xπ(1,1), . . . , xπ(1,l1), . . . , xπ(n,1), . . . , xπ(n,ln)) ∈ Vl1,...,ln(X)

and
(xτ(1,1), . . . , xτ(1,l1), . . . , xτ(n,1), . . . , xτ(n,ln)) ∈ Vl1,...,ln(X).

Let
(i, j) = min {(k, l) ∈ Il1,...,ln | π(k, l) �= τ(k, l)} .

By Lemma 2.3(a), either li is H-type or li is D-type, and in the latter case j = li . There
exists (k, l) ∈ Il1,...,ln for which (i, j) < (k, l) and π(i, j) = τ(k, l) . Let (k, l)− be the
largest index < (k, l) ( (k, l)− = (k, l − 1) or (k − 1, lk−1) , depending on whether
1 < l � lk or l = 1 ). We distinguish two cases by the type of lk and the form of
(k, l)− .

Case 1. If lk is D-type and (k, l)− = (k, l−1) , thenwe set π(s, t) = τ(k−1, lk−1) .
Since (i, j) � (k− 1, lk−1) , it follows that (i, j) < (s, t) , and therefore, by Lemma 2.4,

xπ(i,j) = xτ(k,l) ∈ S(xτ(k−1,lk−1)) = S(xπ(s,t)) ⊂ S(xπ(i,j)),

and this contradicts the condition (C1).
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Case 2. For the remaining three possibilities, we set π(s, t) = τ((k, l)−) . Since
(i, j) � (k, l)− , it follows that (i, j) < (s, t) , hence, again by Lemma 2.4,

xπ(i,j) = xτ(k,l) ∈ S(xτ((k,l)−)) = S(xπ(s,t)) ⊂ S(xπ(i,j)),

contrary to the condition (C1).
By the transformation theorem for integrals, we have

∫

Vl1,...,ln (X)

f dμp =
∫

h−1
π (Vl1,...,ln (X))

f ◦ hπdμp

for every π ∈ Pp . Further, since f is nonnegative and f ◦ hπ = f for each π ∈ Q , it
follows from the first part of the proof that

|Q| ·
∫

Vl1,...,ln (X)

f dμp =
∑
π∈Q

∫

h−1
π (Vl1,...,ln (X))

f ◦ hπdμp =

=
∑
π∈Q

∫

h−1
π (Vl1,...,ln (X))

f dμp �
∫

Xp

f dμp,

and this is the required result. �

REMARK 3.1. (a) The constant 1
|Q| in the theorem above is the best possible. The

following example illustrates this.
Let X = [0, 1] , let A be the σ algebra of Lebesgue measurable sets in X , and

let μ be the Lebesgue measure on A . If S : X → A , S(x) = [0, x[ , then the function
S satisfies the condition (C). It now follows by an easy induction argument on n that

∫

Vl1,...,ln (X)

1dμp =
1
|Q|

∫

Xp

1dμp

for arbitrarily chosen Vl1,...,ln(X) .
(b) Let (X, A ,μ) be the measure space described in (a), and let S : X → A be

the function of (a). We consider the set Vl1,l2(X) , where l1 = 2 , l2 = 1 , l1 is D-type
and l2 is H-type. Let f : X3 → R , f (x, y, z) = x2 + y2z2 . Then the quotient class of
P3 by E has three elements, and

Q = {((1, 1), (1, 2), (2, 1)), ((1, 1), (2, 1), (1, 2))}

is the only equivalence class such that f ◦ hπ = f for each π ∈ Q .

We note explicitly the case of Theorem 3.1 in which the function f has a special
form.
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THEOREM 3.2. Let n ∈ N
+, li ∈ N

+, i = 1, . . . , n , and let p = l1 + . . . + ln . If
g : X → R is a nonnegative and μ integrable function on X , then

∫

Vl1 ,...,ln (X)

g × . . . × gdμp � 1
|Q|

⎛
⎝

∫

X

gdμ

⎞
⎠

p

,

where Q is an equivalence class corresponding to the equivalence relation E .

REMARK 3.2. Suppose that the hypotheses of the previous theorem are satisfied.
When n = 1 and l1 is H-type, we can use Theorem 3.2 to obtain Theorem 1.1.

Similarly, when n = 2 , l1 = 1 , l1 is H-type and l2 is D-type, Theorem 3.2 gives
the following inequality

∫

X

⎛
⎜⎝g(x)

⎛
⎜⎝

∫

S(x)

gdμ

⎞
⎟⎠

l2⎞
⎟⎠ dμ(x) � 1

l2 + 1

⎛
⎝

∫

X

gdμ

⎞
⎠

l2+1

,

which includes Theorem 1.2.
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