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CLASSES OF NUMERICAL SEQUENCES

LÁSZLÓ LEINDLER

(communicated by J. Pečarić)

Abstract. We generalize some known classes of numerical sequences and give sufficient condi-
tions implying the identity of the new classes. Some further embedding relations are presented.

1. Introduction

Telyakovskiı̌ [11] introduced the following very applicable definition of a class of
sequences {an} and denoted by S . A null-sequence {an} belongs to the class S if
there exists a monotonically decreasing sequence {An} such that

∞∑
n=1

An < ∞, and |Δan| � An for all n .

In [11] he proved, among others, that the classical result of Kolmogorov [3] concerning
the L1 -convergence of the cosine series

a0

2
+

∞∑
n=1

an cos nx

with a quasi-convex null-sequence {an} (
∑

n|Δ2an| < ∞ ) can be extended to the
class S .

Several authors have investigated similar problems and defined “wider” classes
than S and proved that the class S emerging in the theorem of Telyakovskiı̌ can be
replaced by the “wider” classes.

In [6] we showed that some of these classes are identical with the class S , further-
more in [7] we proved that five other classes defined by different ways are truly wider
than S , but they are identical among themselves.

The aim of the present paper is to generalize the classes considered in [7] and
determine such conditions on the factors appearing in the generalizations which imply
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the identity of the new classes. Furthermore we shall consider some more embedding
relations of the classes to be defined soon, the class S , and its analogues.

Next we establish five classes of sequences whose special cases ρn = n−1/p were
considered in [7].

Here and later on ρ := {ρn} denote always a positive monotonic sequence,
a := {an} a null-sequence (an → 0 ), K and Ki positive constants that are not
necessarily the same of each occurrence, furthermore p � 1 .

1. A sequence a belongs to the class Fp(ρ) if

∞∑
n=1

ρn

( ∞∑
k=n

|Δak|p
)1/p

< ∞. (1.1)

2. a ∈ F∗
p (ρ) if

∞∑
m=0

2mρ2m

⎧⎨
⎩

2m+1∑
n=2m+1

|Δan|p
⎫⎬
⎭

1/p

< ∞. (1.2)

3. a ∈ Sp(ρ) if there exists a monotonically decreasing sequence A := {An} such
that ∞∑

n=1

An < ∞ and
m∑

n=1

|Δan|p
Ap

n
= O

(
ρ−p

m

)
. (1.3)

4. a ∈ Sp(A, ρ) if there exists a null-sequence A such that

∞∑
n=1

n|ΔAn| < ∞ (1.4)

and
m∑

n=1

|Δan|p
Ap

n
= O

(
ρ−p

m

)
(1.5)

hold.

5. a ∈ Sp(δ, ρ) if there exists a δ -quasi-monotone sequence A (i.e. An > 0 ,
ΔAn � −δn and δn > 0 ) satisfying the assumptions (1.3) and

∑∞
n=1 nδn < ∞ .

We mention that these classes in the special case ρn = n−1/p , p > 1 were defined
and investigated by the following authors. Fp(ρ) and F∗

p (ρ) by Fomin [1], Sp(ρ) by
C.V. Stanojevič and V.B. Stanojevič [10], Sp(A, ρ) by Garrett-Rees-C.V. Stanojevič [2],
and Sp(δ, ρ) by Mazhar [9] and Tomovski [12].

Before formulating our results we recall some definitions.
We shall say that a sequence γ := {γn} of positive terms is quasi β -power-

monotone increasing (decreasing) if there exist a natural number N := N(β , γ ) and a
constant K := K(β , γ ) � 1 such that

Knβγn � mβγm (nβγn � Kmβγm) (1.6)
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holds for any n � m � N .
If (1.6) holds with β = 0 then we omit the attribute “β -power” in the definition.
Furthermore, we shall say that a sequence γ := {γn} of positive terms is quasi

geometrically increasing (decreasing) if there exist natural numbers μ := μ(γ ) , N :=
N(γ ) and a constant K := K(γ ) � 1 such that

γn+μ � 2γn and γn � Kγn+1 (γn+μ � 1
2
γn and γn+1 � Kγn) (1.7)

hold for all n � N .
Finally a sequence γ := {γn} will be called bounded by blocks if the inequalities

α1Γ(k)
m � γn � α2Γ

(k)
M , 0 < α1 < α2 < ∞

hold for any 2k � n � 2k+1 , k = 1, 2, . . . , where

Γ(k)
m := min(γ2k , γ2k+1) and Γ(k)

M := max(γ2k , γ2k+1).

2. Results

We now proceed to formulate our new results.

THEOREM 1. Assume that p � 1 and a given positive sequence ρ := {ρn} , for a
certain positive β , is quasi β -power-monotone decreasing and simultaneously quasi
(1 − β) -power-monotone increasing. Then the following embedding relations

Fp(ρ) ⊆ F∗
p (ρ) ⊆ Sp(ρ) ⊆ Sp(A, ρ) ⊆ Sp(δ, ρ) ⊆ Fp(ρ) (2.1)

hold, i.e. these classes are identical.

In the special case ρn = n−1/p and p > 1 , Theorem 1 reduces to the theorem
proved in [7]. It is clear that this sequence satisfies the assumptions of Theorem 1,
moreover it is easy to see that any sequence ρn = nγ with −1 < γ < 0 also fulfills the
assumptions of Theorem 1.

It is also easy to verify that in the special case ρn = n−1/p , p > 1 , the class
F∗

p (ρ) ≡ F∗
p (n−1/p) , and consequently all of the others, are wider when p is closer to

1. However no class Fp(n−1/p) ≡ F∗
p (n−1/p) with p > 1 is embedded into the class

F1(n−1) (ρn = n−1, p = 1) , but

Fp(n−1/p) ≡ Sp(n−1/p) ⊆ S1(n−1), p > 1, (2.2)

always holds. Namely if Δan = 1/n log2 n then a ∈ Fp(n−1/p)(p > 1) , but a �∈
F1(n−1) , and the statement (2.2) can be verified by Hölder inequality.

We shall verify that the class S1(n−1) is wider than F1(n−1) .
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THEOREM 2. The embedding

F1(n−1) ⊆ S1(n−1) (2.3)

holds.

As it has been mentioned, we ([5]) proved that

S ⊂ Sp(n−1/p), p > 1 (2.4)

holds, moreover the class S a strict subclass of Sp(n−1/p) . By the definition of the
classes S and Sp(1) (ρn ≡ 1) it is obvious that

Sp(1) ⊂ S (2.5)

also holds, thus, by (2.4) and (2.5) we have

Sp(1) ⊂ S ⊂ Sp(n−1/p), p > 1. (2.6)

On the other hand, since

Sp(n−γ1) ⊂ Sp(n−γ2) if γ1 < γ2,

thus, by (2.6), it is natural to ask: Are there 0 < γ1 < γ2 < 1
p such that

Sp(n−γ1) ⊂ S ⊂ Sp(n−γ2)

hold?
The following theorem gives a negative answer to this problem.

THEOREM 3. If 0 < γ < 1
p (p � 1) then neither

S ⊂ Sp(n−γ ), (2.7)

nor
Sp(n−γ ) ⊂ S (2.8)

hold.

Surveying the results with p > 1 , we see that Sp(1) is the smallest class among
the treated ones and

Sp(1) ⊂ S.

This raises the following problem: Can we modify the definition of S such that a
certain subclass of S be embedded in Sp(1) ? We shall give an affirmative answer.

Now let us define a new class of sequences.

6. Let α := {αn} be a positive monotone sequence tending to infinity. We
shall say that a sequence a := {an} belongs to S(α) , or a ∈ S(α) , if there exists a
monotonically decreasing sequence A := {An} such that

∞∑
n=1

αnAn < ∞, and |Δan| � An for all n .
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THEOREM 4. If p > 1 and

∞∑
n=1

α−p
n < ∞, (2.9)

then
S(α) ⊂ Sp(1). (2.10)

Furthermore there exists a sequence α := {αn} tending to infinity such that

Sp(1) ⊂ S(α) (⊂ S) (2.11)

holds.

3. Lemmas

The following result can be found in [13].

LEMMA 1. Let {cn} be a δ -quasi-monotone sequence with

∞∑
n=1

nδn < ∞.

If
∞∑

n=1

cn

converges, then
∞∑
n=1

(n + 1)|Δcn| < ∞.

LEMMA 2. ([4]). For any positive sequence γ := {γn} the inequalities

∞∑
n=m

γn � Kγm (m = 1, 2, . . . ; K � 1),

or
m∑

n=1

γn � Kγm (m = 1, 2, . . . ; K � 1),

hold if and only if the sequence γ is quasi geometrically decreasing or increasing,
respectively.

LEMMA 3. ([8]). A positive sequence γ := {γn} bounded by blocks is quasi β -
power monotone increasing (decreasing) with a certain negative (positive) exponent β
if and only if the sequence {γ2n} is quasi geometrically increasing (decreasing).

The following lemma can be found in [5] implicitly.
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LEMMA 4. If {Rn} is a monotone decreasing sequence of positive numbers such
that ∞∑

n=1

Rn < ∞,

then there exists a monotone decreasing sequence {An} such that for any n � 1

Rn � An

An � KA2n

and ∞∑
n=1

An < ∞.

4. Proofs

Proof of Theorem 1. First we prove the relation Fp(ρ) ⊆ F∗
p (ρ) . Since the

sequence ρ is quasi monotone decreasing thus an easy consideration shows that

∞∑
m=1

2mρ2m

⎧⎨
⎩

2m+1∑
k=2m+1

|Δak|p
⎫⎬
⎭

1/p

� K
∞∑

m=1

2m∑
n=2m−1+1

ρn

{ ∞∑
k=n

|Δak|p
}1/p

, (4.1)

and this was to be proved.
Next we prove the converse statement, F∗

p (ρ) ⊆ Fp(ρ). The assumptions on ρ
imply clearly that it is bounded by blocks, and consequently the sequence {nρn} has
the same property; furthermore this latter sequence is β -power-monotone increasing
with a negative β . Thus, at the end of the coming calculations we can use the Lemmas
2 and 3, therefore we have that

∞∑
n=2

ρn

( ∞∑
k=n

|Δak|p
)1/p

�K
∞∑

m=0

2mρ2m

{ ∞∑
k=2m+1

|Δak|p
}1/p

�K
∞∑

m=0

2mρ2m

∞∑
n=m

⎧⎨
⎩

2n+1∑
k=2n+1

|Δak|p
⎫⎬
⎭

1/p

�K
∞∑
n=0

⎧⎨
⎩

2n+1∑
k=2n+1

|Δak|p
⎫⎬
⎭

1/p
n∑

m=0

2mρ2m

�K1

∞∑
n=0

2nρ2n

⎧⎨
⎩

2n+1∑
k=2n+1

|Δak|p
⎫⎬
⎭

1/p

,

(4.2)

which gives the conclusion.
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The inequalities (4.1) and (4.2) imply that

Fp(ρ) ≡ F∗
p (ρ). (4.3)

In the following stage we prove that Fp(ρ) ⊆ Sp(ρ).
First we set

Rn := ρn

( ∞∑
k=n

|Δak|p
)1/p

.

The assumptions of Theorem 1 imply that the sequence {Rn} is monotone decreasing
and ∞∑

n=1

Rn < ∞

if a ∈ Fp(ρ) . Hence, by Lemma 4, we know that there exists a monotone decreasing
sequence {An} such that

Rn � An (4.4)

An � KA2n (4.5)

and ∞∑
n=1

An < ∞. (4.6)

hold.
To prove a ∈ Sp(ρ) we have only to show that

n∑
k=1

|Δak|p
Ap

k

� Kρ−p
n (4.7)

with this sequence {An} fulfills if a ∈ Fp(ρ). Let 2i−1 < n � 2i. Then

n∑
k=2

|Δak|p
Ap

k

�
i∑

m=0

A−p
2m+1

2m+1∑
k=2m+1

|Δak|p

�
i∑

m=0

A−p
2m+1R

p
2mρ−p

2m � K
i∑

m=0

ρ−p
2m = σi.

(4.8)

Since the sequence {ρn} is β -power monotone decreasing with a positive β , thus the
sequence {ρ2n} is quasi geometrically decreasing (see Lemma 3), consequently the
sequences {ρ−1

2n } and {ρ−p
2n } (p � 1) are quasi geometrically increasing. Thus, by

Lemma 2,
σi � K1ρ−p

2i � K2ρ−p
n ,

this and (4.8) imply (4.7), that is, the embedding

Fp(ρ) ⊆ Sp(ρ) (4.9)

is proved.
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The embedding relation
Sp(ρ) ⊆ Sp(δ, ρ) (4.10)

always holds without any additional condition on ρ , it is enough to choose δn := n−3.
Our next aim is to prove the relation

Sp(δ, ρ) ⊆ Sp(A, ρ). (4.11)

If a ∈ Sp(δ, ρ) then we can apply Lemma 1 with cn := An , where A := {An} denotes
the sequence appearing in the definition of the class Sp(δ, ρ), and this shows that this
sequence A satisfies (1.4).

On the other hand the condition (1.5) is automatically satisfied by the assumption
a ∈ Sp(δ, ρ), see (1.3).

Thus (4.11) is verified, without conditions on ρ.
Finally we verify

Sp(A, ρ) ⊆ F∗
p (ρ). (4.12)

Setting

Dm :=
2m+1∑
n=2m

|ΔAn|,

by (1.4) we obtain that
∞∑

m=0

2mDm < ∞. (4.13)

Since An → 0 thus

A2m =
∞∑

n=2m

ΔAn �
∞∑

n=m

Dn.

This and (4.13) imply that

∞∑
m=1

2mA2m �
∞∑

m=1

2m
∞∑

n=m

Dn =
∞∑

n=1

Dn

n∑
m=1

2m � 2
∞∑

n=1

2nDn < ∞. (4.14)

If 2m < n � 2m+1 then

An = A2m −
n−1∑
k=2m

ΔAk � A2m + Dm =: Cm.

Using this estimation we get that

∞∑
m=1

2mρ2m

⎧⎨
⎩

2m+1∑
n=2m+1

|Δan|p
⎫⎬
⎭

1/p

�
∞∑

m=1

2mCm

⎧⎨
⎩ρp

2m

2m+1∑
n=2m+1

|Δan|p
Ap

n

⎫⎬
⎭

1/p

. (4.15)

Here the sum in the bracket is O(1) by (1.5) taking into consideration the properties
of ρ. On the other hand, by (4.13) and (4.14), the sum

∞∑
m=1

2mCm < ∞.
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Thus, by (4.15), the embedding relation (4.12) is also verified.
Summing up our partial results (4.3), (4.9), (4.10), (4.11) and (4.12), we obtain

the assertion (2.1) of Theorem 1.
The proof is complete.

Proof of Theorem 2. Let

Rn := n−1
∞∑
k=n

|Δak|.

If a ∈ F1(n−1) then the sum of these Rn is convergent. Thereforewe can apply Lemma
4 and obtain a monotone decreasing sequence {An} with the properties (4.4), (4.5) and
(4.6). Using these properties we get that if 2i−1 < n � 2i then

n∑
k=2

|Δak|
Ak

�
i−1∑
m=0

A−1
2m+1

2m+1∑
k=2m+1

|Δak| �
i∑

m=0

A−1
2m+12

mR2m � K
i∑

m=0

2m � K1n.

This clearly shows that a ∈ S1(n−1) also holds, herewith Theorem 2 is proved.

Proof of Theorem 3. In order to prove that (2.7) does not hold, let us define the
following sequence a := {an} :

an :=
1

n2 log2(n + 1)
for all n � 1 . (4.16)

Then the sequence

An :=
K

n log2 n
satisfies the conditions required in the definition of the class S , therefore a ∈ S.

On the other hand if a monotonic sequence {An} satisfies the condition

m∑
n=1

|Δan|p
A

p
n

� Kmγ p

for the sequence a given in (4.16) then

2Kmγ p �
2m∑

n=m

|Δan|p
A

p
n

� A
−p
m

2m∑
n=m

|Δak|p � K1A
−p
m m1−p log−2p m

holds, whence
Am � K2m

−1+ 1
p−γ log−2 m

follows, thus
∞∑

m=1

Am = ∞
(

1
p

> γ
)

.

Consequently this a does not belong to Sp(n−γ ) , but a ∈ S, that is,

S �⊂ Sp(n−γ ).
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To prove that (2.8) does not hold let us consider the sequence a := {an} given as
follows:

a1 := 1, an := 2−m if 2m−1 < n � 2m, m � 1. (4.17)

Then
|Δa2m | = 2−m−1,

therefore, for this sequence a given in (4.17), no sequence {An} satisfying the three
conditions

An � An+1, |Δan| � An and
∞∑

m=1

2mAm < ∞

jointly, required to a ∈ S, can be given. Thus this sequence a �∈ S.
Next we show that this a ∈ Sp(n−γ ). Let

An :=
1

n log2(n + 1)
, n � 1.

Clearly
∞∑
n=1

An < ∞, An � An+1,

furthermore if 2m−1 < n � 2m then

n∑
k=1

|Δak|p
A

p
k

�
m∑

k=1

|Δa2k |p
A

p
2k

� K
m∑

k=1

k2p � K1m
2p+1 � K2n

γ p,

thus a ∈ Sp(n−γ ) is proved.
Since a ⊂ Sp(n−γ ) but a �∈ S, this shows that

Sp(n−γ ) �⊂ S.

Herewith the proof of Theorem 3 is complete.

Proof of Theorem 4. To prove (2.10) we assume that a ∈ S(α). Then there exists
a monotone decreasing sequence {An} such that

∞∑
n=1

αnAn < ∞ and |Δan| � An. (4.18)

Next we show that this a belongs to Sp(1) , too. If we can give a monotone sequence
A := {An} such that

∞∑
n=1

An < ∞ and
∞∑

n=1

|Δan|p
A

p
n

< ∞ (4.19)

then a ∈ Sp(1) will be proved.
Let

An := A
1− 1

p
n α

− 1
p

n .
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This A is clearly monotone (p > 1, αn � αn+1) . With q := p
p−1 , by (2.9) and

(4.18), we get that

∞∑
n=1

An =
∞∑

n=1

A1/q
n α1/q−1

n �
( ∞∑

n=1

Anαn

)1/q( ∞∑
n=1

α−p
n

)1/p

< ∞,

and, by (4.18),
∞∑

n=1

|Δan|p
A

p
n

=
∞∑

n=1

|Δan|p
Ap−1

n

αn �
∞∑

n=1

Anαn < ∞.

Thus (4.19), and hereby (2.10) is also proved.
The proof of (2.11) is very easy. Namely if a ∈ Sp(1) then there exists a monotone

sequence {An} such that

∞∑
n=1

An < ∞ and
n∑

k=1

|Δak|p
Ap

k

� K. (4.20)

The second condition in (4.20) implies that |Δan| � K1An, and the first inequality
manifests the existence of a monotone sequence α := {αn} tending to infinity such
that

∞∑
n=1

αnAn < ∞

also holds. Thus, e.g. the sequence A := {An} with An := K1An satisfies all of the
conditions required for a ∈ S(α).

Herewith (2.11) is also verified, consequently the proof of Theorem 4 is complete.
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