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TWO–POINT BOUNDARY VALUE PROBLEMS ASSOCIATED

WITH NON–LINEAR FUZZY DIFFERENTIAL EQUATIONS

V. LAKSHMIKANTHAM, K. N. MURTY, AND J. TURNER

(communicated by D. Bainov)

Abstract. This paper presents a criteria for the existence and uniqueness of solutions to two point
boundary value problems associated with a second order non-linear fuzzy differential equations.
The main tools employed are estimates on Green’s function, Ascoli’s Lemma and a fixed point
theorem of Banach.

1. Introduction

Let X be a finite dimensional Banach Space and f : R × X → X is continuous.
Then the classical Peano existence theorem states that the initial value problem

y′ = f (t, y), y(t0) = y0 (1.1)

has at least one solution on any real interval containing t0 , more specifically, let a, b > 0
and

D = {(t, y) ∈ R × X : t ∈ [t0, t0 + a], ||y − y0|| � b}
and

M = sup
D
{||f (t, y)||}.

Then the initial value problem (1.1) possesses a solution defined on I = [t0, t0 + α]
where α = min{a, b/M} .

Although, continuity of f will take care of existence of at least one solution on
I , it does not guarantee the uniqueness. Hence to ensure uniqueness, some additional
conditions on f are necessary. In fact, Picard’s theorem ensures that if f is uniformly
Lipschitz continuous with respect to the second variable y on D , then (1.1) has a
unique solution on [t0, t0 + α] .

However, if X is not locally compact, then it is possible to construct a continuous
function f such that (1.1) has no solution. In fact, some additional conditions are to be
satisfied by the non-linear function f . The initial value problems for first order fuzzy
differential equations are studied by many authors in recent yart [2,4,5] on the metric
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space (En, D) of normal fuzzy convex sets with the distance D given by the supremum
of the Hausdorff distance between the corresponding level set. J. J. Nieto [5] proved a
version of the classical Peano existence theorem for initial value problems for a fuzzy
differential equation in the metric space of normal fuzzy convex sets with the distance
given by the maximum of the Hausdorff distance between level sets. The results of
Nieto [5] complements the existence and uniqueness result of Kaleva [4].

In this paper we give a set of sufficient conditions under which a two-point non-
linear Fuzzy differential equation has a unique solution.

2. Preliminaries

Let Pk(Rn) denote the family of non-empty compact, convex subsets of Rn . If
α , β ∈ R and A , B ∈ Pk(Rn)

α(A + B) = αA + αB, α(βA) = (αβ)A, 1 · A = A

and if α , β � 0 , then (α + β)A = αA + βA .
For A , B ∈ Pk(Rn) the Hausdorff metric is defined as

D(A, B) = inf{ε : A ⊂ N(B, ε), B ⊂ N(A, ε)}

where N(A, ε) = {x ∈ Rn : ||x − y|| < ε for some y ∈ A } .
Let I = [t0, t0 + α] , t � 0 and α > 0 and denote by En = {u : Rn → [0, 1]} .

Then the α -level set is

[u]α ={x ∈ Rn : u(x) � α} α ∈ (0, 1];

[u]0 ={x ∈ Rn : u(x) > 0} is compact.

We define En as the fuzzy sets u : Rn → [0, 1] that are normal, fuzzy convex, upper
semicontinuous, and such that [u]0 is compact. Thus, if u ∈ En wehave [u]α ∈ Pk(Rn)
for every α ∈ [0, 1] . Further if

D : En × En → [0,∞) then

D(u, v) = sup{d([u]α), d([v]α) : α ∈ [0, 1]}.

It may be noted that D is a metric in En and that (En, D) is a complete metric space,
but it is not locally compact. Moreover, D has a linear structure in the sense that if u ,
v , w ∈ En and λ ∈ R , then

D(u + w, v + w) = D(u, v) and D(λu, λv) = |λ |D(u, v).

Note that (En, D) is not a vector space but it can be embedded isomorphically as a cone
in a Banach space [6].
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3. First order fuzzy differential equations

Let T = [a, b] be a closed subinterval of R and assume that f : T × En → En is
continuous. A mapping φ : T → En is a solution of the initial value problem

y′ = f (t, y), y(a) = y0 (3.1)

if and only if φ is a solution of the integral equation

y(t) = y0 +
∫ t

a
f (s, y(s))ds. (3.2)

Here we use the concept of H-differentiability adopted by Kaleva [4].
If we denote by C(T, En) the set of all continuousmappings from T to En . Define

for any φ , ψ ∈ C(T, En) ,

H(φ,ψ) = sup
t∈T

{D(φ(t),ψ(t))}.

Thus (C(T, En), H) is a complete metric space. For any ψ ∈ C(T, En) define Gψ as

[Gψ ](t) = y0 +
∫ t

a
f (s,ψ(s))dx, t ∈ T (3.3)

We note that y ∈ C(T, En) is a solution of (3.1) if and only if Gy = y , that is, y
is a fixed poińt of G . For the proof of the next theorem we refer to Nieto [5].

THEOREM 3.1. Suppose that f : T × En → En is continuous and bounded and
satisfies

D(f (t, y), 0) � r, t ∈ T, y ∈ En.

Then the initial value problem (3.1) posesses at least one solution on the interval I .

4. Two-point non-linear boundary value problems

In this section we consider the non-linear fuzzy differential equation of second
order

y′′ = f (t, y, y′), a � t � b (4.1)
satisfying

y(a) = y1, y(b) = y2 (4.2)
where f : T × En × En → En is continuous. Denote by C1(T, En) the set of all
continuously differentiable mappings from T to En . We define φ , ψ ∈ C1(T, En) by

H(φ,ψ) = K · max
t∈T

D(φ(t),ψ(t)) + L · max
t∈T

D(φ ′(t),ψ ′(t)).

Then (C1(T, En), H) is a complete metric space. For any φ ∈ C1(T, En) define
Gφ ∈ C1(T, En) by

[Gφ(t)] =
∫ b

a
G(t, s)f (s, φ(s), φ ′(s))ds, t ∈ T
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where G(t, s) is the Green’s function for the homogeneous boundary value problem.
We note that φ ∈ C1(T, En) is a solution of (4.1) satisfying (4.2) if and only if

Gφ = φ , that is, φ is a fixed point of G .

LEMMA 4.1. Suppose there exists an M > 0 such that

D(f (t, y, y′), 0) � M for t ∈ T, y ∈ En, y′ ∈ En (4.3)

and D(G(t, s), G(t1, s)) � K for all t , t1 ∈ T . Then G is compact i. e., G transforms
bounded sets into relatively compact sets.

Proof. Let B be a bounded set in C1(T, En) . The set GB = {Gy : y ∈ B} is
totally bounded if and only if it is equicontinuous and for every t ∈ T the set

[GB](t) = {[Gx](t) : t ∈ T}
is a totally bounded subset of En . Now for any t0 � t1 and φ ∈ B we have

D([Gφ](t0), [Gφ](t1)) � |t1 − t0| · sup{D(f (t, φ(t), φ ′(t)), 0)}
� |t1 − t0|M for any t ∈ T.

Thus GB is equicontionuous and to prove that GB is totally bounded in En we have
for any fixed t ∈ T ,

D([Gφ](t), [Gφ](t1)) � MK|t − t1| for every t ∈ T and φ ∈ B.

Hence we see {[Gφ](t) : t ∈ T, φ ∈ B} is totally bounded in En .
By Ascoli’s Lemma we conclude that GB is a relatively compact subset of

C1(T, En) . Hence the proof of the Lemma is complete.

THEOREM 4.1. Suppose that f : T × En × En → En is continuous and suppose
there exists an M > 0 such that D(f (t, y, y′), 0) � M . Then the following initial value
problem

y′′(t) = f (t, y(t), y′(t)) (4.4)
y(a) = y1, y′(a) = m (4.5)

possesses at least one solution on the interval T .

Proof. We first note that φ ∈ C1(T, En) is a solution of (4.4), (4.5) if and only if
φ is a solution of the integral equation

y(t) = y1 + m(t − a) +
∫ t

a
(t − s)f (s, y(s), y′(s))ds. (4.6)

On the other hand if we set

y′ =z then

z′ =f (t, y, z) (4.7)
y(a) = y1, z(a) = m (4.8)
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φ is a solution of the initial value problem (4.7), (4.8) if and only if φ is a solution of
the integral equation

z(t) = m +
∫ t

a
f (s, y(s), z(s))ds. (4.9)

Now in the metric space (C1(T, En), H) consider the ball

B{φ ∈ C1(T, En) : H(φ, 0) � M1} where M1 = M(b − a)

then GB ⊂ B . For φ ∈ C1(T, En) ,

D([Gφ](t), [Gφ](a)) � |t − a| · M
� |b − a| · M.

Define 0̂ : T → En , 0̂(t) = 0̂ , t ∈ T . Then

H(Gx, G0̂) = sup
t∈T

{D([Gx](t), [G0̂](t))}.

Therefore, G is compact and hence it has a fixed point and this fixed point is a solution
of the initial value problem (4.7), (4.8).

THEOREM 4.2. Let f ∈ C[T × En × En, En] and satisfy

H[f (t, u, u′), f (t, v, v′)] � K · D[u, v] + L · D[u′, v′]

and assume that

α = K
(b − a)2

8
+ L

(b − a)
2

< 1.

Then the two-point fuzzy boundary value problem

y′′ =f (t, y, y′) (4.10)
y(a) = y1, y(b) = y2 (4.11)

has one and only one solution.

Proof. Consider the boundary value problem

y′′ = 0 (4.12)
y(a) = 0, y(b) = 0. (4.13)

This problem has no nontrivial solution. Therfore if h is any continuous function on
[a, b] , the equation y′′(t) = h(t) has a unique solution satisfying the boundary condition
(4.13) give by

y(t) =
∫ b

a
G(t, s)h(s)ds

where

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

(b − t)(s − a)
(b − a)

, a � s � t � b

(b − s)(s − a)
(b − a)

, a � t � s � b.
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It can be shown by elementary methods that

max
a�t�b

∫ b

a
|G(t, s)|ds � (b − a)2

8
(4.14)

and

max
a�t�b

∫ b

a
|Gt(t, s)|ds � (b − a)

2
. (4.15)

Let T = [a, b] and denote C1[T, En] as the set of all continuously differentiable
mappings from T to En . Define the metric

H(u, v) = max
a�t�b

KD(u(t), v(t)) + max
a�t�b

LD(u′(t), v′(t)).

Then (C1(T ×En, H)) is a complete metric space. Now for any Tu ∈ C1[T, En] define
T : C1 → C1 by

[Tu](t) =
∫ b

a
G(t, s)f (s, u(s), u′(s))ds (4.16)

Using the bounds on G and Gt given by (4.14) and (4.15) and the definition of Tu we
have

D(Tu(t), Tv(t)) �
∫ b

a
|G(t, s)|[KD(u(s), v(s)) + LD(u′(s), v′(s))]ds

�H(u, v)
∫ b

a
|G(t, s)|ds

�(b − a)2

8
H(u, v)

and

D(Tu′, Tv′) �
∫ b

a
|Gt(t, s)|[KD(u, v) + LD(u′, v′)]ds

�H(u, v)
∫ b

a
|Gt(t, s)ds

� (b − a)
2

H(u, v).

Together these imply that

H[Tu, Tv] �
[
K

(b − a)2

8
+ L

(b − a)
2

]
H(u, v)

�α · H(u, v)

where α = K · (b − a)2

8
+ L · (b − a)

2
< 1 .

We note that u ∈ C1[T, En] is a solution of the boundary value problem (4.10) and
(4.12) if and only if Tu = u . Thus u is a fixed point and this fixed point is the unique
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solution of (4.10), (4.12). However, it is desired to find a solution satisfying y(a) = y1 ,
y(b) = y2 . By applying the above procedure to the boundary value problem

y′′ =f (t, y + p(t), y′ + p′(t))
y(a) = 0, y(b) = 0

where p is a polynomial of degree one such that p(a) = y1 , p(b) = y2 , we get a
unique solution, say, y1(t) . Let y(t) = y1(t) + p(t) .

Then y′′(t) = y′′1 (t) = f (t, y1)(t)+p(t), (y1(t)+p(t)′) = f (t, y, y′) and y(a) = y1 ,
y(b) = y2 . This completes the proof of the theorem.

Similar results hold for n th order non-linear two-point boundary value problems.
In order to avoid monotony, we omit stating those results.
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