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INEQUALITIES ON TIME SCALES: A SURVEY

R. AGARWAL, M. BOHNER AND A. PETERSON

(communicated by S. Leela)

Abstract. The study of dynamic equations on time scales, which goes back to its founder Stefan
Hilger (1988), is an area of mathematics which is currently receiving considerable attention.
Although the basic aim of this is to unify the study of differential and difference equations, it also
extends these classical cases to cases “in between”. In this paper we present time scales versions
of the inequalities: Hölder, Cauchy-Schwarz, Minkowski, Jensen, Gronwall, Bernoulli, Bihari,
Opial, Wirtinger, and Lyapunov.

1. Unifying Continuous and Discrete Analysis

In 1988, Stefan Hilger [13] introduced the calculus on time scales which unifies
continuous and discrete analysis. A time scale is a closed subset of the real numbers.
We denote a time scale by the symbol T . For functions y defined on T , we introduce a
so-called delta derivative yΔ . This delta derivative is equal to y′ (the usual derivative) if
T = R is the set of all real numbers, and it is equal to Δy (the usual forward difference)
if T = Z is the set of all integers. Then we study dynamic equations

f (t, y, yΔ, yΔ
2

, . . . , yΔ
n
) = 0,

which may involve higher order derivatives as indicated. Along with such dynamic
equations we consider initial values and boundary conditions. We remark that these
dynamic equations are differential equations when T = R and difference equations
when T = Z . Other kinds of equations are covered by them as well, such as q -
difference equations, where

T = qZ := {qk| k ∈ Z} ∪ {0} for some q > 1

and difference equations with constant step size, where

T = hZ := {hk| k ∈ Z} for some h > 0.

Particularly useful for the discretization purpose are time scales of the form

T = {tk| k ∈ Z} where tk ∈ R, tk < tk+1 for all k ∈ Z.
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This survey paper is organized as follows: In Section 2we introduce the basic concepts of
the time scales calculus. Section 3 contains theCauchy-Schwarz,Hölder andMinkowski
inequalities, which can be proved by following the methods similar to those described
in [12], see also the paper of Bohner and Lutz [8]. In Section 4 we derive a time scale
version of Jensen’s inequality. The obtained inequality reduces to the classical Jensen
inequality in case T = R , and becomes the arithmetic-mean geometric-mean inequality
in case T = Z . Next, in Section 5 we state the Gronwall inequality, which is essentially
due to Hilger [13], and discuss its several interesting special cases. In particular, we shall
show that this inequality reduces to the well-known Bernoulli inequality in case T = Z .
A Bihari type inequality by Özgün, Kaymakçalan, and Zafer [16] is mentioned as well.
Following the lead of Bohner and Kaymakçalan [7] and Hilscher [15], in Section 6 we
obtain Opial and Wirtinger type inequalities. Finally, in Section 5 we present Lyapunov
type inequalities and give some of their applications. This supplements the recent work
of Bohner, Clark and Ridenhour [6].

2. The Time Scales Calculus

A time scale is a closed subset of the reals, and we usually denote it by the symbol
T . The two most popular examples are T = R and T = Z . We define the forward
and backward jump operators σ, ρ : T → T by

σ(t) = inf{s ∈ T| s > t} and ρ(t) = sup{s ∈ T| s < t}
(supplemented by inf ∅ = sup T and sup ∅ = inf T ). A point t ∈ T is called right-
scattered, right-dense, left-scattered, left-dense, if σ(t) > t , σ(t) = t , ρ(t) < t ,
ρ(t) = t holds, respectively. The set T

κ is defined to be T if T does not have a
left-scattered maximum; otherwise it is T without this left-scattered maximum. The
graininess μ : T → [0,∞) is defined by

μ(t) = σ(t) − t.

Hence the graininess function is constant 0 if T = R while it is constant 1 for T = Z .
However, a time scale T could have nonconstant graininess. Now, let f be a function
defined on T . We say that f is delta differentiable (or simply: differentiable) at t ∈ T

κ

provided there exists an α such that for all ε > 0 there is a neighborhood N of t
with

|f (σ(t)) − f (s) − α(σ(t) − s)| � ε|σ(t) − s| for all s ∈ N .

In this case we denote the α by f Δ(t) , and if f is differentiable for every t ∈ T
κ , then

f is said to be differentiable on T and f Δ is a new function defined on T
κ . If f is

differentiable at t ∈ T
κ , then it is easy to see that

f Δ(t) =

{
lims→t,s∈T

f (t)−f (s)
t−s if μ(t) = 0

f (σ(t))−f (t)
μ(t) if μ(t) > 0.

Other useful formulas are as follows:

f (σ(t)) = f (t) + μ(t)f Δ(t) (2.1)
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(f g)Δ(t) = f Δ(t)g(t) + f (σ(t))gΔ(t) (2.2)

(
f
g

)Δ

(t) =
f Δ(t)g(t) − f (t)gΔ(t)

g(t)g(σ(t))
. (2.3)

A function f defined on T is rd-continuous, if it is continuous at every right-dense
point and if the left-sided limit exists at every left-dense point. The importance of rd-
continuous functions is revealed by the following existence result by Hilger [13]: Every
rd-continuous function possesses an antiderivative. Here, F is called an antiderivative
of a function f defined on T if FΔ = f holds on T

κ . In this case we define an integral
by ∫ t

s
f (τ)Δτ = F(t) − F(s) where s, t ∈ T.

For further basic results about the time scales calculus we refer the reader to [1, 3, 5, 13].

3. Hölder’s Inequality

The following version of Hölder’s inequality on time scales appears in [8, Lemma
2.2 (iv)], and it’s proof is similar to that of the classical inequality as given e.g. in [12,
Theorem 188].

THEOREM 3.1. (Hölder’s Inequality) Let a, b ∈ T . For rd-continuous f , g :
[a, b] → R we have

∫ b

a
|f (t)g(t)|Δt �

{∫ b

a
|f (t)|pΔt

} 1
p
{∫ b

a
|g(t)|qΔt

} 1
q

,

where p > 1 and q = p/(p − 1) .

Proof. For nonnegative real numbers α and β , the basic inequality

α1/pβ1/q � α
p

+
β
q

(3.1)

holds. Now suppose, without loss of generality, that

{∫ b

a
|f (t)|pΔt

}{∫ b

a
|g(t)|qΔt

}
�= 0.

Apply (3.1) to

α(t) =
|f (t)|p∫ b

a |f (τ)|pΔτ
and β(t) =

|g(t)|q∫ b
a |g(τ)|qΔτ
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and integrate the obtained inequality between a and b (this is possible since all occur-
ring functions are rd-continuous) to find

∫ b

a

|f (t)|{∫ b
a |f (τ)|pΔτ

}1/p

|g(t)|{∫ b
a |g(τ)|qΔτ

}1/q
Δt =

∫ b

a
α1/p(t)β1/q(t)Δt

�
∫ b

a

{
α
p

+
β
q

}

=
∫ b

a

{
1
p

|f (t)|p∫ b
a |f (τ)|pΔτ

+
1
q

|g(t)|q∫ b
a |g(τ)|qΔτ

}
Δt

=
1
p

∫ b

a

{
|f (t)|p∫ b

a |f (τ)|pΔτ

}
Δt +

1
q

∫ b

a

{
|g(t)|q∫ b

a |g(τ)|qΔτ

}
Δt

=
1
p

+
1
q

= 1.

This directly yields Hölder’s inequality.

The special case p = q = 2 reduces to the Cauchy-Schwarz inequality.

THEOREM 3.2. (Cauchy-Schwarz Inequality) Let a, b ∈ T . For rd-continuous
f , g : [a, b] → R we have

∫ b

a
|f (t)g(t)|Δt �

√√√√{∫ b

a
|f (t)|2Δt

}{∫ b

a
|g(t)|2Δt

}
.

Next, we can use Hölder’s inequality to deduce Minkowski’s inequality.

THEOREM 3.3. (Minkowski’s Inequality) Let a, b ∈ T and p > 1 . For rd-
continuous f , g : [a, b] → R we have

{∫ b

a
|(f + g)(t)|pΔt

}1/p

�
{∫ b

a
|f (t)|pΔt

}1/p

+

{∫ b

a
|g(t)|pΔt

}1/p

.
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Proof. We apply Hölder’s inequality, Theorem 3.1, with q = p/(p − 1) to obtain

∫ b

a
|(f + g)(t)|pΔt =

∫ b

a
|(f + g)(t)|p−1|(f + g)(t)|Δt

�
∫ b

a
|f (t)||(f + g)(t)|p−1Δt +

∫ b

a
|g(t)||(f + g)(t)|p−1Δt

�
{∫ b

a
|f (t)|pΔt

}1/p{∫ b

a
|(f + g)(t)|(p−1)qΔt

}1/q

+

{∫ b

a
|g(t)|pΔt

}1/p{∫ b

a
|(f + g)(t)|(p−1)qΔt

}1/q

=

⎡
⎣
{∫ b

a
|f (t)|pΔt

}1/p

+

{∫ b

a
|g(t)|pΔt

}1/p
⎤
⎦
[∫ b

a
|(f + g)(t)|pΔt

]1/q

.

We divide both sides of the obtained inequality by
[∫ b

a |(f + g)(t)|pΔt
]1/q

to arrive at

Minkowski’s inequality.

4. Jensen’s Inequality

The proof of Jensen’s inequality on time scales follows closely the proof of the
classical Jensen’s inequality (see for example [11, Problem 3.42]). If T = R , then
our version is the same as the classical Jensen inequality. However, if T = Z , then it
reduces to the well-known arithmetic-mean geometric-mean inequality.

THEOREM 4.1. (Jensen’s Inequality) Let a, b ∈ T and c, d ∈ R . Suppose g :
[a, b] → (c, d) is rd-continuous and F : (c, d) → R is convex. Then

F

(∫ b
a g(t)Δt

b − a

)
�
∫ b

a F(g(t))Δt

b − a
.

Proof. Let x0 ∈ (c, d) . Then (e.g., by [11, p. 109]) there exists β ∈ R such that

F(x) − F(x0) � β(x − x0) for all x ∈ (c, d). (4.1)

Since g is rd-continuous,

x0 =

∫ b
a g(τ)Δτ
b − a

is well defined. F◦g is also rd-continuous, and hencewe may apply (4.1) with x = g(t)
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and integrate from a to b to obtain∫ b

a
F(g(t))Δt − (b − a)F

(∫ b
a g(τ)Δτ
b − a

)
=
∫ b

a
F(g(t))Δt − (b − a)F(x0)

=
∫ b

a
[F(g(t)) − F(x0)]

� β
∫ b

a
[g(t) − x0]Δt

= β

[∫ b

a
g(t)Δt − x0(b − a)

]

= 0.

This directly yields Jensen’s inequality.

EXAMPLE 4.1. Let T = R . Obviously, F = − log is convex and continuous on
(0,∞) , so we may apply Theorem 4.1 with a = 0 and b = 1 to obtain

log
∫ 1

0
g(t)dt �

∫ 1

0
log g(t)dt

and hence ∫ 1

0
g(t)dt � exp

[∫ 1

0
log g(t)dt

]

whenever g : [0, 1] → (0,∞) is continuous.

EXAMPLE 4.2. Let T = Z and N ∈ N . Again we apply Jensen’s inequality,
Theorem 4.1, with a = 1 , b = N + 1 , and g : {1, 2, . . . , N + 1} → (0,∞) to find

log

{
1
N

N∑
t=1

g(t)

}
= log

{
1
n

∫ N+1

1
g(t)Δt

}

� 1
N

∫ N+1

1
log g(t)Δt

=
1
N

N∑
t=1

log g(t)

= log

{
N∏

t=1

g(t)

}1/N

and hence

1
N

N∑
t=1

g(t) �
{

N∏
t=1

g(t)

}1/N

.

This is the well-known arithmetic-mean geometric-mean inequality.
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EXAMPLE 4.3. Let T = 2N0 and N ∈ N . We apply Theorem 4.1 with a = 1 ,
b = 2N , and g : {2k| 0 � k � N} → (0,∞) to find

log

{∑N−1
k=0 2kg(2k)
2N − 1

}
= log

⎧⎨
⎩
∫ 2N

1 g(t)Δt

2N − 1

⎫⎬
⎭

�
∫ 2N

1 log g(t)Δt

2N − 1

=
∑N−1

k=0 2k log g(2k)
2N − 1

=
∑N−1

k=0 log(g(2k))2k

2N − 1

=
log
{∏N−1

k=0 (g(2k))2k
}

2N − 1

= log

{
N−1∏
k=0

(g(2k))2k

}1/(2N−1)

and therefore ∑N−1
k=0 2kg(2k)
2N − 1

�
{

N−1∏
k=0

(g(2k))2k

}1/(2N−1)

.

5. Gronwall’s Inequality

DEFINITION 5.1. An rd-continuous function f is called regressive provided

1 + μ(t)f (t) �= 0 for all t ∈ T.

The set of all rd-continuous functions f that satisfy 1 + μ(t)f (t) > 0 for all t ∈ T

will be denoted by R+ .

The following existence theorem has been proved by Hilger, see [13].

THEOREM 5.1. Let t0 ∈ T . If p is rd-continuous and regressive, then

yΔ = p(t)y, y(t0) = 1

has a unique solution.

We call the unique solution from Theorem 5.1 the exponential function and denote
it by ep(·, t0) . In fact, there is an explicit formula for ep(t, s) , using the so-called
cylinder transformation

ξh(z) =
{ Log(1+hz)

z if h �= 0 (for z �= −1/h)
z if h = 0.
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The formula, see [14], reads

ep(t, s) = exp

{∫ t

s
ξμ(τ)(p(τ))Δτ

}
.

We now proceed to give some fundamental properties of the exponential function. To
do so it is necessary to introduce the following notation: For regressive p, q : T → R

we define

p ⊕ q := p + q + μpq, 
p := − p
1 + μp

, p 
 q := p ⊕ (
p).

Note that the set of all regressive and rd-continuous functions together with the addition
⊕ is an Abelian group.

THEOREM 5.2. Assume p, q : T → R are regressive and rd-continuous, then the
following hold:

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1 ;
(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s) ;
(iii) 1

ep(t,s) = e�p(t, s) ;

(iv) ep(t, s) = 1
ep(s,t) = e�p(s, t) ;

(v) ep(t, s)ep(s, r) = ep(t, r) ;
(vi) ep(t, s)eq(t, s) = ep⊕q(t, s) ;

(vii) ep(t,s)
eq(t,s) = ep�q(t, s) .

Next we note the following result from [9].

THEOREM 5.3. If p and f are rd-continuous and p is regressive, then the unique
solution of the initial value problem

yΔ = p(t)y + f (t), y(t0) = y0

is given by

y(t) = y0ep(t, t0) +
∫ t

t0

ep(t,σ(τ))f (τ)Δτ.

A comparison theorem follows.

THEOREM 5.4. Let y and f be rd-continuous and p ∈ R+ . Then

yΔ(t) � p(t)y(t) + f (t) for all t ∈ T

implies

y(t) � y(a)ep(t, a) +
∫ t

a
ep(t,σ(τ))f (τ)Δτ for all t ∈ T.
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Proof. Note that p ∈ R+ implies 1 + μ(t)p(t) > 0 and hence ep > 0 . Now

[ye�p(·, a)]Δ(t) = yΔ(t)e�p(σ(t), a) + y(t)(
p)(t)e�p(t, a)

= yΔ(t)[1 + μ(t)(
p)(t)]e�p(t, a) + y(t)(
p)(t)e�p(t, a)

=
[
yΔ(t)

1
1 + μ(t)p(t)

− p(t)
1 + μ(t)p(t)

y(t)
]

e�p(t, a)

= [yΔ(t) − p(t)y(t)]
e�p(t, a)

1 + μ(t)p(t)

= [yΔ(t) − p(t)y(t)]e�p(σ(t), a).

Therefore

y(t)e�p(t, a) − y(a) =
∫ t

a
[yΔ(τ) − p(τ)y(τ)]e�p(σ(τ), a)Δτ

�
∫ t

a
f (τ)e�p(σ(τ), a)Δτ

=
∫ t

a
ep(a,σ(τ))f (τ)Δτ

and hence the assertion follows by applying Theorem 5.2.

The above comparison Theorem 5.4 gives the following interesting results.

THEOREM 5.5. (Bernoulli’s Inequality) Let α ∈ R with α ∈ R+ . Then

eα(t, s) � 1 + α(t − s) for all t, s ∈ T with t � s.

Proof. Since α ∈ R+ , we have eα(t, s) > 0 for all t, s ∈ T . Suppose t � s .
Let y(t) = α(t − s) . Then

αy(t) + α = α2(t − s) + α � α = yΔ(t).

Since y(s) = 0 , we have by Theorem 5.4

y(t) �
∫ t

s
eα(t,σ(τ))αΔτ = −1 + eα(t, s)

so that eα(t, s) � 1 + α(t − s) follows.

THEOREM 5.6. (Gronwall’s Inequality) Let y and f be rd-continuous and p ∈
R+ , p � 0 . Then

y(t) � f (t) +
∫ t

a
y(τ)p(τ)Δτ for all t ∈ T

implies

y(t) � f (t) +
∫ t

a
ep(t,σ(τ))f (τ)p(τ)Δτ for all t ∈ T.
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Proof. Define

z(t) =
∫ t

a
y(τ)p(τ)Δτ.

Then z(a) = 0 and

zΔ(t) = y(t)p(t) � [f (t) + z(t)]p(t) = p(t)z(t) + p(t)f (t).

By Theorem 5.4,

z(t) �
∫ t

a
ep(t,σ(τ))f (τ)p(τ)Δτ,

and hence the claim follows because of y(t) � f (t) + z(t) .

If we take T = hZ and a = 0 in Gronwall’s inequality we get the following.

EXAMPLE 5.1. If T = hZ and y is a function on [0,∞) and b > 0 is a constant
such that

y(t) � c(t) + b

t
h−1∑
k=0

y(kh)

for t ∈ T , then

y(t) � c(t) + b

t
h−1∑
k=0

c(kh)(1 + bh)
t−h(k+1)

h .

If we let h = 1 in the above example we get the following.

EXAMPLE 5.2. Assume {yn}∞n=0 is a sequence of real numbers and b > 0 is a
constant such that

yn � cn + b
n−1∑
k=0

y(k)

for n ∈ N0 , then it follows that

yn � cn + b
n−1∑
k=0

ck(1 + b)n−k−1.

COROLLARY 5.1. Let y be rd-continuous and p ∈ R+ with p � 0 . Then

y(t) �
∫ t

a
y(τ)p(τ)Δτ for all t ∈ T

implies
y(t) � 0 for all t ∈ T.

Proof. This is Theorem 5.6 with f (t) ≡ 0 .
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COROLLARY 5.2. Let y be rd-continuous and α, β , γ ∈ R with γ > 0 . Then

y(t) � α(t − a) + β + γ
∫ t

a
y(τ)Δτ for all t ∈ T

implies

y(t) �
(
α
γ

+ β
)

eγ (t, a) − α
γ

.

Proof. In Theorem 5.6, let f (t) = α(t − a) + β and p(t) ≡ γ . Then

y(t) � f (t) +
∫ t

a
ep(t,σ(τ))f (τ)p(τ)Δτ

= α(t − a) + β + γ
∫ t

a
eγ (t,σ(τ))[α(τ − a) + β ]Δτ.

To proceed we observe that for

w(τ) = −eγ (t, τ)
γ

we have

wΔ(τ) = − 1
γ

(
γ )(τ)e�γ (τ, t)

=
1

1 + μ(τ)γ
e�γ (τ, t)

= [1 + μ(τ)(
γ )(τ)]e�γ (τ, t)
= e�γ (σ(τ), t) = eγ (t,σ(τ)).

Hence ∫ t

a
eγ (t,σ(τ))[α(τ − a) + β ]Δτ =

∫ t

a
wΔ(τ)[α(τ − a) + β ]Δτ

=
∫ t

a

{
[w(τ)(α(τ − a) + β)]Δ − αw(σ(τ))

}
Δτ

= w(t)[α(t − a) + β ] − w(a)β − α
∫ t

a
w(σ(τ))Δτ

= − 1
γ

[α(t − a) + β ] +
β
γ

eγ (t, a) +
α
γ

∫ t

a
eγ (t,σ(τ))Δτ

= − 1
γ

[α(t − a) + β ] +
β
γ

eγ (t, a) +
α
γ

∫ t

a
wΔ(τ)Δτ

= − 1
γ

[α(t − a) + β ] +
β
γ

eγ (t, a) +
α
γ

w(t) − w(a)
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so that

y(t) � α(t − a) + β − [α(t − a) + β ] + βeγ (t, a) − α
γ

+
α
γ

eγ (t, a)

=
(
α
γ

+ β
)

eγ (t, a) − α
γ

shows the correctness of our claim.

We conclude this section with a Bihari type inequality from [16]. To prove this
inequality, we need the following comparison result, whose proof can be found in [16,
Theorem 3.1].

THEOREM 5.7. Let h : T × R → R be continuous and nondecreasing in the
second variable. Suppose v and w satisfy the dynamic inequalities

vΔ � h(t, v) and wΔ � h(t, w).

Then v(t0) � w(t0) for some t0 ∈ T implies v(t) � w(t) for all t ∈ T .

The Bihari type inequality, see [16, Theorem 4.2], now reads as follows.

THEOREM 5.8. (Bihari’s Inequality) Suppose that g is continuous and nonde-
creasing, p is rd-continuous and nonnegative, and y is rd-continuous. Let w be the
solution of

wΔ = p(t)g(w), w(a) = β
and suppose there is a bijective function G with (G ◦ w)Δ = p . Then

y(t) � β +
∫ t

a
p(τ)g(y(τ))Δτ for all t ∈ T

implies

y(t) � G−1

[
G(β) +

∫ t

a
p(τ)Δτ

]
for all t ∈ T.

Proof. We denote

v(t) = β +
∫ t

a
p(τ)g(y(τ))Δτ.

Then v satisfies
vΔ(t) = p(t)g(y(t)), v(a) = β .

Since p(t) � 0 and y(t) � v(t) , the monotonicity of g implies

vΔ(t) = p(t)g(y(t)) � p(t)g(v(t)),

and so v satisfies
vΔ � p(t)g(v), v(a) = β .

Therefore, by Theorem 5.7, v(t) � w(t) . Next,

G(w(t)) − G(β) = (G ◦ w)(t) − (G ◦ w)(a) =
∫ t

a
(G ◦ w)Δ(τ)Δτ =

∫ t

a
p(τ)Δτ
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so that

w(t) = G−1

[
G(β) +

∫ t

a
p(τ)Δτ

]
.

But y(t) � v(t) � w(t) now shows the correctness of our claim.

6. Opial’s Inequality

Opial inequalities and many of their generalizations have various applications in
the theories of differential and difference equations. This is very nicely illustrated in the
book [4] “Opial Inequalitieswith Applications in Differential and DifferenceEquations”
by Agarwal and Pang, which is the only book devoted solely to continuous and discrete
versions of Opial inequalities. In this section, following [7], we present several Opial
inequalities that are valid on time scales. Throughout we assume 0 ∈ T and let h ∈ T

with h > 0 .
We will need two simple consequences of the product rule: First,

(f 2)Δ = (f · f )Δ = f Δf + f σ f Δ = (f + f σ)f Δ, (6.1)

and in general, one can use mathematical induction to prove the formula

(f l+1)Δ =

{
l∑

k=0

f k(f σ)l−k

}
f Δ, l ∈ N. (6.2)

THEOREM 6.1. (Opial’s Inequality) For a differentiable x : [0, h] ∩ T → R with
x(0) = 0 we have ∫ h

0
|(x + xσ)xΔ|(t)Δt � h

∫ h

0
|xΔ|2(t)Δt,

with equality when x(t) = ct .

Proof. Consider

y(t) =
∫ t

0
|xΔ(s)|Δs.

Then we have yΔ = |xΔ| and |x| � y so that

∫ h

0
|(x + xσ)xΔ|(t)Δt �

∫ h

0
[(|x| + |xσ |)|xΔ|](t)Δt

�
∫ h

0
[(y + yσ)|xΔ|](t)Δt

=
∫ h

0
[(y + yσ)yΔ](t)Δt

=
∫ h

0
(y2)Δ(t)Δt
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= y2(h) − y2(0)

=

{∫ h

0
|xΔ(t)|Δt

}2

� h
∫ h

0
|xΔ|2(t)Δt,

where we have used formula (6.1) and Theorem 3.1 for p = 1/2 .
Now, let x̃(t) = ct for some c ∈ R . Then x̃Δ(t) ≡ c , and it is easy to check that

the equation ∫ h

0
|(x̃ + x̃σ)x̃Δ|(t)Δt = h

∫ h

0
|x̃Δ|2(t)Δt

holds.

We next state a generalization of Theorem 6.3 where x(0) need not be equal to 0 .

THEOREM 6.2. Let x : [0, h] ∩ T → R be differentiable. Then

∫ h

0
|(x + xσ)xΔ|(t)Δt � α

∫ h

0
|xΔ(t)|2Δt + 2β

∫ h

0
|xΔ(t)|Δt,

where
α ∈ T with dist(h/2,α) = dist(h/2, T) (6.3)

and β = max{|x(0)|, |x(h)|} .

A consequence of Theorem 6.2 is the following result.

THEOREM 6.3. Let x : [0, h] ∩ T → R be differentiable with x(0) = x(h) = 0 .
Then ∫ h

0
|(x + xσ)xΔ|(t)Δt � α

∫ h

0
|xΔ(t)|2Δt,

where α is given in (6.3).

Now we offer some of the possible generalizations of the inequalities presented
above. The continuous and/or discrete versions of these results may be found in [4].
We have not included all of such results, but most of them may be proved by using
similar techniques as the ones presented in this section.

THEOREM 6.4. (see [4, Theorem 2.5.1]) Let p , q be positive and continuous on

[0, h] ,
∫ h

0 Δt/p(t) < ∞ , and q nonincreasing. For a differentiable x : [0, h] ∩ T → R

with x(0) = 0 we have

∫ h

0
[qσ |(x + xσ)xΔ|](t)Δt �

{∫ h

0

Δt
p(t)

}{∫ h

0
p(t)q(t)|xΔ(t)|2Δt

}
.
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THEOREM 6.5. (see [4, Chapter 3]) Suppose l, n ∈ N . For n -times differentiable

x : [0, h] ∩ T → R with x(0) = xΔ(0) = . . . = xΔ
n−1

(0) = 0 we have

∫ h

0

∣∣∣∣∣
{

l∑
k=0

xk(xσ)l−k

}
xΔ

n

∣∣∣∣∣ (t)Δt � hln
∫ h

0

∣∣∣xΔn
(t)
∣∣∣l+1

Δt.

THEOREM 6.6. (see [4, Theorem 3.2.1]) Suppose n ∈ N . For n -times differen-

tiable x : [0, h] ∩ T → R with x(0) = xΔ(0) = . . . = xΔ
n−1

(0) = 0 we have

∫ h

0
|(x + xσ)xΔ

n |(t)Δt � hn
∫ h

0

∣∣∣xΔn
(t)
∣∣∣2 Δt.

THEOREM 6.7. (see [4, Theorem 2.3.1]) Suppose l ∈ N . For a differentiable
x : [0, h] ∩ T → R with x(0) = 0 we have

∫ h

0

∣∣∣∣∣
{

l∑
k=0

xk(xσ)l−k

}
xΔ
∣∣∣∣∣ (t)Δt � hl

∫ h

0

∣∣xΔ(t)∣∣l+1 Δt.

We conclude this section with a Wirtinger type inequality from [15].

THEOREM 6.8. (Wirtinger’s Inequality) Let M be positive and strictly monotone
such that MΔ exists and is rd-continuous. Then we have

∫ b

a
|MΔ(t)|(yσ (t))2Δt � Ψ

∫ b

a

M(t)Mσ (t)
|MΔ(t)| (yΔ(t))2Δt

for any y with y(a) = y(b) = 0 and such that yΔ exists and is rd-continuous, where

Ψ =

⎧⎨
⎩
(

sup
t∈[a,b]∩T

M(t)
Mσ(t)

) 1
2

+

[(
sup

t∈[a,b]∩T

μ(t)|MΔ(t)|
Mσ(t)

)
+

(
sup

t∈[a,b]∩T

M(t)
Mσ(t)

)] 1
2

⎫⎬
⎭

2

.

Proof. For convenience we skip the argument (t) in this proof. Let

A =
∫ b

a
|MΔ|(yσ)2Δt, B =

∫ b

a

MMσ

|MΔ| (yΔ)2Δt,

α =

(
sup

t∈[a,b]∩T

M(t)
Mσ(t)

) 1
2

, β =

(
sup

t∈[a,b]∩T

μ(t)|MΔ(t)|
Mσ(t)

)
.
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Without loss of generality we assume that MΔ is of positive sign. Then we apply the
Cauchy-Schwarz inequality, Theorem 3.2, to estimate

A =
∫ b

a
MΔ(yσ)2Δt

=
∫ b

a

[
(My2)Δ − MyΔ(y + yσ)

]
Δt

= −
∫ b

a
MyΔ(y + yσ)Δt

�
∫ b

a
M|yΔ||y + yσ |Δt

=
∫ b

a
M|yΔ||2yσ − μyΔ|Δt

� 2
∫ b

a
M|yΔ||yσ |Δt +

∫ b

a
μM(yΔ)2Δt

= 2
∫ b

a

√
MMσ

|MΔ| |y
Δ|
√

M
Mσ |MΔ||yσ |Δt +

∫ b

a

μMΔ

Mσ
MMσ

|MΔ| (yΔ)2Δt

� 2

{∫ b

a

MMσ

|MΔ| (yΔ)2Δt

} 1
2
{∫ b

a

M
Mσ |MΔ|(yσ)2Δt

} 1
2

+ βB

� 2α
√

AB + βB.

Therefore, by denoting C =
√

A/B , we find that C2 − 2αC − β � 0 , and solving for
C � 0 we obtain

C2 � (α +
√
α2 + β)2 = Ψ

so that the proof is complete.

EXAMPLE 6.1. Let a > 0 and

Ψ =

⎧⎨
⎩
(

sup
t∈[a,b]∩T

σ(t)
t

) 1
2

+

[(
sup

t∈[a,b]∩T

μ(t)
t

)
+

(
sup

t∈[a,b]∩T

σ(t)
t

)] 1
2

⎫⎬
⎭

2

.

Then ∫ b

a
(yΔ(t))2Δt � 1

Ψ

∫ b

a

(yσ(t))2

tσ(t)
Δt. (6.4)

To show this we remark that M(t) = 1
t satisfies the assumptions of Theorem 6.8, and

M(σ(t)) − M(s)
σ(t) − s

=
1/σ(t) − 1/s
σ(t) − s

=
(s − σ(t))/(sσ(t))

σ(t) − s
= − 1

sσ(t)

implies

MΔ(t) = − 1
tσ(t)

.
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Therefore

M(t)
Mσ(t)

=
σ(t)

t
,

μ(t)|MΔ(t)|
Mσ(t)

=
μ(t)

t
, and

M(t)Mσ (t)
|MΔ(t)| = 1,

and (6.4) follows from Theorem 6.8.

As an application of Theorem 6.8 and Example 6.1 we now state a sufficient
criterion for nonoscillation of a certain second order dynamic equation, see [15, Theorem
3].

THEOREM 6.9. Let N ∈ T and define

ΨN =

⎧⎨
⎩
(

sup
t�N,t∈T

σ(t)
t

) 1
2

+

[(
sup

t�N,t∈T

μ(t)
t

)
+

(
sup

t�N,t∈T

σ(t)
t

)] 1
2

⎫⎬
⎭

2

.

If
0 < lim sup

N→∞
ΨN = Ψ < ∞,

then the equation

yΔΔ +
λ

tσ(t)
yσ = 0

is nonoscillatory for all λ < 1
Ψ .

7. Lyapunov’s Inequality

Lyapunov inequalities have proved to be very useful in oscillation theory, disconju-
gacy, eigenvalue problems, and numerous other applications in the theory of differential
and difference equations. A nice summary of continuous and discrete Lyapunov in-
equalities and their applications can be found in the survey paper [10] by Chen. In
this section we present several versions of Lyapunov inequalities on time scales. The
established results supplement those presented in [6]. Throughout we assume a, b ∈ T

with a < b .
We let T ⊂ R be any time scale, p : T → R be rd-continuous with p(t) > 0

for all t ∈ T , and consider the Sturm-Liouville dynamic equation together with the
quadratic functional

F (x) =
∫ b

a

{
(xΔ)2 − p(xσ)2

}
(t)Δt.

To prove a Lyapunov inequality for

xΔ
2

+ p(t)xσ = 0 (7.1)

we need the following auxiliary results.
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LEMMA 7.1. If x solves (7.1) and F (y) is defined, then

F (y) − F (x) = F (y − x) + 2(y − x)(b)xΔ(b) − 2(y − x)(a)xΔ(a).

Proof. Under the above assumptions we find

F (y) − F (x) − F (y − x) =
∫ b

a

{
(yΔ)2 − p(yσ)2 − (xΔ)2 + p(xσ)2

−(yΔ − xΔ)2 + p(yσ − xσ)2
}

(t)Δt

=
∫ b

a

{
(yΔ)2 − p(yσ)2 − (xΔ)2 + p(xσ)2 − (yΔ)2 + 2yΔxΔ − (xΔ)2

+p(yσ)2 − 2pyσxσ + p(xσ)2
}

(t)Δt

= 2
∫ b

a

{
yΔxΔ − pyσxσ + p(xσ)2 − (xΔ)2

}
(t)Δt

= 2
∫ b

a

{
yΔxΔ + yσxΔ

2 − xσxΔ
2 − (xΔ)2

}
(t)Δt

= 2
∫ b

a

{
yxΔ − xxΔ

}Δ Δt

= 2
∫ b

a

{
(y − x)xΔ

}Δ Δt

= 2(y(b) − x(b))xΔ(b) − 2(y(a) − x(a))xΔ(a),

where we have used the product rule (2.2).

LEMMA 7.2. If F (y) is defined, then for any r, s ∈ T with a � r < s � b∫ s

r
(yΔ(t))2Δt � (y(s) − y(r))2

s − r
.

Proof. Under the above assumptions we define

x(t) =
y(s) − y(r)

s − r
t +

sy(r) − ry(s)
s − r

.

We then have

x(r) = y(r), x(s) = y(s), xΔ(t) =
y(s) − y(r)

s − r
, and xΔ

2

(t) = 0.

Hence x solves the special Sturm-Liouville equation (7.1) where p = 0 and therefore
we may apply Lemma 7.1 to F0 defined by

F0(x) =
∫ s

r
(xΔ)2(t)Δt
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to find

F0(y) = F0(x) + F0(y − x) + (y − x)(s)xΔ(s) − (y − x)(r)xΔ(r)
= F0(x) + F0(y − x)
� F0(x)

=
∫ s

r

{
y(s) − y(r)

s − r

}2

Δt

=
(y(s) − y(r))2

s − r
,

and this proves our claim.

Using Lemma 7.2, we can now prove one of the main results of this section, a
Lyapunov inequality for Sturm-Liouville dynamic equations of the form (7.1).

THEOREM 7.1. (Lyapunov’s Inequality) Let p : T → R+ be positive-valued and
rd-continuous. If the Sturm-Liouville dynamic equation (7.1) has a nontrivial solution
x with x(a) = x(b) = 0 , then the Lyapunov inequality

∫ b

a
p(t)Δt � b − a

f (d)
, (7.2)

holds, where f : T → R is defined by f (t) = (t − a)(b − t) , and d ∈ T is such that

∣∣∣∣a + b
2

− d

∣∣∣∣ = min

{∣∣∣∣a + b
2

− s

∣∣∣∣ : s ∈ [a, b] ∩ T

}
.

Proof. Suppose x is a solution of (7.1) with x(a) = x(b) = 0 . Then we have
from Lemma 7.1 (with y = 0 ) that

F (x) =
∫ b

a

{
(xΔ)2 − p(xσ)2

}
(t)Δt = 0.

Since x is nontrivial, we find that M defined by

M = max
{
x2(t) : t ∈ [a, b]

}
(7.3)

is positive. We now let c ∈ [a, b] to be such that x2(c) = M . Applying the above as
well as Lemma 7.2 twice (once with r = a and s = c , and a second time with r = c



554 R. AGARWAL, M. BOHNER AND A. PETERSON

and s = b ) we find

M
∫ b

a
p(t)Δt �

∫ b

a

{
p(xσ)2

}
(t)Δt

=
∫ b

a
(xΔ)2(t)Δt =

∫ c

a
(xΔ)2(t)Δt +

∫ b

c
(xΔ)2(t)Δt

� (x(c) − x(a))2

c − a
+

(x(b) − x(c))2

b − c

= x2(c)
{

1
c − a

+
1

b − c

}

= M
b − a
f (c)

� M
b − a
f (d)

,

where the last inequality holds because of f (d) = max {f (t) : t ∈ [a, b]} . Hence,
dividing by M > 0 yields the desired inequality.

EXAMPLE 7.1. We shall discuss the two classical cases T = R and T = Z .
(i) If T = R , then

min

{∣∣∣∣a + b
2

− s

∣∣∣∣ : s ∈ [a, b]
}

= 0 so that d =
a + b

2
.

Hence f (d) = (b−a)2

4 and the Lyapunov inequality from Theorem 7.1 reads∫ b

a
p(t)dt � 4

b − a
.

(ii) If T = Z , then we consider two cases. First, if a + b is even, then

min

{∣∣∣∣a + b
2

− s

∣∣∣∣ : s ∈ [a, b]
}

= 0 so that d =
a + b

2
.

Hence f (d) = (b−a)2

4 and the Lyapunov inequality reads

b−1∑
t=a

p(t) � 4
b − a

.

If a + b is odd, then

min

{∣∣∣∣a + b
2

− s

∣∣∣∣ : s ∈ [a, b]
}

=
1
2

so that d =
a + b − 1

2
.

This time we have f (d) = (b−a)2−1
4 and the Lyapunov inequality reads

b−1∑
t=a

p(t) � 4
b − a

{
1

1 − 1
(b−a)2

}
.

As an application of Theorem 7.1 we now state a sufficient criterion for disconju-
gacy of (7.1), see [6, Theorem 3.6] and also [2].
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THEOREM 7.2. (Sufficient Condition for Disconjugacy of (7.1)) If p satisfies∫ b

a
p(t)Δt <

b − a
f (d)

, (7.4)

then (7.1) is disconjugate on [a, b] .

REMARK 7.1. Note that in both conditions (7.2) and (7.4) we could replace
b − a
f (d)

by
4

b − a
, and Theorems 7.1 and 7.2 would remain true. This is because for a � c � b

we have

1
c − a

+
1

b − c
=

(a + b − 2c)2

(b − a)(c − a)(b − c)
+

4
b − a

� 4
b − a

.

In the remainder of this section we present corresponding results for the linear
Hamiltonian dynamic system

xΔ = A(t)xσ + B(t)u, uΔ = −C(t)x − A∗(t)u (7.5)

where A , B , and C are rd-continuous n × n -matrix-valued functions on T such that
I − μ(t)A(t) is invertible and B(t) and C(t) are positive semidefinite for all t ∈ T .
The corresponding quadratic functional is given by

F (x, u) =
∫ b

a
{u∗Bu − (xσ)∗Cxσ} (t)Δt.

We denote by W(·, r) the unique solution of the initial value problem

WΔ = −A∗(t)W, W(r) = I,

where r ∈ [a, b] is given, i.e., W(t, r) = e−A∗(t, r) . Note that W exists due to our
assumption on the invertibility of I−μA . Observe that W(t, r) ≡ I provided A(t) ≡ 0 .
Finally, let

F(s, r) =
∫ s

r
W∗(t, r)B(t)W(t, r)Δt.

THEOREM 7.3. (Lyapunov’s Inequality) Assume (7.5) has a solution (x, u) such
that x is nontrivial and satisfies x(a) = x(b) = 0 . With W and F as above, suppose
that F(b, c) and F(c, a) are invertible, where ||x(c)|| = maxt∈[a,b]∩T ||x(t)|| . Let λ
be the largest eigenvalue of

F =
∫ b

a
W∗(t, c)B(t)W(t, c)Δt,

and let ν(t) be the largest eigenvalue of C(t) . Then the Lyapunov inequality∫ b

a
ν(t)Δt � 4

λ

holds.
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REMARK 7.2. If A ≡ 0 , then W ≡ I and F =
∫ b

a B(t)Δt . If, in addition B ≡ 1 ,

then F = b − a . Note how the Lyapunov inequality
∫ b

a ν(t)Δt � 4
λ reduces to∫ b

a p(t)Δt � 4
b−a for the scalar case as discussed earlier in this section.

It is possible to provide a slightly better bound than the one given in Theorem
7.3, similarly as in Theorem 7.1, but we shall not do so here. Instead we now give a
disconjugacy criterion for the system (7.5) whose proof is similar to that of Theorem
7.2.

THEOREM 7.4. (Sufficient Condition for Disconjugacy of (7.5)) Using notation
from Theorem 7.3, if ∫ b

a
ν(t)Δt <

4
λ

,

then (7.5) is disconjugate on [a, b] .

We conclude this section with a result concerning so-called right-focal boundary
conditions, i.e., x(a) = u(b) = 0 .

THEOREM 7.5. Assume (7.5) has a solution (x, u) with x nontrivial and x(a) =
u(b) = 0 . With the notation as in Theorem 7.3, the Lyapunov inequality∫ b

a
ν(t)Δt � 1

λ

holds.
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