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Abstract. This paper is a continuation of [4] and extends the well-known theorem of C. Miranda
(Ann. Mat. Pura Appl. (4) 61 (1963)) concerning a priori estimates of weak solutions of linear
elliptic equations with discontinuous coefficients in a bounded open subset of R". In [4] we
derive such estimates in weighted spaces considered over an arbitrary open subset of R". In
this paper we obtain the same result replacing a condition on the coefficients by a considerably
weaker one.

1. Introduction

Let Q be an open subset of R". In Q we consider the Dirichlet problem

Lu=f, few'2(Q),
we W2(Q),

where L is the second order linear differential operator in divergence form

n n

Lu= —Z(a,-juxi)xj—i—Zbiuxi—i—cu (1.2)

ij=1 i=1

with real and measurable coefficients.

It is well-known (see [10]) that, if n > 3, Q is bounded, L is uniformly elliptic,
a; € L®(Q), b € L'(Q), ¢ € L"*(Q), ¢ > co, ¢y € Ry, then the problem (1.1) is
uniquely solvable. Moreover, if f € L>(Q), the solution u belongs to L>(€2) and
verifies the estimate

ull oo (@) < o If [loo (@) - (1.3)

In a recent paper (see [4]) an a priori estimate of type (1.3) is given in weighted spaces
for n > 2 and Q not necessarily bounded.
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More precisely, denoting by p a function in the class </ (Q) defined in Section
2 and by W!(Q), W-!(Q), s € R, some weighted Sobolev spaces, where the weight

—S8

functions are suitable powers of p (see Section 2), in [4] we study the Dirichlet problem
{ Lu=f, feW-X(Q),

o (1.4)
uc whQ)

under the following assumptions:
0) p isafunction in the class .7 (Q) which goes to zero near to a subset of 9Q and
at infinity;
1) there exists an open subset Q* of R" with the uniform C'-regularity property
such that Q C Q* and 0Q\S, C 0Q*, where S, is the subset of OQ on which
p goes to zero;

2) a; € L (Q), (@ij)x, € L, 1(Q), Ljyh=1,..n,
JveRr, Za,-jéiéj>vpzs|§\2 VEER", ae.in Q,
ij=1
° o . 2
bi € K%,,,,(Q) N L%, (Q), i=1,..,n, ce K(i/zwz(g) 5
Jeg €Ry 1 c=cop™T? ae. in Q,

where the previous weighted spaces are defined in Section 2, s € R and
g>2 if n=2, g=n if n>=23;

3) p is such that its regularization verifies a suitable condition (see hypothesis &3) ).
If f € L2 (Q) N L>(Q), then it is shown that any solution of problem (1.4)
belongs to L$°(Q) and there exists po > 2 such that for any p > po,

[Jull ,(Q) sc ‘VHL{S(Q) ) (L5)

P

where the constant ¢ depends only on p, p, s, co.

In this paper we still consider problem (1.4) with the hypotheses 0), 1), 3) un-
changed, but condition 2) is weakened in a considerable way. More precisely, we
remove the requirement of the existence of derivatives (a;)y, and the assumption
bi € L%, (Q).

We obtain the following result: the problem (1.4) is uniquely solvable and the
solution u verifies the estimate

lelhwgi@y < 1l 10y (16)

where the variables on which c; depends are stated. Furthermore, if f € L? (Q) N
L>,(Q), then there exists py > 2 such that for any p > py the solution u € I ,(Q)

P
and verifies the bound (1.5). We also state the variables on which py depends.

To prove the result, we will need to extend methods introduced in [10], and we
will use the theorem stated in [4]. In particular, it is necessary to introduce a variant of
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o
a modulus of continuity of a function g € K? |

operator

(Q) and to study the multiplication

u—gu

from W!(Q) into L*(Q) (see Lemmas 3.1 and 3.2).

2. Notations

If A is a Lebesgue measurable subset of R", we denote by Z(A) the class of
restrictions to A of functions { € C§°(R") with supp{NA C A.

If p € [1,+00], we denote by L} (A) the class of functions f : A — C such that
{f eLP(A) forall { € P(A). We set

I lpa = If llra) -
Let B(x,r), x € R", r € R, , be the open ball centered in x of radius r.
Let Q be an open subset of R", n > 2. We denote by &/ (Q) the class of
measurable functions p : Q — R, such that

Y 'o() <plx) <vp(y) VyeQ, VxeQnB(yp®)). (2.1)

where y € R, is independent of x and y.
If p € & (Q), we put

S, ={z€0Q : limp(x) = 0} . (2.2)

X—2Z

It is known that S, is a closed subset in O (see [6]) and that if S, # @ it results
p(x) < dist (x,S,) VxeQ

(see [14]).
It is well-known (see, e.g., Theor. 2, Chap. VI in [12] and Lemma 3.6.1 in [16])
that there exist o € C>°(Q) N C*(Q), ¢1,¢2 € R, such that

cpdist (x,5,) < a(x) < cpdist (x, Sp) VxeQ.

We put
Q={xeQ: x| <k, a(x)>1/k} VkeN.

If f € P(R,) is a fixed function satisfying
0<f<1l, f(=1if t<1/2, f(@)=0 if t>1,
we define the functions
Wi xeQ— (1 ff(ka(x)))f(|x|/2k) . keN.
Note that, for any k € N, y; belongs to 2(Q\S,) and

O0<y <1, Wk|§k:1, supp Wi C Q.
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If p e & (Q), then

pELnQ), p~t € LR (Q\S,) (2.3)

(see [14], [6]).
For some examples and properties of functions of <7 (Q) we refer to [14], [2], [6].
If re N, pe[l,+o0], s € R and p € &/(Q), then W;”(Q) is the space of
distributions u on Q such that p**1*I=" 9% € [7(Q) for |a| < r, equipped with the

norm
HMHW:P(Q) = Z |ps+‘lX|*i’aau‘p7Q-

la|<r

We denote by I;)Vf’p (Q) the closure of C3°(Q) in W (Q) and set

ZQ) =W Q),  WI(Q)=W2AQ), WI(Q)=W3Q).

s

Moreover, W~ (Q) means the space of distributions f on Q, which can be represented
in the form

f :fO_Z(fi)xi ) fO €L27s+1(9)> fi ELav(Q)> i= 17"'7”7 (24)
i=1

equipped with the norm

1l = 0t (ol o0+ 3 Wil )
i=1

where the “inf” is taken over all possible representations of f of type (2.4). We observe
that, by the well-known results (see, e.g., [15]), the space W~!(Q) can be identified

with the dual space (V%/bl (Q))" of XSV} (Q).
For some properties of weighted Sobolev spaces, where the weight functions are
powers of a function p € &/ (Q), see, e.g., [1], [8], [11], [9], [13], [15], [2]. [3], [6]-
If pe[l,400[, s € R and p € &7 (Q), we put

Qx)=Qn B(x,p(x)) VxeQ, (2.5)
and consider the spaces K} (Q), IO(IY7 (Q) defined in [2] in correspondence with the family

of open sets (2.5) as follows.
By K¥(Q) we denote the space of functions g € L (Q\S,) such that

18llxp @) = sup (ps‘”/”(x) \glp,gm) < +oo, (2.6)

with the norm defined by (2.6),
IO(’;(Q) is the closure of C3°(Q2) in K¥(Q).
Some properties of the spaces K¥(Q) and Io(f (Q) are recalled in [2], [3], [6].
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3. Preliminary results

Letus fix p € &7(Q) suchthat S=S, # 0 and lim p(x) =0.

x| —+o00
We consider the following conditions: :
hy) there exists an open subset Q* of R" with uniform C!- regularity property
satisfying
QC Q7 0Q\S C 0Q*; (3.1)

i1) 8,9 € R and q is such that
g>2 it n=2, g=n if n>=3. (3.2)

REMARK 3.1. By hypothesis 7;) (see remark 3.1 of [6]) there exists 6 €]0, 7|
such that
VxeQ JCy(x) : Co(x,p(x)) C Q,

where Cy(x) is an open infinite cone (with the vertex in x, the angle 6 ) and Co(x,r),
r € Ry, is the intersection of Cg(x) and B(x,r). O

We have the following
LEMMA 3.1. Ifthe hypotheses hy) and iy) are verified, then gu € L*(Q) for any
g€ K? . (Q) andany u € W (Q), and

guba < Hlglks (o Il (33)

where H = H(n, 0,p,s,q) is a positive constant. |

REMARK 3.2. The proof of Lemma 3.1 can be found in [2] and in [6] but here we
explicitly give the dependence of H . |

Now we introduce some notations.
Let X(Q) be the o-algebra of Lebesgue measurable subsets of Q. If p €
[1,+00[, s € R and g € K¥(Q) , we set

ol = (1= v gllgiey:  kEN,
81el(1) = sup g 2ell ey 1 E R,
|E|<t

where xg is the characteristic function of E € Z(Q).
It is known (see [2]) that g € K5 (Q) if and only if g € K¥(Q) and
lim o”[g](k) = 0.

k—+o00

We define the modulus of continuity of g € IO(’Y7 (Q) as a function w[g] : N — R4
satisfying

D0 + &) <oE®,  kEN,  lim og®)=0. (34)
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For any r € R, we put
r if t>r
M, =Xt if i <r T.(t) =1 —[t],, teR. (3.5)
—r if t< —r
Clearly, we have

[z (0)] <, il < ()] + 7. (3.6)
We note that, if f : Q — R and
Af)={xeQ:|f(x)| >r}, reRy, (3.7)
then
supp 7(f) CA(f),  reR..
Moreover, if f € IP(Q), p € [1,+0o0], then
1ir+n |A:(f)] =0. (3.8)

Finally, if g € LZ)L-(E) , we denote by r; = rr(g), k € N, areal number such that

(3.9)

=

Ar (v 8)| <
and by r[g] the function
rlg] :ke N — rgl(k) =r € R;. (3.10)
Using Lemma 3.1, we can prove the following assertion which we will use later (see
Corollary 2 in [2], too).
LEMMA 3.2. If the hypotheses hy) and i) are verified, g € IO(ZYH(Q) and
k € N, then
g ulo < Holg)(k) lullwiq) + rlg]k) [ulo, — Vue Wi(Q), (3.11)
where H is the constant from Lemma 3.1, w[g] is a modulus of continuity of g in
K9 (Q) and r(g] is the function defined by (3.10).

—s+1
Proof. Fix u € W}(Q) and put g = [y gl , where r, = r[g](k). Clearly,

lgx| < 7k, supp gx C Qo .
Thus, by Lemma 3.1,

gule <|[(g - gk)”|2,§z + |g’<”|2,§z

(3.12)
< H g = gillks () lullwie) + 7 luloy
where H is the constant from Lemma 3.1.
On the other hand, by (3.5), (3.6) and (3.9),
g — 8k||1<‘im(g) <1 - 1I/k)8||1<‘im(g) + |17, (U/kg)HK‘iM(gz) (3.13)

< (1= Wk)gHK‘iHI(Q) + H‘l/kg\A,k(wkg)||K‘1H1(Q) < ofg](k),
and the result follows from (3.12) and (3.13). O
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4. Hypotheses

In Q we consider the second order linear differential operator in divergence form
defined by (1.2).
Fix s € R and suppose that the following hypothesis holds:

hz) aij ELiozs(Q), Lj=1,...,n
dveRr, : Za,;i,-é}vpzs\az VEER", ae in Q,
ij=1
bie K, ,(Q), i=1,..,n, cek?, ,(Q),
Jep €ERy 1 c=coprT? ae. in Q

where ¢ satisfies (3.2) and
¢ =2 if 2<n<4, ¢ >2 if n=4, q/:g if n>4.

Letus fix u,bp € Ry such that

n

3 eyl o S lblco, o <bo- (1)

ij=1 i=1

REMARK 4.1. We observe that, under hypotheses /) and %,), Lemma 3.1 implies
that the operator

o

uewWh(Q) — Lue w-(Q)
is bounded. .
In fact, if ¢ € W}(Q), then

/ g, 91 dx < aglios, @ Itz 10l

/Q|bi Uy, @l dx < H“x;”L2 Hbi(PHLis(g) < HH”xi||L§(Q) HP_SbiHK‘iM(g) H§0||Wg(g)

/Q|C“(P\ dx < ||Veull ) V@l 2@ < H H\/_||22q Q) [ullwice) [1llwi (@)

7v+1

and so

/L a0, +Zb o @+ cu ) da| < c(#) lullwy@ 10llws o

ij=1

where ¢(H) is a positive constant. 0
We use the following notations:

A ()

ij=1
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REMARK 4.2. By Theorem 3.2 of [14] and hypothesis /;) there exists 0 € &7 (Q)N
C>=(Q) N C*(Q) such that

c1p(x) < o(x) < 2 p(x) VxeQ, (4.2)
Oy, 00y € L™(Q), (4.3)
where the constants c¢;, ¢; € Ry are independent of x. O

Now, consider the sequence of functions (1;,)seny defined in [4] by

M) = (o) 5 + (1 Chotx)) o), heN, xe@,

where § € C*([0, +o0[) is a function such that 0 < { < 1,{(r) =1 if r > 1 and
{)=0ifr< .
Let us recall that, if we put

1
’ . -
Qh_{er.c(x)>h}, heN,
we have
c30(x) < Mu(x) < ca0(x), x € Q\Q,, (4.4)

(nh)x(x) =0, X € Q;m (nh)x(x) < Cs O-X(x) ) x€Q, (45)

where the constants c3, c4, ¢s € Ry are independent of 4 and x.
Observe that (4.4) is verified also in €}, but the constant ¢3 depends on /.
Now we suppose that the function p is such that the function o from (4.2) satisfies:

h3) lim o,(x) = lim o(x) o (x) =0  Vxp €S,
X—X0 X—X0
lim o,(x) = lim o(x)ow(x)=0.
[x| =00 [x] =400

An example of such a function p is given in [7].

5. Main result

We consider the problem

{ Lu=f, few lQ),

. (5.1)
ue wWHQ)

and state the following



AN EXTENSION OF A THEOREM BY C. MIRANDA IN WEIGHTED SPACES 567

THEOREM 5.1. Ifthe hypotheses hy) — h3) hold, then the problem (5.1) is uniquely
solvable and the solution u verifies

||u||er(Q) S Hf”w::(g) ) (52)

where ¢y = ¢ (n, 0,p,s,V,q, bo,co) is a positive constant.
Moreover, if f € L? (Q) N L>Z(Q) and w[b] is a modulus of continuity of
b = p~*b; in IO(ZSH(Q), i = 1,...,n, then there exists py € [2,4+00[, po =
Do (n, 0,0,s, v, u,q, 0[], r[bi],co) , such that for any p € |po, +0oo[ the solution u
belongsto L, (Q) and
s—2
lull @) < @) Il (0 (5.3)

s—2Z

D
where ¢(p) = ¢(p,p, s, co) -

Proof. The existence and uniqueness of the solution u of problem (5.1) and
inequality (5.2) follow from Theorem 2 in [3]. To prove the rest, we adapt to our case
some classical methods (see [10] and [5], too).

Letus fix f € L2 (Q) N L>=(Q) and consider the solution u of problem (5.1).

Firstly, let us suppose that

(aU)Xh, b EL 23+1(Q) i,j,h: 1,...7}1. (5.4)
Then, by Theorem 3.1in [4], u € L°(Q). So, by Lemma4.2in [4], [ulP un;’ € ‘;)V} (Q)

for p > 1 andforany h € N.
As in the proof of Theorem 3.1 in [4], we get from hypothesis &;) that

[t unyas [ [0 vl + gl
(5.5)

+sp Zaljnh nh,c\u| uueran |u\puuxl}dx.
ij=1 i=1

Fix € > 0. Itis easy to see that there exists ¢;(e) = ¢ (€, p, s, ) such that

‘/sp Zal]nh (M) |l wuy, dx‘

ij=1 (5.6)
€ S,
S3 /pzpzs 20 ()3 \ulpuzdxﬂl(é)/p n? |ul? u? dx.

If w[b] is a modulus of continuity of function b' = p~*b; € K7Y+1(§2), i=1,..n
it follows from the Holder inequality and Lemma 3.2 that

n § n /2
/ >0 | < [0 32 08 [ g

= (5.7)

A s, ] [ P, VRN,
i=1
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where ri = r[b'](k) are given by (3.10) and H is from Lemma 3.2.
By (3.4) there exists kg € N such that

> ol <
4

So, we deduce from (5.7) and (2.3), (4.2), (4.4), (4.5) that there exist cy(e) =
153 (e,n,p,s, v) and c3(€) = ¢3 (e,n7 0,p,s,v,q,® [b]) such that

n
‘/E biny u|”uuxl.dx’
i=1

\% s K S|
[; ||77}zp/2 |/ “HWI + Zrko |nl7/2 |u‘p/2u|292k } o* np/z |/ Mx|2’9

N

= [l W g S O ), g

i=1

2 2
+Z’ko ’nbp/ “|p/2“‘292k} ‘pf v/ Jul?? ”x’z,g
i=1

o /2 sp/2—1
|: |p 1 p/ |M‘p/2u|2’g+\/_|pp nl’/ (nh)x‘u|P/2u|2’Q

v (L) o g+ S, [ P uly g |0t

(5 .
i=1

¢ — S E S— S
< /pzs 2nhp |M\Pu2dx+§ /p2p2 nhp(nh)i\ﬂp”zdx

n

) +es(e )(Zrio)z-ﬁ-V(g—l-l)} /szsnzp\w”ufdx.

i=1

+ [eate

We obtain from (5.5), (5.6) and (5.8) that

[rrungar> [ o= S0+ 20 D] 00l ol as
) ; (5.9)
Z v — _ _ i sp p 2d

+ [ [v-at-a@ ex@) ()] o7 il .

n

. 2
ci(€)+ca(e)+cs(e) ( Z r;(U)
Let us choose ¢ = %’ and p > 2[ =l } . Note that there exists

v

ho € N such that
1

(Mho)x < 5 (5.10)

Indeed, given ¢’ > 0, hypothesis h3) implies that there exists a bounded open subset
E. of Q such that E, C Q\S and

Oy < ¢ in Q\EE/ .
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Furthermore, we can found 4., > 0 so that
E(/ NQcC QZ ,

Then we can deduce (5.10) from (4.5).
We obtain from (5.9) and (5.10) that

K o 5 — K
Afwwmﬂk>3lf22ﬁwwﬂm
and so it follows from (4.2) and (4.4) that
/f |ulP up® dx > c1(p) / $PH2)=2 |y P42 x| (5.11)

where ¢;(p) = c1(p, P, s,¢o) -
Now, using the Holder inequality, we get

P+l

1 pit
/f lul? up* dx < (/ PSP+ | e dx) = (/ P P2 |y |p+2 dx) P72
Q Q Q

N pit (5.12)
< alp) (/ p ) [Pt dx) e (/ PP |y |2 dx) ",
Q Q
with Cz(p) = Cz([),p).
Then (5.11) and (5.12) give (5.3) under the assumption (5.4).
If the hypothesis (5.4) is not verified, we argue as follows.
Letusset, forany i,j =1,...,n,
N { p72s ajj in Q
Clij = . "
V6ij in R \Q,
where : o
i=]
O =
' { 0 i),
Let (Ji)ren be a sequence of mollifiers. For any k € N, we define
af;» = st]k * Ellj
It is easy to prove that
a) Z ab &&= vp* |EF VEER', aein Q,
l,}_
where V = ¥(p,s, V),
) a € L>,(Q), i,j=1,...,n, Z ”au”L < i,
ij=1
where [ = [i(p,s, v, 1),
Cl3) ( g)xh € L—25+1 (Q) i7j> h = 17 o n

Moreover, if we put

:[kal]ria bfzpsb;.(’ i:]‘?"'?n’ keN’
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where the functions Yy, k € N, are defined in Section 2, we get

by) bi € K751 (Q) NLZ (Q),
k
by) |13 ||K‘12H1(Q) < ”biHKZZM(Q) )

b3)  we can choose

ob] = o[b], bl =],
by) ¥ —b; in K7, (Q) for k— 400.
In fact, since o

LARS supp by, C Qo ,

we deduce that b} € Io{q_Hl (Q)NL>=_,(Q) and so we obtain b;). Observing that

Bkl < 1],
we easily get by) and b3). The condition b4) follows from the inequality (see (3.13))

16— Bl o) < 0[] ()

and from the convergence w[b'] (k) — 0 as k — +o0.
Let us set

n

n
Lku:fZ(agux,-)ijerfo,-+Cu7 keN.

ij=1 i=1
The solution u; of the weak problem

{uu—ﬁ few>}(Q),
ue wiQ)

satisfies the inequality
el ey < €2 W g1 (5.13)

where ¢; = ¢2(n, 0,p,s, Vv, q,bo, co) .

In a standard way we get, from (5.13), that there exists a subsequence (u;})ren Of
(ux)reny weakly convergentin W!(Q) to a solution #’ of (5.1). The uniqueness of the
solution implies that u’ = u.

On the other hand, since a;)—as3) and b;) —b4) hold, the coefficients of L; satisfy
the hypothesis (5.4). In such a case we have proved that there exists py € [2,400],
po =po(n, 0,p,s,v, 1, q,o[b"],r[b'], co) , such that for any p > po,

ey @ < @)l (@ (5.14)

=5

where c¢3(p) = ¢3(p,p,$,co). Then there exists a subsequence (i} )ren Of (U} )ken
weakly convergentin L” ,(Q) to u” € IV ,(Q).
S7p S7p

Observing that u” = u’, inequality (5.14) gives (5.3). O
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