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Abstract. This paper is a continuation of [4] and extends the well-known theorem of C. Miranda
(Ann. Mat. Pura Appl. (4) 61 (1963)) concerning a priori estimates of weak solutions of linear
elliptic equations with discontinuous coefficients in a bounded open subset of Rn . In [4] we
derive such estimates in weighted spaces considered over an arbitrary open subset of Rn . In
this paper we obtain the same result replacing a condition on the coefficients by a considerably
weaker one.

1. Introduction

Let Ω be an open subset of Rn . In Ω we consider the Dirichlet problem{
Lu = f , f ∈ W−1,2(Ω),

u ∈ ◦
W1,2(Ω),

(1.1)

where L is the second order linear differential operator in divergence form

Lu = −
n∑

i,j=1

(aij uxi)xj +
n∑

i=1

bi uxi + c u (1.2)

with real and measurable coefficients.
It is well-known (see [10]) that, if n � 3 , Ω is bounded, L is uniformly elliptic,

aij ∈ L∞(Ω) , bi ∈ Ln(Ω) , c ∈ Ln/2(Ω) , c � c0 , c0 ∈ R+ , then the problem (1.1) is
uniquely solvable. Moreover, if f ∈ L∞(Ω) , the solution u belongs to L∞(Ω) and
verifies the estimate

‖u‖L∞(Ω) � c0
−1 ‖f ‖L∞(Ω) . (1.3)

In a recent paper (see [4]) an a priori estimate of type (1.3) is given in weighted spaces
for n � 2 and Ω not necessarily bounded.
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More precisely, denoting by ρ a function in the class A (Ω) defined in Section

2 and by
◦
W1

s (Ω) , W−1
−s (Ω) , s ∈ R , some weighted Sobolev spaces, where the weight

functions are suitable powers of ρ (see Section 2), in [4] we study the Dirichlet problem{
Lu = f , f ∈ W−1

−s (Ω),

u ∈ ◦
W1

s (Ω)
(1.4)

under the following assumptions:
0) ρ is a function in the class A (Ω) which goes to zero near to a subset of ∂Ω and

at infinity;
1) there exists an open subset Ω∗ of Rn with the uniform C1 -regularity property

such that Ω ⊂ Ω∗ and ∂Ω\Sρ ⊂ ∂Ω∗ , where Sρ is the subset of ∂Ω on which
ρ goes to zero;

2) aij ∈ L∞
−2s(Ω) , (aij)xh ∈ L∞

−2s+1(Ω) , i, j, h = 1, ..., n ,

∃ ν ∈ R+ :
n∑

i,j=1

aij ξi ξj � νρ2s|ξ |2 ∀ ξ ∈ Rn , a.e. in Ω ,

bi ∈
◦
Kq

−2s+1(Ω) ∩ L∞
−2s+1(Ω) , i = 1, ..., n , c ∈ Kq/2

−2s+2(Ω) ,

∃ c0 ∈ R+ : c � c0 ρ2s−2 a.e. in Ω ,

where the previous weighted spaces are defined in Section 2, s ∈ R and

q > 2 if n = 2 , q = n if n � 3;

3) ρ is such that its regularization verifies a suitable condition (see hypothesis h3) ).
If f ∈ L2

−s(Ω) ∩ L∞
−s(Ω) , then it is shown that any solution of problem (1.4)

belongs to L∞
s (Ω) and there exists p0 � 2 such that for any p � p0 ,

‖u‖Lp

s− 2
p

(Ω) � c ‖f ‖Lp
−s(Ω) , (1.5)

where the constant c depends only on p, ρ, s, c0 .
In this paper we still consider problem (1.4) with the hypotheses 0), 1), 3) un-

changed, but condition 2) is weakened in a considerable way. More precisely, we
remove the requirement of the existence of derivatives (aij)xh and the assumption
bi ∈ L∞

−2s+1(Ω) .
We obtain the following result: the problem (1.4) is uniquely solvable and the

solution u verifies the estimate

‖u‖W1
s (Ω) � c1‖f ‖W−1

−s (Ω) , (1.6)

where the variables on which c1 depends are stated. Furthermore, if f ∈ L2−s(Ω) ∩
L∞−s(Ω) , then there exists p0 � 2 such that for any p � p0 the solution u ∈ Lp

s− 2
p
(Ω)

and verifies the bound (1.5). We also state the variables on which p0 depends.
To prove the result, we will need to extend methods introduced in [10], and we

will use the theorem stated in [4]. In particular, it is necessary to introduce a variant of
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a modulus of continuity of a function g ∈ ◦
Kq

−s+1(Ω) and to study the multiplication
operator

u → g u

from W1
s (Ω) into L2(Ω) (see Lemmas 3.1 and 3.2).

2. Notations

If A is a Lebesgue measurable subset of Rn , we denote by D(A) the class of
restrictions to A of functions ζ ∈ C∞

0 (Rn) with supp ζ ∩ A ⊂ A .
If p ∈ [1, +∞] , we denote by Lp

loc(A) the class of functions f : A → C such that
ζ f ∈ Lp(A) for all ζ ∈ D(A) . We set

|f |p,A = ‖f ‖Lp(A) .

Let B(x, r) , x ∈ Rn, r ∈ R+ , be the open ball centered in x of radius r .
Let Ω be an open subset of Rn , n � 2 . We denote by A (Ω) the class of

measurable functions ρ : Ω → R+ such that

γ−1ρ(y) � ρ(x) � γ ρ(y) ∀ y ∈ Ω , ∀ x ∈ Ω ∩ B(y, ρ(y)) , (2.1)

where γ ∈ R+ is independent of x and y .
If ρ ∈ A (Ω) , we put

Sρ = {z ∈ ∂Ω : lim
x→z

ρ(x) = 0} . (2.2)

It is known that Sρ is a closed subset in ∂Ω (see [6]) and that if Sρ 
= ∅ it results

ρ(x) � dist (x, Sρ) ∀ x ∈ Ω

(see [14]).
It is well-known (see, e.g. , Theor. 2, Chap. VI in [12] and Lemma 3.6.1 in [16])

that there exist α ∈ C∞(Ω) ∩ C0,1(Ω) , c1, c2 ∈ R+ such that

c1 dist (x, Sρ) � α(x) � c2 dist (x, Sρ) ∀ x ∈ Ω .

We put
Ωk = {x ∈ Ω : |x| < k, α(x) > 1/k} ∀ k ∈ N .

If f ∈ D(R+) is a fixed function satisfying

0 � f � 1 , f (t) = 1 if t � 1/2 , f (t) = 0 if t � 1 ,

we define the functions

ψk : x ∈ Ω −→
(
1 − f (kα(x))

)
f
(|x|/2k

)
, k ∈ N .

Note that, for any k ∈ N , ψk belongs to D(Ω\Sρ) and

0 � ψk � 1 , ψk|Ωk
= 1 , supp ψk ⊂ Ω2k .
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If ρ ∈ A (Ω) , then

ρ ∈ L∞
loc(Ω) , ρ−1 ∈ L∞

loc(Ω\Sρ) (2.3)

(see [14], [6]).
For some examples and properties of functions of A (Ω) we refer to [14], [2], [6].
If r ∈ N , p ∈ [1, +∞] , s ∈ R and ρ ∈ A (Ω) , then Wr,p

s (Ω) is the space of
distributions u on Ω such that ρs+|α|−r ∂αu ∈ Lp(Ω) for |α| � r , equipped with the
norm

‖u‖Wr,p
s (Ω) =

∑
|α|�r

|ρs+|α|−r ∂αu|p,Ω .

We denote by
◦
Wr,p

s (Ω) the closure of C∞
0 (Ω) in Wr,p

s (Ω) and set

Lp
s (Ω) = W0,p

s (Ω) , Wr
s (Ω) = Wr,2

s (Ω) ,
◦
Wr

s(Ω) =
◦
Wr,2

s (Ω) .

Moreover, W−1
−s (Ω) means the space of distributions f on Ω , which can be represented

in the form

f = f 0 −
n∑

i=1

(f i)xi , f 0 ∈ L2
−s+1(Ω) , f i ∈ L2

−s(Ω) , i = 1, ..., n, (2.4)

equipped with the norm

‖f ‖W−1
−s (Ω) = inf

(
‖f 0‖L2

−s+1
(Ω) +

n∑
i=1

‖f i‖L2
−s(Ω)

)
,

where the “inf” is taken over all possible representations of f of type (2.4). We observe
that, by the well-known results (see, e.g. , [15]), the space W−1

−s (Ω) can be identified

with the dual space (
◦
W1

s (Ω))′ of
◦
W1

s (Ω) .
For some properties of weighted Sobolev spaces, where the weight functions are

powers of a function ρ ∈ A (Ω) , see, e.g. , [1], [8], [11], [9], [13], [15], [2], [3], [6].
If p ∈ [1, +∞[ , s ∈ R and ρ ∈ A (Ω) , we put

Ω(x) = Ω ∩ B
(
x, ρ(x)

) ∀ x ∈ Ω , (2.5)

and consider the spaces Kp
s (Ω) ,

◦
Kp

s (Ω) defined in [2] in correspondencewith the family
of open sets (2.5) as follows.

By Kp
s (Ω) we denote the space of functions g ∈ Lp

loc(Ω\Sρ) such that

‖g‖Kp
s (Ω) = sup

x∈Ω

(
ρs−n/p(x) |g|p,Ω(x)

)
< +∞ , (2.6)

with the norm defined by (2.6),
◦
Kp

s (Ω) is the closure of C∞
0 (Ω) in Kp

s (Ω) .

Some properties of the spaces Kp
s (Ω) and

◦
Kp

s (Ω) are recalled in [2], [3], [6].
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3. Preliminary results

Let us fix ρ ∈ A (Ω) such that S = Sρ 
= ∅ and lim
|x|→+∞

ρ(x) = 0 .

We consider the following conditions:
h1) there exists an open subset Ω∗ of Rn with uniform C1 - regularity property

satisfying
Ω ⊂ Ω∗, ∂Ω\S ⊂ ∂Ω∗ ; (3.1)

i1) s, q ∈ R and q is such that

q > 2 if n = 2 , q = n if n � 3 . (3.2)

REMARK 3.1. By hypothesis h1) (see remark 3.1 of [6]) there exists θ ∈ ]0, π
2 [

such that
∀ x ∈ Ω ∃Cθ(x) : Cθ (x, ρ(x)) ⊂ Ω ,

where Cθ (x) is an open infinite cone (with the vertex in x , the angle θ ) and Cθ(x, r) ,
r ∈ R+ , is the intersection of Cθ (x) and B(x, r) . �

We have the following

LEMMA 3.1. If the hypotheses h1) and i1) are verified, then g u ∈ L2(Ω) for any
g ∈ Kq

−s+1(Ω) and any u ∈ W1
s (Ω) , and

|g u|2,Ω � H ‖g‖Kq
−s+1

(Ω) ‖u‖W1
s (Ω) , (3.3)

where H = H(n, θ, ρ, s, q) is a positive constant. �

REMARK 3.2. The proof of Lemma 3.1 can be found in [2] and in [6] but here we
explicitly give the dependence of H . �

Now we introduce some notations.
Let Σ(Ω) be the σ -algebra of Lebesgue measurable subsets of Ω . If p ∈

[1, +∞[, s ∈ R and g ∈ Kp
s (Ω) , we set

ωp
s [g](k) = ‖(1 − ψk) g‖Kp

s (Ω) , k ∈ N ,

δ p
s [g](t) = sup

|E|�t
‖g χE‖Kp

s (Ω) , t ∈ R+ ,

where χE is the characteristic function of E ∈ Σ(Ω) .

It is known (see [2]) that g ∈ ◦
Kp

s (Ω) if and only if g ∈ Kp
s (Ω) and

lim
k→+∞

ωp
s [g](k) = 0 .

We define the modulus of continuity of g ∈ ◦
Kp

s (Ω) as a function ω [g] : N → R+
satisfying

ωp
s [g](k) + δ p

s [g]
(1
k

)
� ω [g](k) , k ∈ N , lim

k→+∞
ω [g](k) = 0 . (3.4)
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For any r ∈ R+ we put

[t]r =

⎧⎨
⎩

r if t > r

t if |t| � r τr(t) = t − [t]r , t ∈ R .

−r if t < −r

(3.5)

Clearly, we have
|τr(t)| � |t| , |t| � |τr(t)| + r . (3.6)

We note that, if f : Ω → R and

Ar(f ) = {x ∈ Ω : |f (x)| � r} , r ∈ R+ , (3.7)

then
supp τr(f ) ⊂ Ar(f ) , r ∈ R+ .

Moreover, if f ∈ Lp(Ω), p ∈ [1, +∞[ , then

lim
r→+∞ |Ar(f )| = 0 . (3.8)

Finally, if g ∈ Lp
loc(Ω) , we denote by rk = rk(g) , k ∈ N , a real number such that

|Ark(ψk g)| � 1
k

(3.9)

and by r[g] the function

r[g] : k ∈ N → r[g](k) = rk ∈ R+ . (3.10)

Using Lemma 3.1, we can prove the following assertion which we will use later (see
Corollary 2 in [2], too).

LEMMA 3.2. If the hypotheses h1) and i1) are verified, g ∈ ◦
Kq

−s+1(Ω) and
k ∈ N , then

|g u|2,Ω � Hω [g](k) ‖u‖W1
s (Ω) + r[g](k) |u|2,Ω2k ∀ u ∈ W1

s (Ω) , (3.11)

where H is the constant from Lemma 3.1, ω [g] is a modulus of continuity of g in
◦
Kq

−s+1(Ω) and r[g] is the function defined by (3.10).

Proof. Fix u ∈ W1
s (Ω) and put gk = [ψk g]rk , where rk = r[g](k) . Clearly,

|gk| � rk , supp gk ⊂ Ω2k .

Thus, by Lemma 3.1,

|g u|2,Ω �
∣∣(g − gk) u

∣∣
2,Ω +

∣∣gk u
∣∣
2,Ω

� H ‖g − gk‖Kq
−s+1

(Ω) ‖u‖W1
s (Ω) + rk |u|2,Ω2k ,

(3.12)

where H is the constant from Lemma 3.1.
On the other hand, by (3.5), (3.6) and (3.9),

‖g − gk‖Kq
−s+1

(Ω) � ‖(1 − ψk) g‖Kq
−s+1

(Ω) + ‖τrk (ψk g)‖Kq
−s+1

(Ω)

� ‖(1 − ψk) g‖Kq
−s+1

(Ω) + ‖ψk g|Ark (ψk g)
‖Kq

−s+1
(Ω) � ω [g](k) ,

(3.13)

and the result follows from (3.12) and (3.13). �
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4. Hypotheses

In Ω we consider the second order linear differential operator in divergence form
defined by (1.2).

Fix s ∈ R and suppose that the following hypothesis holds:
h2) aij ∈ L∞

−2s(Ω) , i, j = 1, ..., n ,

∃ ν ∈ R+ :
n∑

i,j=1

aij ξi ξj � νρ2s|ξ |2 ∀ ξ ∈ Rn , a.e. in Ω ,

bi ∈
◦
Kq

−2s+1(Ω) , i = 1, ..., n , c ∈ Kq′
−2s+2(Ω) ,

∃ c0 ∈ R+ : c � c0 ρ2s−2 a.e. in Ω ,

where q satisfies (3.2) and

q′ = 2 if 2 � n < 4 , q′ > 2 if n = 4 , q′ =
n
2

if n > 4 .

Let us fix μ, b0 ∈ R+ such that

n∑
i,j=1

‖aij‖L∞−2s(Ω) � μ ,

n∑
i=1

‖bi‖Kq
−2s+1

(Ω) � b0 . (4.1)

REMARK 4.1. We observe that, under hypotheses h1) and h2) , Lemma 3.1 implies
that the operator

u ∈ ◦
W1

s (Ω) → Lu ∈ W−1
−s (Ω)

is bounded.
In fact, if ϕ ∈ ◦

W1
s (Ω) , then∫

Ω
|aij uxi ϕxj | dx � ‖aij‖L∞−2s(Ω) ‖uxi‖L2

s(Ω) ‖ϕxj‖L2
s(Ω) ,

∫
Ω
|bi uxi ϕ| dx � ‖uxi‖L2

s(Ω) ‖biϕ‖L2
−s(Ω) � H ‖uxi‖L2

s(Ω) ‖ρ−s bi‖Kq
−s+1

(Ω) ‖ϕ‖W1
s (Ω) ,∫

Ω
|c uϕ| dx � ‖√cu‖L2(Ω) ‖

√
cϕ‖L2(Ω) � H2 ‖√c‖2

K2q′
−s+1

(Ω)
‖u‖W1

s (Ω) ‖ϕ‖W1
s (Ω) ,

and so∣∣∣ ∫
Ω

( n∑
i,j=1

aij uxi ϕxj +
n∑

i=1

bi uxi ϕ + c uϕ
)
dx

∣∣∣ � c(H) ‖u‖W1
s (Ω) ‖ϕ‖W1

s (Ω) ,

where c(H) is a positive constant. �

We use the following notations:

f x =
( n∑

i=1

f 2
xi

)1/2

, f xx =
( n∑

i,j=1

f 2
xixj

)1/2

.
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REMARK 4.2. By Theorem 3.2 of [14] and hypothesis h1) there exists σ ∈ A (Ω)∩
C∞(Ω) ∩ C0,1(Ω) such that

c1 ρ(x) � σ(x) � c2 ρ(x) ∀ x ∈ Ω , (4.2)

σx , σ σxx ∈ L∞(Ω) , (4.3)

where the constants c1 , c2 ∈ R+ are independent of x . �

Now, consider the sequence of functions (ηh)h∈N defined in [4] by

ηh(x) = ζ(hσ(x))
1
h

+
(
1 − ζ(hσ(x))

)
σ(x) , h ∈ N , x ∈ Ω ,

where ζ ∈ C∞([0, +∞[) is a function such that 0 � ζ � 1 , ζ(t) = 1 if t � 1 and
ζ(t) = 0 if t � 1

2 .
Let us recall that, if we put

Ω′
h =

{
x ∈ Ω : σ(x) >

1
h

}
, h ∈ N ,

we have

c3 σ(x) � ηh(x) � c4 σ(x) , x ∈ Ω\Ω′
h , (4.4)

(ηh)x(x) = 0 , x ∈ Ω′
h , (ηh)x(x) � c5 σx(x) , x ∈ Ω , (4.5)

where the constants c3, c4, c5 ∈ R+ are independent of h and x .
Observe that (4.4) is verified also in Ω′

h , but the constant c3 depends on h .
Now we suppose that the function ρ is such that the function σ from (4.2) satisfies:
h3) lim

x→x0

σx(x) = lim
x→x0

σ(x)σxx(x) = 0 ∀ x0 ∈ S ,

lim
|x|→+∞

σx(x) = lim
|x|→+∞

σ(x)σxx(x) = 0 .

An example of such a function ρ is given in [7].

5. Main result

We consider the problem

{
Lu = f , f ∈ W−1

−s (Ω),

u ∈ ◦
W1

s (Ω)
(5.1)

and state the following
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THEOREM 5.1. If the hypotheses h1) − h3) hold, then the problem (5.1) is uniquely
solvable and the solution u verifies

‖u‖W1
s (Ω) � c1 ‖f ‖W−1

−s (Ω) , (5.2)

where c1 = c1
(
n, θ, ρ, s, ν, q, b0, c0

)
is a positive constant.

Moreover, if f ∈ L2
−s(Ω) ∩ L∞

−s(Ω) and ω [bi] is a modulus of continuity of

bi = ρ−s bi in
◦
Kq

−s+1(Ω) , i = 1, ..., n , then there exists p0 ∈ [2, +∞[ , p0 =
p0

(
n, θ, ρ, s, ν,μ, q,ω [bi], r[bi], c0

)
, such that for any p ∈ [p0, +∞[ the solution u

belongs to Lp
s− 2

p
(Ω) and

‖u‖Lp

s− 2
p

(Ω) � c(p) ‖f ‖Lp
−s(Ω) , (5.3)

where c(p) = c(p, ρ, s, c0) .

Proof. The existence and uniqueness of the solution u of problem (5.1) and
inequality (5.2) follow from Theorem 2 in [3]. To prove the rest, we adapt to our case
some classical methods (see [10] and [5], too).

Let us fix f ∈ L2
−s(Ω) ∩ L∞

−s(Ω) and consider the solution u of problem (5.1).
Firstly, let us suppose that

(aij)xh , bi ∈ L∞
−2s+1(Ω) , i, j, h = 1, ..., n . (5.4)

Then, by Theorem 3.1 in [4], u ∈ L∞
s (Ω) . So, by Lemma 4.2 in [4], |u|p uηsp

h ∈ ◦
W1

s (Ω)
for p � 1 and for any h ∈ N .

As in the proof of Theorem 3.1 in [4], we get from hypothesis h2) that∫
Ω

f |u|p uηsp
h dx �

∫
Ω

[
(p + 1) ν ρ2s ηsp

h |u|p u2
x + c0 ρ2s−2 ηsp

h |u|p u2

+ s p
n∑

i,j=1

aij ηsp−1
h (ηh)xj |u|p u uxi +

n∑
i=1

bi ηsp
h |u|p u uxi

]
dx .

(5.5)

Fix ε > 0 . It is easy to see that there exists c1(ε) = c1(ε, ρ, s,μ) such that∣∣∣ ∫
Ω

s p
n∑

i,j=1

aij ηsp−1
h (ηh)xj |u|p u uxi dx

∣∣∣
� ε

3

∫
Ω

p2 ρ2s−2 ηsp
h (ηh)2

x |u|p u2 dx + c1(ε)
∫
Ω
ρ2s ηsp

h |u|p u2
x dx .

(5.6)

If ω [bi] is a modulus of continuity of function bi = ρ−s bi ∈
◦
Kq

−s+1(Ω), i = 1, ..., n ,
it follows from the Hölder inequality and Lemma 3.2 that∣∣∣ ∫ n∑

i=1

bi ηsp
h |u|p u uxi dx

∣∣∣ �
[
H

n∑
i=1

ω [bi](k) ‖ηsp/2
h |u|p/2 u‖W1

s (Ω)

+
n∑

i=1

ri
k |ηsp/2

h |u|p/2 u|2,Ω2k

] ∣∣ρs ηsp/2
h |u|p/2 ux

∣∣
2,Ω ∀ k ∈ N ,

(5.7)
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where ri
k = r[bi](k) are given by (3.10) and H is from Lemma 3.2.

By (3.4) there exists k0 ∈ N such that
n∑

i=1

ω [bi](k0) � ν
n H

.

So, we deduce from (5.7) and (2.3), (4.2), (4.4), (4.5) that there exist c2(ε) =
c2

(
ε, n, ρ, s, ν

)
and c3(ε) = c3

(
ε, n, θ, ρ, s, ν, q,ω [bi]

)
such that∣∣∣ ∫ n∑

i=1

bi ηsp
h |u|p u uxi dx

∣∣∣
�

[ν
n

∥∥ηsp/2
h |u|p/2 u

∥∥
W1

s (Ω) +
n∑

i=1

ri
k0

∣∣ηsp/2
h |u|p/2 u

∣∣
2,Ω2k0

] ∣∣ρs ηsp/2
h |u|p/2 ux

∣∣
2,Ω

=
[ν
n

∣∣ρs−1 ηsp/2
h |u|p/2 u

∣∣
2,Ω +

ν
n

n∑
i=1

∣∣ρs
(
ηsp/2

h |u|p/2 u
)
xi

∣∣
2,Ω

+
n∑

i=1

ri
k0

∣∣ηsp/2
h |u|p/2 u

∣∣
2,Ω2k0

] ∣∣ρs ηsp/2
h |u|p/2 ux

∣∣
2,Ω

�
[ν
n

∣∣ρs−1 ηsp/2
h |u|p/2 u

∣∣
2,Ω + ν

|s|
2

∣∣p ρs ηsp/2−1
h (ηh)x |u|p/2 u

∣∣
2,Ω

+ ν
(p
2

+ 1
) ∣∣ρs ηsp/2

h |u|p/2 ux

∣∣
2,Ω +

n∑
i=1

ri
k0

∣∣ηsp/2
h |u|p/2 u

∣∣
2,Ω2k0

] ∣∣ρs ηsp/2
h |u|p/2 ux

∣∣
2,Ω

� ε

3

∫
Ω
ρ2s−2 ηsp

h |u|p u2 dx +
ε

3

∫
Ω

p2 ρ2s−2 ηsp
h (ηh)2

x |u|p u2 dx

+
[
c2(ε) + c3(ε)

( n∑
i=1

ri
k0

)2 + ν
(p
2

+ 1
)] ∫

Ω
ρ2s ηsp

h |u|p u2
x dx .

(5.8)
We obtain from (5.5), (5.6) and (5.8) that∫

Ω
f |u|p uηsp

h dx �
∫
Ω

[
c0 − ε

3

(
1 + 2 p2 (ηh)2

x

)]
ρ2s−2 ηsp

h |u|p u2 dx

+
∫
Ω

[p
2
ν − c1(ε) − c2(ε) − c3(ε)

( n∑
i=1

ri
k0

)2
]
ρ2s ηsp

h |u|p u2
x dx .

(5.9)

Let us choose ε = c0
2 and p � 2

[ c1(ε)+c2(ε)+c3(ε)
( n∑

i=1

rik0

)2

ν

]
. Note that there exists

h0 ∈ N such that

(ηh0)x � 1
p

. (5.10)

Indeed, given ε′ > 0 , hypothesis h3) implies that there exists a bounded open subset
Eε′ of Ω such that Eε′ ⊂ Ω\S and

σx < ε′ in Ω\Eε′ .
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Furthermore, we can found hε′ > 0 so that

Eε′ ∩Ω ⊂ Ω′
hε′ .

Then we can deduce (5.10) from (4.5).
We obtain from (5.9) and (5.10) that∫

Ω
f |u|p uηsp

h0
dx � c0

2

∫
Ω
ρ2s−2 ηsp

h0
|u|p+2 dx ,

and so it follows from (4.2) and (4.4) that∫
Ω

f |u|p u ρsp dx � c1(p)
∫
Ω
ρs(p+2)−2 |u|p+2 dx , (5.11)

where c1(p) = c1(p, ρ, s, c0) .
Now, using the Hölder inequality, we get∫
Ω

f |u|p u ρsp dx �
( ∫

Ω
ρ−s(p+2) |f |p+2 dx

) 1
p+2

(∫
Ω
ρs(p+2) |u|p+2 dx

) p+1
p+2

� c2(p)
( ∫

Ω
ρ−s(p+2) |f |p+2 dx

) 1
p+2

( ∫
Ω
ρs(p+2)−2 |u|p+2 dx

) p+1
p+2

,

(5.12)

with c2(p) = c2(p, ρ) .
Then (5.11) and (5.12) give (5.3) under the assumption (5.4).
If the hypothesis (5.4) is not verified, we argue as follows.
Let us set, for any i, j = 1, . . . , n,

ãij =
{ ρ−2s aij in Ω
ν δij in Rn\Ω,

where

δij =
{

1 i = j

0 i 
= j,

Let (Jk)k∈N be a sequence of mollifiers. For any k ∈ N , we define

ak
ij = σ2s Jk ∗ ãij .

It is easy to prove that

a1)
n∑

i,j=1
ak

ij ξiξj � ν̃ ρ2s |ξ |2 ∀ ξ ∈ Rn , a.e. in Ω ,

where ν̃ = ν̃(ρ, s, ν) ,

a2) ak
ij ∈ L∞

−2s(Ω) , i, j = 1, . . . , n ,
n∑

i,j=1
‖ak

ij‖L∞−2s(Ω) � μ̃ ,

where μ̃ = μ̃(ρ, s, ν,μ) ,
a3) (ak

ij)xh ∈ L∞
−2s+1(Ω) , i, j, h = 1, . . . , n .

Moreover, if we put

bi
k = [ψk bi]rik , bk

i = ρs bi
k , i = 1, ..., n , k ∈ N ,
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where the functions ψk, k ∈ N , are defined in Section 2, we get

b1) bk
i ∈

◦
Kq

−2s+1(Ω) ∩ L∞
−2s+1(Ω) ,

b2) ‖bk
i ‖Kq

−2s+1
(Ω) � ‖bi‖Kq

−2s+1
(Ω) ,

b3) we can choose

ω [bi
k] = ω [bi] , r[bi

k] = r[bi] ,

b4) bk
i → bi in Kq

−2s+1(Ω) for k → +∞ .
In fact, since

|bi
k| � ri

k , supp bi
k ⊂ Ω2k ,

we deduce that bi
k ∈

◦
Kq

−s+1(Ω) ∩ L∞
−s+1(Ω) and so we obtain b1) . Observing that

|bi
k| � |bi| ,

we easily get b2) and b3) . The condition b4) follows from the inequality (see (3.13))

‖bi
k − bi‖Kq

−s+1
(Ω) � ω [bi] (k)

and from the convergence ω [bi] (k) → 0 as k → +∞ .
Let us set

Lku = −
n∑

i,j=1

(ak
ij uxi)xj +

n∑
i=1

bk
i uxi + c u , k ∈ N .

The solution uk of the weak problem{
Lk u = f , f ∈ W−1

−s (Ω),

u ∈ ◦
W1

s (Ω)

satisfies the inequality
‖uk‖W1

s (Ω) � c2 ‖f ‖W−1
−s (Ω) ,

(5.13)

where c2 = c2(n, θ, ρ, s, ν, q, b0, c0) .
In a standard way we get, from (5.13), that there exists a subsequence (u′k)k∈N of

(uk)k∈N weakly convergent in W1
s (Ω) to a solution u′ of (5.1). The uniqueness of the

solution implies that u′ = u .
On the other hand, since a1)−a3) and b1)−b4) hold, the coefficients of Lk satisfy

the hypothesis (5.4). In such a case we have proved that there exists p0 ∈ [2, +∞[ ,
p0 = p0

(
n, θ, ρ, s, ν,μ, q,ω [bi], r[bi], c0

)
, such that for any p � p0 ,

‖u′k‖Lp

s− 2
p

(Ω) � c3(p) ‖f ‖Lp
−s(Ω) , (5.14)

where c3(p) = c3(p, ρ, s, c0) . Then there exists a subsequence (u′′k )k∈N of (u′k)k∈N

weakly convergent in Lp
s− 2

p
(Ω) to u′′ ∈ Lp

s− 2
p
(Ω) .

Observing that u′′ = u′ , inequality (5.14) gives (5.3). �
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