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DECAY RESULTS FOR THE HEAT EQUATION

UNDER RADIATION BOUNDARY CONDITIONS

L. E. PAYNE AND P. W. SCHAEFER

(communicated by V. Lakshmikantham)

Abstract. The authors derive exponential decay bounds for the spatial derivatives of the solutions
of some initial-boundary value problems for the heat equation in one and two space dimensions
when linear radiation (Robin) conditions are prescribed on the boundary. Maximum principles
for solutions of second order parabolic equations are used in deriving the results.

1. Introduction

There are a number of papers in the literature on decay bounds, both spatial
and temporal, for solutions of parabolic initial-boundary value problems and their
derivatives. We refer the reader to Horgan and Wheeler [5], Horgan, Payne, and
Wheeler [6], Payne and Philippin [9], [10], Philippin and Vernier-Piro [12], [13], Ames,
Payne, and Schaefer [1], Payne, Schaefer, and Song [11], Shenker and Roseman [14],
Ewer [3], Sperb [15], and the papers cited therein.

In a recent paper, Payne and Philippin [9] obtained sharp exponential temporal
decay bounds for the gradient of the solutions ofDirichlet andNeumann initial-boundary
value problems for a semi-linear heat equation (for the case of Neumann conditions, see
the erratum [9]). As the authors mentioned in their paper, their method does not carry
over directly to the case of linear radiation (Robin) boundary conditions. In this paper
we indicate a method for obtaining these bounds for problems in one and two space
dimensions when Robin boundary conditions are prescribed.

In Section 2. we derive decay bounds for the solution of the linear heat equation
(in R

2 ) and its gradient with radiation boundary conditions. In Section 3. we consider
a mixed initial-boundary value problem for the heat equation when a Robin condition
is imposed on part of the boundary and a homogeneous Dirichlet condition on the
remainder of the boundary. Finally, in Section 4. we study a nonlinear heat equation for
a rod of length L when radiation conditions are prescribed at the ends of the rod. Our
results are obtained by means of the parabolic maximum principles [4], [8] applied to a
suitable combination of the solution and its derivatives.
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2. Robin problem

Let Ω be a bounded convex domain in R
2 with C2+ε boundary ∂Ω . We consider

the initial-boundary value problem

Δu − ∂u
∂t

= 0 in Ω× (0,∞),

∂u
∂n

+ αu = 0 on ∂Ω× (0,∞),

u(x1, x2, 0) = g(x1, x2) in Ω,

(2.1)

where Δ is the Laplace operator, ∂/∂n is the outward normal derivative operator on
the boundary, α is a positive constant, and g is a nonnegative C1 function (g �≡ 0 )
which satisfies

∂g
∂n

+ αg = 0 on ∂Ω. (2.2)

We know that the solution u is nonnegative and decays exponentially in time, but in
this paper we derive explicit decay bounds for both u and its gradient.

We define
Φ(x1, x2, t) =

[
u,iu,i + βu2

]
e2β t, (2.3)

where β is a positive constant to be determined, and we use the comma notation
with the summation convention, i. e., the comma denotes partial differentiation and
the repeated index indicates summation over i = 1, 2 . Thus, for example, u,iu,i =
(∂u /∂x1 )2 + (∂u /∂x2 )2 = |∇u|2 . A straightforward calculation (see [9]) results in
the differential inequality

ΔΦ+
WkΦ,k

|∇u|2 − ∂Φ
∂t

� 0,

where

Wk = 2βuu,k − 1
2
e−2β tΦ,k.

Consequently, Φ takes its maximumvalue either at an interior point P∗ where ∇u = 0 ,
at a point Q on ∂Ω for t > 0 , or initially. We now determine conditions which exclude
the first two possibilities.

We first suppose that the maximum value of Φ is taken at a point P∗ ∈ Ω at time
t = t∗ . Then

u,iu,i(P, t∗) + βu2(P, t∗) � βu2(P∗, t∗) = βu2
M, (2.4)

where P denotes an arbitrary point in Ω . Let P1 denote any point on ∂Ω . Then
evaluating (2.4) at P1 , we have

(
α2 + β

)
u2 (P1, t

∗) +
[
∂u
∂s

(P1, t
∗)

]2

� βu2
M,

where ∂u/∂s denotes the tangential derivative of u . Thus

u2 (P1, t
∗) � β

α2 + β
u2

M.
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Now integrating (2.4) from P∗ to P1 , we obtain∫ uM

[β/(α2+β)]1/2uM

dη√
u2

M − η2
�

∫ uM

u(P1,t∗)

dη√
u2

M − η2
�

√
βδ

or

cos−1

(
β

α2 + β

)1/2

�
√
βδ,

where δ is the distance from P∗ to P1 . The latter inequality implies that, provided√
βδ < π/2 , √

β tan
√
βδ � α.

Thus, if β is chosen so that√
β tan

√
βδ < α,

√
βδ < π/2,

then the maximum of Φ can not occur at the interior point P∗ . Since δ is less than
the radius d of the largest inscribed disk, we may choose β to satisfy√

β tan
√
βd < α,

√
βd < π/2, (2.5)

to insure that the maximum of Φ does not occur in the interior of Ω . We note there is
no restriction on the number of space variables in going from (2.3) to (2.5) except that
one replaces ∂u/∂s by grads u , the tangential component of the gradient.

We now assume that Φ takes its maximum value at a point Q ∈ ∂Ω for some
t > 0 . We note that if Φ is constant, then

u,iu,i + βu2 � max
Ω

{
g,ig,i + βg2

}
e−2β t

follows immediately, which is the bound we seek. Thus we assume Φ is not constant.
Then by the boundary maximum principle [4], we must have

∂Φ
∂n

(Q) > 0, (2.6)

where we have suppressed the t dependence from the argument of Φ . We know that
at Q , we have by (2.3)

1
2
e−2β t ∂Φ

∂s
(Q) =

∂u
∂s

[
∂2u
∂s2

+
(
α2 + β

)
u

]
= 0 (2.7)

and

1
2
e−2β t ∂Φ

∂t
(Q) =

(
α2 + β

) (
u
∂u
∂t

+ βu2

)
+

∂u
∂s

∂2u
∂s∂t

+ β
(

∂u
∂s

)2

� 0. (2.8)

It follows from (2.7) that at Q , either

∂u
∂s

= 0 (2.9)
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or
∂2u
∂s2

+
(
α2 + β

)
u = 0. (2.10)

If (2.9) holds, then we also have

∂2u
∂s2

(Q) � 0, (2.11)

since ∂2Φ(Q)
/
∂s2 � 0 .

We now consider ∂Φ/∂n . Since on ∂Ω ,

∂2u
∂n∂s

=
∂2u
∂s∂n

− κ
∂u
∂s

,

where κ denotes the curvature of ∂Ω , by (2.1) and (2.3) we compute

1
2
e−2β t ∂Φ

∂n
= −αu

∂2u
∂n2

− (α + κ)
(

∂u
∂s

)2

− αβu2.

Since ∂Ω is C2+ε curve, we have in normal coordinates on ∂Ω

Δu =
∂2u
∂n2

+
∂2u
∂s2

+ κ
∂u
∂n

,

and hence

1
2
e−2β t ∂Φ

∂n
= −αu

∂u
∂t

− κα2u2 + αu
∂2u
∂s2

− (α + κ)
(

∂u
∂s

)2

− αβu2. (2.12)

Now, if (2.9) holds, it follows by (2.11) that

1
2
e−2β t ∂Φ

∂n
� −αu

(
∂u
∂t

+ βu

)
,

and consequently by means of (2.8) that

∂Φ
∂n

(Q) � 0,

which contradicts (2.6). Thus, if (2.9) holds, then the maximum of Φ can not occur at
Q ∈ ∂Ω for some t > 0 .

We now suppose that (2.10) holds at Q . In this case, we find from (2.12) that

1
2
e−2β t ∂Φ

∂n
� −αu

[
∂u
∂t

+
(
α2 + 2β

)
u

]
.

However, by the maximum principle, we know that

∂u
∂t

+
(
α2 + 2β

)
u
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takes its positive maximum and/or its negative minimum at t = 0 . Thus, if this
expression is nonnegative initially, then it will remain nonnegative for all t > 0 and we
can conclude that ∂Φ/∂n � 0 in contradiction to (2.6).

Now at points of Ω for t = 0 , we have

∂u
∂t

= Δg

provided g has bounded second derivatives. Thus, if we ask that

Δg +
(
α2 + 2β

)
g � 0, (2.13)

then
∂u
∂t

+
(
α2 + 2β

)
u � 0

for all t > 0 and we conclude that ∂Φ/∂n � 0 at Q .
We summarize our results in the following theorem.

THEOREM 1. Let Ω be a bounded convex domain in R
2 with C2+ε boundary

∂Ω . If β satisfies (2.5) and a nonnegative g satisfies (2.2) and (2.13), then the gradient
of the solution of (2.1) decays exponentially, i. e.,

u,iu,i + βu2 � max
Ω

{
g,ig,i + βg2

}
e−2β t.

3. Mixed problem

In this section we assume that Ω is a bounded convex domain in R
2 with boundary

∂Ω = Γ1 ∪ Γ2 , where for definiteness we assume Γ2 lies on the x -axis in the interval
(0, L) and Γ1 lies in the lower half plane. An example of the type of region we envision
is the lower half of a disk. We consider the problem

Δu − ∂u
∂t

= 0 in Ω× (0,∞),

∂u
∂n

+ αu = 0 on Γ2 × (0,∞),

u = 0 on Γ1 × (0,∞),
u(x, y, 0) = g(x, y) in Ω,

(3.1)

and assume u to be a classical solution which vanishes with its y derivative at the points
(0, 0) and (L, 0) . Here g is to be a nonnegative function with bounded gradient which
vanishes at (0, 0) and (L, 0) and satisfies

∂g
∂y

+ αg = 0 on Γ2. (3.2)

We shall show that u,y decays exponentially in time.
We define

Φ(x, y, t) =
[
u2

,y + γ u2
]
e2γ t, (3.3)
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where γ is a constant to be determined, and compute

Φ,i = 2 (u,yu,yi + γ uu,i) e2γ t, (3.4)

ΔΦ− ∂Φ
∂t

= 2
(
u2

,xy + u2
,yy + γ u2

,x − γ 2u2
)
e2γ t.

From (3.4) we have

2u2
,yye

2γ t =
e−2γ t

2u2
,y

(
Φ,y − 2γ uu,ye

2γ t
)2

so that

ΔΦ− WΦ,y

u2
,y

− ∂Φ
∂t

= 2
(
u2

,xy + γ u2
,x

)
e2γ t � 0,

where

W =
1
2
e−2γ tΦ,y − 2γ uu,y.

Consequently, Φ takes its maximum value either at an interior point P∗ where u,y = 0 ,
at a point Q on ∂Ω for some t > 0 , or initially. We shall again rule out the first two
possibilities.

First we assume that Φ takes its maximum at the interior point P∗ = (x∗, y∗) at
time t∗ . Then

[u,y(P, t∗)]2 + γ [u(P, t∗)]2 � γ [u(P∗, t∗)]2 = γ u2
M, (3.5)

where P denotes an arbitrary point in Ω . Let P1 be the point on Γ1 nearest to P∗ .
Then integrating (3.5) from P∗ to P1 (see [9]), we obtain

π
2

=
∫ 0

uM

|u,y|√
u2

M − u2
ds � √

γ ρ,

where ρ is the distance from P∗ to P1 . Now let P2 be the point on Γ2 nearest to P∗ .
Then, as in the derivation of (2.5), we have

√
γ tan

√
γ d � α,

√
γ d < π/2,

where d is the distance from P∗ to P2 . Thus, if γ satisfies either of the inequalities

γ < π2
/

4ρ2,
√
γ tan

√
γ d < α with γ < π2

/
4d2, (3.6)

then Φ can not attain its maximum value at P∗ in Ω .
Since the location of P∗ is unknown, neither ρ nor d is known so that the above

requirements on γ are not easy to check. We can make the result more explicit in the
special case that every vertical line that intersects ∂Ω contains a point of Γ2 and a
point of Γ1 , such as when Ω is the lower half of a disk. We let h be the maximum
distance along the line x = const. from Γ1 to Γ2 and observe that

ρ + d � h. (3.7)
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Suppose we choose γ̄ such that√
γ̄ tan

√
γ̄ (h − ρ) < α, γ̄ < π2

/
4(h − ρ)2.

Then using (3.7) it follows that√
γ̄ tan

√
γ̄ d < α, γ̄ < π2

/
4d2.

Now let ρ∗ be a solution of

π
2ρ∗ tan

π
2ρ∗ (h − ρ∗) = α, ρ∗ > h/2. (3.8)

If γ ∗ is chosen to satisfy
γ ∗ < π2

/
4ρ∗2, (3.9)

then it follows that √
γ ∗ tan

√
γ ∗d < α, γ ∗ < π2

/
4d2,

since ρ∗ > h/2 implies that d < h/2 and hence that d < ρ∗ .
Thus, if ρ∗ is a solution of (3.8), then the choice of γ ∗ in (3.9) insures that the

maximum of Φ does not occur at P∗ in Ω . For a more general convex domain it, of
course, suffices to take γ < π2

/
4h2 , a very conservative choice for γ .

We now suppose that Φ takes its maximum value at the point Q on ∂Ω for some
t > 0 . We assume that Φ is not constant since as in the previous section the decay
bound follows immediately if Φ is constant. First we consider the case when Q ∈ Γ1 ,
i. e., where u = 0 . From (3.3), we compute

∂Φ
∂n

= 2e2γ tu,yu,yini

= 2e2γ tu,y

[(
nx

∂

∂y
− ny

∂

∂x

)
u,x

]

= 2e2γ tu,y
∂

∂s
(u,x)

= 2e2γ t

[
∂u
∂n

∂2u
∂s∂n

nxny +
(

∂u
∂n

)2

ny
∂

∂s
nx

]
, (3.10)

where nx and ny are the x and y components of the unit outer normal vector n .
Furthermore, we have

∂Φ
∂s

= 2e2γ tu,yu,ys

= 2e2γ t

(
∂u
∂n

ny

)
∂

∂s

(
∂u
∂n

ny

)

= 2e2γ t

[
∂u
∂n

∂2u
∂s∂n

n2
y +

(
∂u
∂n

)2

ny
∂

∂s
ny

]
.
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Since
∂

∂s
nx = −ny(nx,x + ny,y) = −κny,

∂

∂s
ny = κnx,

where, as before, κ is the curvature on ∂Ω , we have at Q ∈ Γ1 ,

∂Φ
∂s

= 2e2γ tny

[
∂u
∂n

∂2u
∂s∂n

ny +
(

∂u
∂n

)2

nxκ

]
= 0. (3.11)

From (3.10) it follows that when Φ is not identically equal to a constant,

∂Φ
∂n

= 2e2γ tny

[
∂u
∂n

∂2u
∂s∂n

nx −
(

∂u
∂n

)2

nyκ

]
= −2e2γ t

(
∂u
∂n

)2

κ � 0,

where we have used (3.11). As this contradicts the boundary maximum principle in
this case, Φ can not take its maximum on Γ1 .

We now consider the case that Q ∈ Γ2 , i. e., where ∂u/∂n + αu = 0 . Here we
have by (3.1) and (3.3),

∂Φ
∂n

=
∂Φ
∂y

= 2e2γ t(−αu)(−u,xx + u,t + γ u).

Moreover, at Q

∂Φ
∂x

= 2e2γ t(u,yu,yx + γ uu,x) = 2e2γ t
(
α2 + γ

)
uu,x = 0

and
∂2Φ
∂x2

= 2e2γ t
(
α2 + γ

) (
u2

,x + uu,xx
)

� 0,

where the latter implies that u,xx � 0 . In addition

∂Φ
∂t

= 2e2γ t
(
u,yu,yt + γ uu,t + γ u2

,y + γ 2u2
)

= 2e2γ t
(
α2 + γ

) (
uu,t + γ u2

)
� 0,

so that
∂Φ
∂y

= −2e2γ t
(−uu,xx + uu,t + γ u2

)
� 0

at Q on Γ2 . We conclude that a nonconstant Φ can not attain its maximum at a point
Q on Γ2 for t > 0 . We note that under our assumptions Φ vanishes at (0, 0) and
(L, 0) so that the maximum value of Φ can not occur at either of these points at any
time t . Thus we conclude that Φ can not take its maximum on ∂Ω .

We formulate our result in the following theorem.

THEOREM 2. Let Ω be a bounded convex domain in R
2 with boundary ∂Ω =

Γ1∪Γ2 where Γ2 lies on the x -axis. If γ satisfies (3.6) and g is a nonnegative function
satisfying (3.2), then the classical solution u of (3.1) satisfies

u2
,y + γ u2 � sup

Ω

{
g2

,y + γ g2
}

e−2γ t.
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4. Nonlinear problem

We now consider the one space dimension problem

∂2u
∂x2

+ f (u) − ∂u
∂t

= 0, 0 < x < L, t > 0,

∂u
∂x

+ αu = 0, x = L, t > 0,

∂u
∂x

− αu = 0, x = 0, t > 0,

u(x, 0) = g(x), 0 < x < L,

(4.1)

where f is a C1 function for which

sf ′(s) � f (s) > 0, s > 0, f (0) = 0, (4.2)

α is a positive constant, and g is a nonnegative function (g �≡ 0 ) with bounded
gradient. A typical form for f is f (u) = up , p > 1 . We note that condition (4.2)
implies that

uf (u) � 2F(u), F(u) =
∫ u

0
f (s) ds. (4.3)

We first impose restrictions on g that will guarantee that the solution remains bounded
and then establish the exponential decay of ux (using subscript notation for partial
differentiation) by means of the parabolic maximum principle.

Since the nonnegative solution of (4.1) may blow up at some time T , we consider
the time interval 0 < t � T1 < T (for the existence of solution prior to blow up time
see [2], [7]). We set

Φ(x, t) =
[
u2

x + σu2 + 2F(u)
]
e2σt, (4.4)

where σ is a positive constant to be determined, and compute

Φx = 2 [uxuxx + σuux + f (u)ux] e2σt (4.5)

and

Φxx −Φt = 2
[
u2

xx + σu2
x − σuf (u) − (f (u))2 − σ

(
u2

x + σu2 + 2F(u)
)]

e2σt.

From (4.5), we have

u2
xx =

1
u2

x
WΦx + [f (u) + σu]2,

where

W =
1
4
e−4σtΦx − e−2σtux[f (u) + σu].

Thus it follows that

Φxx −Φt =
1
u2

x
WΦx + 2σ[uf (u) − 2F(u)]e2σt

and by (4.3) that

Φxx − WΦx

u2
x

−Φt � 0.
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By the parabolic maximum principle, we conclude that Φ takes its maximum either at
an interior point P where ux = 0 , at a point Q on x = 0 or x = L for t > 0 , or
initially.

We begin by assuming that Φ takes its maximum at x∗ in (0, L) for some t∗

where 0 < t∗ � T1 . Then

u2
x(x, t

∗) + σu2(x, t∗) + 2F(u(x, t∗)) � σu2
M + 2F(uM) (4.6)

where uM = u(x∗, t∗) . Evaluating (4.6) at the endpoints, in particular at x = L , we
have (

α2 + σ
)
u2(L) � σu2

M +
[
f (u)

u

]
M

(
u2

M − u2(L)
)
,

where we have suppressed the time argument and used the property that

2F(uM) − 2F(u) �
[
f (u)

u

]
M

(
u2

M − u2(L)
)
.

Moreover, since f (u)/u is nondecreasing by (4.2), we have[
f (u)

u

]
M

=
f (uM)

uM
= K.

Thus

u2(L) � K + σ
K + α2 + σ

u2
M

with the same bound for u2(0) . It now follows by integration of (4.6), as in the
derivation of (2.5) from (2.4), that

√
K + σ tan

√
K + σ d � α,

√
K + σ d < π/2,

where d is the distance from x∗ to the nearer boundary point. Consequently, since
d � L/2 , if σ satisfies

√
K + σ tan

√
K + σ

L
2

< α,
√

K + σL < π, (4.7)

then the maximum of Φ can not occur at an interior point.
We now suppose that Φ takes its maximum at Q on x = 0 or x = L . For

definiteness, we assume it is on x = L . The argument is similar if it is on x = 0 . As
in the previous sections, we assume that Φ is not constant as then the decay estimate
follows immediately. Using (4.1), we compute

Φt = 2
[(
α2 + σ

)
uut + σ

(
α2 + σ

)
u2 + f (u)ut + 2σF(u)

]
e2σt,

which is zero at Q . By (4.3), we then conclude that[(
α2 + σ

)
u + f (u)

]
[ut + σu] � 0

which implies that
ut + σu � 0.
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But then the normal derivative at Q is

Φx = 2
[−αuuxx − ασu2 − αuf (u)

]
e2σt

= −2αu [ut + σu] e2σt � 0,

which violates the boundary maximum principle since Φ is not constant. Thus a
nonconstant Φ can not attain its maximum on x = 0 or x = L for t > 0 .

We conclude therefore that for 0 � t � T1 , provided (4.7) holds,

u2
x + σu2 + 2F(u) � max

{
sup
Ω

{
g2

x + σg2 + 2F(g)
}

,

(
α2 + σ

)
g2(L) + 2F(g(L)),

(
α2 + σ

)
g2(0) + 2F(g(0))

}
e−2σt,

where the last two possibilities result from the fact that ux may be discontinuous at
(0, 0) and (L, 0) , the endpoints of the bar at time t = 0 , and

lim
t→0

[
u2

x + σu2 + 2F(u)
]∣∣

x=L
=

(
α2 + σ

)
g(L) + 2F(g(L)),

with a similar limit at the left end.
Now suppose that the data function g is small enough so that√

f (gM)
gM

+ σ tan

√
f (gM)

gM
+ σ

L
2

< α

has a positive solution σ . If the solution u is to blow up at time T , then there must be
a first time T2 in (T1, T) for which√

f (uM)
uM

tan

√
f (uM)
uM

L
2

= α.

Thus for 0 < t < T2 , we have

u2
x + σu2 + 2F(u) � Q2e−2σt,

where

Q2 = max

{
sup
Ω

{
g2

x + σg2 + 2F(g)
}

,

(
α2 + σ

)
g2(L) + 2F(g(L)),

(
α2 + σ

)
g2(0) + 2F(g(0))

}
, (4.8)

so that
u2 � σ−1Q2e−2σt.

But if the data is such that Q is sufficiently small to insure that√√√√√ f
(

Q√
σ

)
Q√
σ

+ σ tan

√√√√√ f
(

Q√
σ

)
Q√
σ

+ σ
L
2

= α (4.9)

has a positive solution for σ , then we arrive at a contradiction. Thus there is no such
T2 and no blow up of the solution.

We state our result in the following theorem.
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THEOREM 3. If f is a C1 function satisfying (4.2) and g is a nonnegative function
with bounded gradient satisfying (4.9) for some positive constant σ , then the solution
u of (4.1) satisfies

u2
x + σu2 + 2F(u) � Q2e−2σt,

where Q2 is given by (4.8).
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