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AN INEQUALITY ON WEIGHTED ORLICZ SPACES

FOR A VECTOR–VALUED EXTENSION OF THE

HARDY–LITTLEWOOD MAXIMAL OPERATOR ON Sn AND Pn(R)

BENJAMIN BORDIN AND SÉRGIO A. TOZONI

(communicated by L. Maligranda)

Abstract. Partitions of the sphere Sn and of the real projective space Pn(R) are constructed
and are applied to study inequalities on weighted Orlicz spaces for a vector-valued extension of
the Hardy-Littlewood maximal operator for functions with values in an UMD Banach space.

Introduction

The boundedness of the Hardy-Littlewood maximal operator on weighted Lp

spaces and for real-valued functions defined on the unit sphere Sn , on the real projective
space Pn(R) and on more general spaces, was studied in Calderón [4], Macias-Segovia
[9] and Aimar-Macias [1]. The boundedness of this operator on weighted Orlicz spaces
and for real-valued functions on Sn was studied in Kazaryan [7].

C. Fefferman and E. M. Stein introduced in [5] a technique to study the Hardy-
Littlewood maximal operator. The dyadic decomposition of R

n is used as a fundamental
tool in this technique. The idea is to obtain an integral estimate for the dyadic maximal
operator and then, by a transference method, to obtain an integral estimate for the
Hardy-Littlewood maximal operator. This technique was applied e. g. in Bourgain
[2] and in Tozoni [12] to study integral estimates for vector-valued extensions of this
operator and in Sawyer [11] and Ruiz-Torrea [10] to study weighted integral estimates
for others maximal operators.

In Section 1 we construct partitions A n
k , k � 0 , of Sn which induce partitions of

Pn(R) , similar to the dyadic partitions of R
n and we prove several properties of these

partitions. To construct our partitions we use induction on n and we consider S1 with
the usual dyadic partitions. The elements of the partitions are obtained making use of
spherical coordinates.

We give below a geometric rule to build the partitions A 2
k of the sphere S2 .

The elements of A 2
2 are eight geodesic triangles. All of them have their sides

on the equator line and on meridian lines, and all of them have one of the poles
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11 = (1, 0, 0) and −11 = (−1, 0, 0) as a vertex. If Q, Q
′ ∈ A 2

2 , them there exists a
rotation u ∈ SO(3) such that Q

′
= u(Q) .

The elements of A 2
k+1 are obtained dividing the elements of A 2

k . The elements
of A 2

k , k � 2 , are geodesic triangles and geodesic rectangles. In each A 2
k , k � 2 ,

there exist exactly eight geodesic triangles. Now we give a rule to obtain the elements
of A 2

k+1 , dividing the elements of A 2
k .

Let Q be a triangle in A 2
k , k � 2 , let B1 and B2 be the middle points of the

sides of Q which are on meridian lines and let B3 be the middle point of the side which
is parallel to the equator plane. Let B1B2 be the geodesic segment joining the points
B1 and B2 and let B4 be the middle point of this segment. Then Q is the union of a
geodesic triangle Q1 and two geodesic rectangles Q2 and Q3 , all in A 2

k+1 , which are
obtained when we divide Q using the geodesic segments B1B2 and B3B4 .

Now, let Q be a geodesic rectangle of A 2
k , k � 3 , and let C1 and C2 be the

middle points of the sides of Q which are on meridian lines and let C3 and C4 be the
middle points of the sides of Q which are parallel to the equator plane. Then Q is the
union of four geodesic rectangles Q1 , Q2 , Q3 , Q4 in A 2

k+1 , which are obtained when
we divide Q using the geodesic segments C1C2 and C3C4 .

In Section 2 we show that the partitions constructed in Section 1 can be used to
introduce the technique of Fefferman-Stein in the case of Sn and Pn(R) . Applying
this technique we prove a weighted integral inequality for a vector-valued extension of
the Hardy-Littlewood maximal operator for functions with values in an UMD Banach
space. With this result we obtain the version for Sn and Pn(R) of the estimates for the
Hardy-Littlewood maximal operator proved in [5, 2, 12] and a vector-valued extension
of a result in [7].

We point out that the natural dyadic partitions of Sn are not good enough to build
the theory and to prove the results in Section 2. The problem occurs as consequence of
the failure of the relation dyadic-nondyadic given in the condition (b) of Theorem 1.1.

1. Dyadic Partitions of Sn and Pn(R)

In this section we construct partitions A n
k of the unit n -sphere Sn in R

n+1

proceeding by induction on the dimension n . These partitions induce partitions of the
real projective space Pn(R) . The main result of this section is Theorem 1.1. To prove
Theorem 1.1 we need three lemmas where we obtain properties of the partitions A n

k .
If x ∈ R

n , we write |x|n = (x · x)1/2 , where x · y is the usual scalar product of
x and y in R

n and thus Sn = {x ∈ R
n+1 : |x|n+1 = 1} . We denote by SO(n + 1)

the group of proper rotations in R
n+1 and by du the normalized left Haar measure on

SO(n + 1) . If x ∈ Sn and � > 0 , we denote by Bn(x, �) the intersection of Sn with
the closed ball in R

n+1 with center x and radius � .
Let D1 = [0, 2π] and for n � 2 let Dn = [0, π]n−1 × [0, 2π] . We define the

application ξn : Dn → Sn by ξn(θ1, . . . , θn) = (x1, . . . , xn+1) where

x1 = cosθ1, xi = cosθi

i−1∏
j=1

sin θj, 2 � i � n, xn+1 =
n∏

j=1

sin θj.
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We observe that, if θ = (θ1, . . . , θn) and θ ′ = (θ2, . . . , θn) , then

ξn(θ) = (cos θ1, sin θ1 ξn−1(θ ′)).

The Lebesgue measure of a measurable set A ⊂ Sn will be denoted by σ(A) . If G is
a measurable set in Dn we have that

σ(ξn(G)) =
∫

G
sinn−1 θ1 . . . sin θn−1dθ,

where dθ = dθ1 . . . dθn . We write ωn = σ(Sn) .
Now, for integers k and j with k � 0 and 1 � j � 2k , let Ik

j denote the dyadic
interval [(j − 1)2−k+1π, j2−k+1π) . We define

G 1
k = {Ik

j : 1 � j � 2k};
G n

0 = {[0, π]n−1 × [0, 2π)}, n � 2;

G 2
1 = {[0, π/2)× [0, 2π), [π/2, π]× [0, 2π)};

G n
1 = {[0, π/2)× [0, π]n−2 × [0, 2π), [π/2, π]× [0, π]n−2 × [0, 2π)}, n � 3.

For n , k � 2 , we define the family G n
k , using induction on n , as the family formed by

the sets

[0, 2−k+1π) × [0, π/2)n−1, [π − 2−k+1π, π] × [0, π/2)n−1,

(0, 2−k+1π) × G, [π − 2−k+1π, π) × G,

where G ∈ G n−1
2 , G �= [0, π/2)n−1 , and if k � 3 , also formed by the sets

Ik
j × G, Ik

2k−1−j+1 × G,

where G ∈ G n−1
r , 3 � r � k and 2r−3 + 1 � j � 2r−2 . For n � 1 and k � 0 we

define
A n

k = {ξn(G) : G ∈ G n
k }, A n =

⋃
k�0

A n
k .

For each k � 0 , A n
k is a partition of Sn , and, for every Q ∈ A n

k+1 , k � 0 , there exists
Q′ ∈ A n

k , such that Q ⊂ Q′ .
Let Q1 = ξn(Ik

j × G) and Q2 = ξn(Ik
2k−1−j+1

× G) two elements of A n
k , where

G ∈ G n−1
r . Then there exists u ∈ SO(n + 1) such that u(Q1) = Q2 . As consequence

of this remark, it will be enough to consider in the proofs of the results of this section,
only the elements of the type Q1 .

If #F denotes the number of elements of a finite set F , then we have that #A 1
k = 2k

for all k � 0 , #A n
0 = 1 , #A n

1 = 2 , #A n
2 = 2n+1 and for k � 3 ,

#A n
k = 2(#A n−1

2 +
k∑

r=3

2r−3#A n−1
r ).

LEMMA 1.1. (a) Let n � 2 , k � 1 and Q1 = ξn(G1) ∈ A n
k , Q2 = ξn(G2) ∈

A n
k+1 such that Q2 ⊂ Q1 . If G1 = I1

1 × G′
1 with G′

1 ∈ G n−1
1 , then G2 = I2

i × G′
2
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with i ∈ {1, 2} and G′
2 ∈ G n−1

2 . If k � 2 and G1 = Ik
j × G′

1 with G′
1 ∈ G n−1

r and

2 � r � k , then G2 = Ik+1
i × G′

2 where i ∈ {2j − 1, 2j} and G′
2 ∈ G n−1

2 ∪ G n−1
3 if

j = 1 and G′
2 ∈ G n−1

r+1 if 2 � j � 2k−2 .

(b) Let n � 1 , k � 0 and Q ∈ A n
k . If k = 0 , then Q is the union of 2 elements

of A n
1 , and if k = 1 , then Q is the union of 2n elements of A n

2 . For k � 2 , Q is the
union of, at least n + 1 and at most 2n , elements of A n

k+1 .

Proof. Let us prove (a). It is trivial for k = 1 . Consider k � 2 and let i and s
such that G2 = Ik+1

i × G′
2 , G′

2 ∈ G n−1
s . Since Ik

j = Ik+1
2j−1 ∪ Ik+1

2j and G2 ⊂ G1 , then
i ∈ {2j − 1, 2j} and G′

2 ⊂ G′
1 . If r = 2 , then i ∈ {1, 2} and hence s ∈ {2, 3} . If

r � 3 , then 2r−2 + 1 � i � 2r−1 and hence s = r + 1 .
Now, let us prove (b). It is obvious for k = 0 . We have that #A n

2 = 2n−1(#A 1
2 ) =

2n+1 and #A n
1 = 2 , and hence we obtain (b) for k = 1 .

We will prove (b) for k � 2 and n � 1 , using induction on n . It is obvious
that (b) is true for n = 1 . Now, suppose that any element of A n−1

k is the union of at
least n and at most 2n−1 elements of A n−1

k+1 , for all k � 2 . Let Q1 = ξn(G1) ∈ A n
k ,

Q2 = ξn(G2) ∈ A n
k+1 with G1 = Ik

j × G′
1 , G′

1 ∈ G n−1
r , 2 � r � k and G2 =

Ik+1
i × G′

2, G′
2 ∈ G n−1

s , 2 � s � k + 1 and suppose that Q2 ⊂ Q1 . If j = 1 , then
it follows by (a) that i ∈ {1, 2} and G′

2 = G′
1 for i = 1 , G′

2 ∈ G n−1
3 for i = 2 .

Therefore, by the induction hypothesis, we can conclude that Q1 is the union of q + 1
elements of the type Q2 , where q is an integer, n � q � 2n−1 . If j � 2 , then it follows
by (a) that i ∈ {2j − 1, 2j} and G′

2 ∈ G n−1
r+1 . Therefore, by the induction hypothesis,

we can conclude that Q1 is the union of 2q elements of the type Q2 , where q is an
integer, as above. �

It follows by the above proof that the elements of A 2
k are unions of 3 or 4 elements

of A 2
k+1 if k � 2 , 4 if k = 1 and 2 if k = 0 , and the elements of A 3

k are unions of 4,
5, 6 or 8 elements of A 3

k+1 if k � 2 , 8 if k = 1 and 2 if k = 0 .

LEMMA 1.2. Let n � 1 , k � 0 , δ 1
k = 2−kπ , δ 2

k = (1 + 2−2π)2−k+1π and
δ n

k = 2n−kπ for n � 3 . If Q ∈ A n
k , then there exists x ∈ Q such that Q ⊂ Bn(x, δ n

k ) .

Proof. If Q ∈ A n
0 , then Q = Sn = Bn(x, δ n

0 ) for any x ∈ Sn . If Q ∈ A n
1 , then

Q is a half of the n -sphere Sn . Therefore, since δ n
1 >

√
2 , there exists x ∈ Q such

that Q ⊂ Bn(x, δ n
1 ) .

We will prove the lemma for k � 2 and n � 1 , using induction on n . The proof
is trivial for n = 1 . Now, suppose that the lemma is true for n − 1 .

Let Q = ξn(G) ∈ A n
k , where G = Ik

j × G′ , with G′ ∈ G n−1
2 if j = 1 and

G′ ∈ G n−1
r if 2r−3 + 1 � j � 2r−2 , 3 � r � k . We set φ = j2−k+1π , t = 2−k+1π

and α = 2−r+1π . If j = 2r−3 + i and 1 � i � 2r−3 , then φ = πt/4α + it and

Q = {(cos θ1, sin θ1 ξn−1(θ ′)) : φ − t � θ1 � φ, θ ′ ∈ G′}.
It is enough to consider i = 2r−3 , that is, φ = πt/2α . Let Q′ = ξn−1(G′) . Since
Q′ ∈ A n−1

r , it follows by the induction hypothesis that there exists x′ ∈ Q′ such that
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Q′ ⊂ Bn−1(x′, δ n−1
r ) . If θ = (θ1, θ ′) ∈ G , then x = (cos φ, sin φ x′) , ξn(φ, θ ′) =

(cos φ , sin φ ξn−1(θ ′)) and ξn(θ) = (cos φ1, sin θ1 ξn−1(θ ′)) are in Q and

|ξn(θ) − ξn(φ, θ ′)|n+1 =((cos θ1 − cos φ)2 + (sin θ1 − sin φ)2|ξn−1(θ ′)|2n)1/2

=|ξ1(θ1) − ξ1(φ)|2 � t

and
|ξn(φ, θ ′) − x|n+1 = sin φ |ξn−1(θ ′) − x′|n � sin φ δ n−1

r .

Therefore

|ξn(φ) − x|n+1 �|ξn(θ) − ξn(φ, θ ′)|n+1 + |ξn(φ, θ ′) − x|n+1

�t + φδ n−1
r � δ n

k .

Then ξn(θ) ∈ Bn(x, δ n
k ) for all θ ∈ G , that is, Q ⊂ Bn(x, δ n

k ) . �

LEMMA 1.3. Let n � 1 , k � 3 , Gn
k = Ik

2k−2 × . . . × Ik
2k−2 × Ik

1 ∈ G n
k , Qn

k =
ξn(Gn

k) , αn,k = (π/2 − 2−kπ, . . . , π/2 − 2−kπ , 2−kπ) ∈ Dn , xn,k = ξn(αn,k) and
ρn

k = 2(1−n)/2(2 − 2 cos 2−kπ)1/2 . Then Bn(xn,k, ρn
k) ⊂ Qn

k .

Proof. Suppose that y = ξn(θ1, θ ′) �∈ Qn
k . If θ1 �∈ Ik

2k−2 , then

|y − xn,k|n+1 �((cos θ1 − cosαn,k
1 )2 + (sin θ1|ξn−1(θ ′)|n − sinαn,k

1 |xn−1,k|n)2)1/2

=|ξ1(θ1) − ξ1(αn,k
1 )|2

>(2 − 2 cos 2−kπ)1/2.

Now consider θ1 ∈ Ik
2k−2 . Since y �∈ Qn

k , we have that θ ′ �∈ Gn−1
k and thus ξn−1(θ ′) �∈

Qn−1
k . If αn,k

1 � θ1 � π/2 , let v1 = sinαn,k
1 ξn−1(αn−1,k) , v2 = sinαn,k

1 ξn−1(θ ′) and
β = (sin θ1 − sinαn,k

1 )/ sinαn,k
1 . Since β � 0 and |v1|n = |v2|n , we obtain

|y − xn,k|n+1 �| sin θ1 ξn−1(θ ′) − sinαn,k
1 ξn−1(αn−1,k)|n

=|βv2 + (v2 − v1)|n
�|v2 − v1|n
= cos 2−kπ |ξn−1(θ ′) − xn−1,k|n .

If π/2 − 2−k+1π � θ1 < αn,k
1 , then choosing conveniently v1 , v2 and β we obtain

|y − xn,k|n+1 > cos 2−k+1π |ξn−1(θ ′) − xn−1,k|n.
Therefore, from the above inequalities, we can conclude using induction on n , that for
n � 1 and k � 3 ,

|y − xn,k|n+1 >(cos 2−k+1π)n−1(2 − 2 cos 2−kπ)1/2

�2(1−n)/2(2 − 2 cos 2−kπ)1/2.

Then, if y �∈ Qn
k , it follows by the above inequality that y �∈ Bn(xn,k, ρn

k) , that is,
Bn(xn,k, ρn

k) ⊂ Qn
k . �

We are now in conditions of proving the main result of this section.



590 BENJAMIN BORDIN AND SÉRGIO A. TOZONI

THEOREM 1.1. For all n � 1 , there exists a constant Dn , depending only on n ,
such that:

(a) If k � 0 , Q1 ∈ A n
k and Q2 ∈ A n

k+1 with Q2 ⊂ Q1 , then

σ(Q1) � Dnσ(Q2).

(b) For all Q ∈ A n
k , k � 0 , there exist x ∈ Q and 0 � � � 2 , such that

Q ⊂ Bn(x, �) and
σ(Bn(x, �)) � Dnσ(Q).

(c) For all x ∈ Sn and all 0 � � � 2 , there exist k � 0 , Q ∈ A n
k and

u ∈ SO(n + 1) , such that Bn(x, �) ⊂ u(Q) and

σ(Q) � Dnσ(Bn(x, �)).

Proof. We will prove (a) for the constant Dn = 2n(n+1)/2 , using induction on n .
The proof is trivial in the case n = 1 , k � 0 and in the case n � 1, k = 0 . Suppose that
(a) is true for n−1 and k � 1 . Let k � 1 , Q1 = ξn(G1) ∈ A n

k , Q2 = ξn(G2) ∈ A n
k+1

such that Q2 ⊂ Q1 . If G1 = Ik
j × G′

1 , G′
1 ∈ G n−1

r , 1 � r � k , then it follows from

Lemma 1.1(a) that G2 = Ik+1
i × G′

2 where i ∈ {2j − 1, 2j} and G′
2 ∈ G n−1

r ∪ G n−1
r+1 .

By the induction hypothesis we obtain

σ(Q1) =σ(ξn−1(G′
1))
∫

Ikj

sinn−1 θ1dθ1 (1.1)

�2n(n−1)/2σ(ξn−1(G′
2))
∫

Ikj

sinn−1 θ1dθ1.

It is enough to prove (a) for i = 2j−1 . If j � 2 , taking into account that sin(t+2−kπ) �
2 sin t for 2−kπ � t � π/2 , we obtain∫

Ikj

sinn−1 θ1dθ1 � 2n
∫

Ik+1
2j−1

sinn−1 θ1dθ1.

Now, since sin 2t � 2 sin t , we obtain∫
Ik1

sinn−1 θ1dθ1 � 2n
∫

Ik+1
1

sinn−1 θ1dθ1.

Therefore, it follows from (1.1) that

σ(Q1) � 2n(n+1)/2σ(ξn−1(G′
2))
∫

Ik+1
2j−1

sinn−1 θ1dθ1 = 2n(n+1)/2σ(Q2).

Let us prove (b). The case n = 1 is true for D1 = 1 . Since the elements of A n
0 and

A n
1 are balls in Sn , we can suppose k � 2 . Let n = 2 , k � 2 and Q = ξ2(G) ∈ A 2

k ,
where G = Ik

j × G′ , with G′ ∈ G 1
2 if j = 1 and G′ ∈ G n−1

r if 2r−3 + 1 � j � 2r−2 ,
3 � r � k . We set φ = (j− 1)2−k+1π , t = 2−k+1π and α = 2−r+1π . If j = 2r−3 + i
and 1 � i � 2r−3 , then φ = πt/4α + (i − 1)t . Considering φ , t and α fixed,
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the element Q of smallest area is obtained when i = 1 , and thus it is enough to
consider φ = πt/4α . By Lemma 1.2 there exists x ∈ Q such that Q ⊂ B2(x, δ 2

k ) ,
where δ 2

k = (1 + 2−2π)2−k+1π . We have that σ(B2(x, δ 2
k )) = π(δ 2

k )2 < 4πt2 and
σ(Q) = α(cos φ − cos(φ + t)) . For j = 1 we have

σ(B2(x, δ 2
k ))

σ(Q)
� 2π2,

and for j � 2 ,

σ(B2(x, δ 2
k ))

σ(Q)
<

4πt2

α(cos φ − cos(φ + t))
< 16

(
φ

sin φ

)2

� 4π2.

Now let n � 3 and k � 2 . We will proceed by induction on n . Therefore let us
suppose that the result is true for n − 1 . Let Q = ξn(G) ∈ A n

k , where G = Ik
j × G′ ,

with G′ ∈ G n−1
2 if j = 1 and G′ ∈ G n−1

r if 2r−3 + 1 � j � 2r−2 , 3 � r � k , and
let φ , t and α as before. Again, it is enough to consider φ = πt/4α . By Lemma 1.2,
there exists x ∈ Q such that Q ⊂ Bn(x, δ n

k ) , where δ n
k = 2n−1t . For j = 1 we have

σ(Bn(x, δ n
k ))

σ(Q)
� 2n2

Dn−1.

Since s/2 � sin s � s for 0 � s � π/2 , then

2n−1

nπn−1
[(φ + t)n − φn] �

∫ φ+t

φ
sinn−1 sds � 1

n
[(φ + t)n − φn]. (1.2)

But for 0 � � � π/2 ,

σ(Bn(x, �)) = ωn−1

∫ 2 arc sin(�/2)

0
sinn−1 sds

and hence
ωn−12n−1

nπn−1
�n � σ(Bn(x, �)) � ωn−12n

n
�n. (1.3)

Then it follows by (1.2), (1.3) and by the induction hypothesis that, for j � 2 ,

σ(Q) =σ(ξn−1(G′))
∫ φ+t

φ
sinn−1 θ1dθ1

� 2n−1

nDn−1πn−1
σ(Bn−1(x′, δ n−1

r )) [(φ + t)n − φn]

� ωn−22(n−1)(n−2)−1

n(n − 1)Dn−1πn−2

tn−1[(φ + t)n − φn]
φn−1

and

σ(Bn(x, δ n
k )) � ωn−12n2

n
tn.
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Therefore
σ(Bn(x, δ n

k ))
σ(Q)

� Cn
tφn−1

(φ + t)n − φn
� Cn

n
.

Let us prove (c). Consider Qn
k , ρn

k and xn,k as in Lemma 1.3. We observe that
it is enough to prove (c) for 0 < � � ρn

3 . Let u ∈ SO(n + 1) such that uxn,k = x .
Thus, it follows by Lemma 1.3 that Bn(x, �) ⊂ u(Qn

k) if ρn
k+1 < � � ρn

k for k � 3 .
Therefore, it is enough to prove that there exists a constant Dn such that

σ(Qn
k)

σ(Bn(xn,k, ρn
k+1))

� Dn, k � 3. (1.4)

Consider n = 2 , k � 3 and let t = 2−k+1π . Then

σ(Q2
k)

σ(B2(x2,k, ρ2
k+1))

=
1
π

t sin t
1 − cos(t/4)

< 11.

Now consider n � 3 , k � 3 , t = 2−k+1π . Applying (1.2), (1.3) and the inequality
t2/3 � 1 − cos t , 0 � t � π/2 , we obtain

σ(Qn
k) � 1

n!

n∏
j=1

[(π
2

)j
−
(π

2
− t
)j
]

�
(π

2

)n(n−1)/2
tn;

σ(Bn(xn,k, ρn
k+1)) � ωn−12n−1

nπn−1
(ρn

k+1)
n � ωn−12−(n2+2)/2

nπn−13n/2
tn

and consequently we obtain (1.4) . �

REMARK 1.1. In the proof of Theorem 1.1(b), the radius � of Bn(x, �) is the same
for all Q ∈ A n

k . Therefore, for any two elements Q1 , Q2 ∈ A n
k , we obtain

D−1
n σ(Q1) � σ(Q2) � Dnσ(Q1).

The above inequality shows that the measures of the elements of A n
k are proportional

and the constant of proportionality depends only on n .

REMARK 1.2. Consider the equivalence relation Δ in Sn defined by: xΔy ⇔ y =
x or y = −x . Then Pn(R) is the quotient space Sn/Δ = {x̄ : x ∈ Sn} where x̄ is
the equivalence class {x,−x} of x ∈ Sn . Let ψ be the projection map from Sn onto
Pn(R) , ψ(x) = x̄ . If A ⊂ Sn then we can identify the subset Ā = ψ(A) of Pn(R)
with the subset A∪−A = ψ−1(Ā) of Sn . Let us denote by σ̄ the image measure of σ
by ψ , that is, σ̄(B) = σ(ψ−1(B)) for all Borel subsets B of Pn(R) . For k � 1 we
define

Ā n
k = {Q̄ = ψ(Q) : Q ∈ A n

k }.
We point out that, if we show that −Q ∈ A n

k for all Q ∈ A n
k , k � 1 , then it will be

easy to check that Ā n
k is a partition of Pn(R) and that, all the properties of the partitions

A n
k of Sn also hold for the partitions Ā n

k of Pn(R) , in particular the conditions (a),
(b) and (c) of Theorem 1.1 hold for the same constant Dn .
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We will show that −Q ∈ A n
k if Q ∈ A n

k using induction on n . It is obvious
that −Q ∈ A n

1 if Q ∈ A n
1 . If Q = ξ2(Ik

j × I2
l ) ∈ A 2

k , j = 1, 2k−1 and 1 � l � 4 ,
then −Q = ξ2(Ik

i × I2
u) ∈ A 2

k for i = 2−k if j = 1 , i = 1 if j = 2−k , u = l + 2 if
1 � l � 2 and u = l − 2 if 3 � l � 4 . If Q = ξ2(Ik

j × Ir
l ) ∈ A n

k with 3 � r � k ,
2r−3 + 1 � j � 2r−2 and 1 � l � 2r , then since −ξ2(θ1, θ2) = ξ2(π − θ1, θ2 − π) ,
we have that −Q = ξ2(Ik

i × Ir
u) ∈ A 2

k for i = 2k−1 − j + 1 , u = l + 2r−1 if
1 � l � 2r−1 and u = l − 2r−1 if 2r−1 + 1 � l � 2r . If Q = ξ2(Ik

2k−1−j+1
× Ir

l )
we have −Q = ξ2(Ik

i × Ir
u) ∈ A 2

k for i = j , u = l + 2r−1 if 1 � l � 2r−1 and
u = l − 2r−1 if 2r−1 + 1 � l � 2r .

Now suppose that −Q ∈ A n−1
k if Q ∈ A n−1

k , k � 1 . Let Q = ξn(G) ∈ A n
k

where G = Ik
j ×G′ with G′ ∈ G n−1

2 if j = 1 and G′ ∈ G n−1
r if 2r−3 + 1 � j � 2r−2 ,

3 � r � k . If Q′ = ξn−1(G′) , then −Q′ = ξn−1(G∗) where G∗ ∈ G n−1
2 if j = 1 and

G∗ ∈ G n−1
r if 2r−3 +1 � j � 2r−2 , 3 � r � k . Therefore −Q = ξn((π− Ik

j )×G∗) =
ξn(Ik

i × G∗) ∈ A n
k for i = 2k−1 − j + 1 .

2. Vector Valued Maximal Operators

In this section X will denote a Banach space or a Banach lattice with norm ‖ · ‖
and with the UMD property (see [3]) and W will denote a positive integrable function
on Sn . Our reference for Banach space and Banach lattice is [8].

The definitions and results in this section will be enunciated and proved only
for functions defined on the sphere Sn . By Remark 1.2 all the results of Section 1,
including Theorem 1.1, also hold for partitions Ā n

k of the real projective space Pn(R) .
As consequence all the results in this section will also hold for Pn(R) .

We denote by Lp
X(W), 1 � p < ∞ , the space of all measurable X -valued functions

f on Sn such that

‖f ‖Lp
X(W) =

(∫
Sn
‖f (x)‖pW(x)dσ(x)

)1/p

< ∞.

The space Lp
X(W) is a Banach space with the norm ‖ · ‖Lp

X(W) . For W = 1 we write

Lp
X(W) = Lp

X .
Let 1 < p < ∞ . If there exists a constant C such that(

1
σ(Bn(x, �))

∫
Bn(x,�)

Wdσ

)(
1

σ(Bn(x, �))

∫
Bn(x,�)

W−1/(p−1)dσ

)(p−1)

� C, (2.1)

for all � > 0 and x ∈ Sn , we say that W is a weight in the Muckenhoupt’s class
Ap(Sn) . If W ∈ Ap(Sn) , we denote by C(p, W) the smallest constant C that satisfies
(2.1). Now, if there exists a constant C such that(

1
σ(Q)

∫
Q

Wdσ
)(

1
σ(Q)

∫
Q

W−1/(p−1)dσ
)(p−1)

� C, (2.2)
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for all Q ∈ A n , we say that W is a weight in the class Ap(A n) . The class A∞(Sn)
(respectively A∞(A n) ) is defined as the union of the classes Ap(Sn) (respectively
Ap(A n) ) for 1 < p < ∞ .

Let f be a real-valued integrable function on Sn . The Hardy-Littlewood maximal
operator and the dyadic maximal operator are defined at f respectively by

M(f )(x) = sup
B

1
σ(B)

∫
B
|f (y)|dσ(y)

and

Md(f )(x) = sup
x∈Q

Q∈A n

1
σ(Q)

∫
Q
|f (y)|dσ(y)

where the supremum is taken over all B = Bn(t, �) with � > 0 and t ∈ Sn such that
x ∈ Bn(t, �) .

LEMMA 2.1. Let Dn be the constant in Theorem 1.1. Then, for all 1 < p � ∞ ,
all real-valued integrable function f and x ∈ Sn ,

Ap(Sn) ⊂ Ap(A n), (2.3)

Md(f )(x) � DnM(f )(x). (2.4)

Proof. Let 1 < p < ∞ and W ∈ Ap(Sn) . If Q ∈ A n , then by Theorem 1.1(b),
there exist t ∈ Q and � > 0 such that Q ⊂ Bn(t, �) and σ(Bn(t, �)) � Dnσ(Q) .
Therefore it follows by (2.1) that(

1
σ(Q)

∫
Q

Wdσ
)(

1
σ(Q)

∫
Q

W−1/(p−1)dσ
)

� Dp
nC(p, W)

and for a real-valued integrable function f we have that

1
σ(Q)

∫
Q
|f (y)|dσ(y) � Dn

σ(Bn(t, �))

∫
Bn(t,�)

|f (y)|dσ(y).

Consequently W ∈ Ap(A n) and Md(f )(x) � DnM(f )(x) for all x ∈ Sn . �

The next two results follow frommartingale theorywhenwe consider the increasing
sequence of σ -fields (Fk)k�0 , where Fk is the σ -field generated by A n

k .

THEOREM 2.1. ([6]). Let 1 < p < ∞ . Then W ∈ Ap(A n) if and only if the
maximal operator Md is bounded on Lp

R
(W) .

Throughout this section Φ is a non-decreasing continuous function on [0,∞)
with Φ(0) = 0 and that satisfies the Δ2 -condition, that is, there exists a constant c > 0
such that,

Φ(2λ ) � cΦ(λ ), λ > 0. (2.5)

The following result is an immediate consequence of Theorem 1.1(a) and of Remark
3.1 in [12].
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THEOREM 2.2. Let W ∈ A∞(A n) and let X be a UMD Banach space with a
normalized unconditional basis (ej)j�1 . Then there exists a constant K , depending
only on X , Φ and W , such that for all f =

∑∞
j=1 f jej ∈ L1

X ,

∫
Sn
Φ

⎛⎝sup
k�1

‖
k∑

j=1

Md(f j)ej‖
⎞⎠Wdσ � K

∫
Sn
Φ(Md(‖f ‖))Wdσ. (2.6)

REMARK 2.1. Consider Dn , n � 2 with the usual dyadic partition, that is, for
k � 1 let

G n,0
k = {Ik

j1 × . . . × Ik
jn : 1 � j1, . . . , jn−1 � 2k−1, 1 � jn � 2k}

and

A n,0
k = {ξn(G) : G ∈ G n,0

k }.
Then A n,0

k is a natural partition of Sn for each k � 1 . An easy calculation can
show that the condition (a) of Theorem 1.1 is satisfied for these partitions. Since
Qn

k = ξn(Ik
2k−2 × · · · × Ik

2k−2) ∈ A n,0
k , k � 3 , then it follows by Lemma 1.3 that the

condition (c) of Theorem 1.1 is also satisfied.
We point out that the condition (b) of Theorem 1.1 is not satisfied for the elements

of A n,0
k around 11 = ξn(0, 0, . . . , 0) = (1, 0, . . . , 0) . In fact, consider Qk = ξn(Ik

1 ×
· · · × Ik

1) and ak = ξn(2−k+1π, 0, . . . , 0) . Suppose that Qk ⊂ Bn(xk, rk) . Then 11 ,
ak ∈ Bn(xk, rk) and hence

rk � 1
2
|11 − ak|n+1 =

[
1
2
(1 − cos 2−k+1π)

]1/2

= �k.

Applying (1.2), (1.3) and the inequality t2/3 � 1 − cos t , 0 � t � π/2 , we obtain

σ(Bn(xk, rk)) � σ(Bn(xk, �k)) � ωn−12(n−1)/2

nπn−13n/2
(2−k+1π)n

and

σ(Qk) � 1
n!

(2−k+1π)n(n+1)/2.

Therefore we have that

lim
k→∞

σ(Bn(xk, rk))
σ(Qk)

= ∞

and thus the condition (b) of Theorem 1.1 is not satisfied in this case.
Since the condition (a) of Theorem 1.1 hold, then the results of Theorem 2.1 and

Theorem 2.2 also hold in this case, but the relations (2.3) and (2.4) in Lemma 2.1 don’t
hold as consequence of the failure of the condition (b).
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THEOREM 2.3. Let W ∈ A∞(Sn) , let X be aUMDBanach spacewith a normalized
unconditional basis (ej)j�1 , and suppose that Φ is a convex function. Then there exists
a constant K , depending only on X,Φ and W , such that

∫
Sn
Φ
(

sup
k�1

‖
k∑

j=1

M(f j)ej‖
)

Wdσ � K
∫

Sn
Φ(M(‖f ‖))Wdσ (2.7)

for all f =
∑∞

j=1 f jej ∈ L1
X . Moreover, if 1 < p < ∞ , W ∈ Ap(Sn) and f ∈ Lp

X(W) ,

then
∑∞

j=1 M(f j)ej converges in Lp
X(W) to a function M̃(f ) and the operator M̃ is

bounded on Lp
X(W) .

Proof. We observe that X is a Banach lattice with absolute value |∑j xjej| =∑
j |xj|ej . Let f =

∑∞
j=1 f jej ∈ L1

X and let us denote

M̃(f )(y) =
k∑

j=1

M(f j)(y)ej, M̃d(f )(y) =
k∑

j=1

Md(f j)(y)ej.

Let x ∈ Sn and B = Bn(t, �) such that x ∈ B . It follows by Theorem 1.1(c) that,
there exist Q ∈ A n and u ∈ SO(n + 1) , such that B ⊂ u(Q) and σ(Q) � Dnσ(B) .
Therefore

1
σ(B)

∫
B
|f (y)|dσ(y) � Dn

σ(Q)

∫
u(Q)

|f (y)|dσ(y)

=
Dn

σ(Q)

∫
Q
|f (uz)|dσ(z)

�DnM̃d(f ◦ u)(u−1x).

Integrating both sides of the above inequality on SO(n + 1) and with respect to the
Haar measure du , we obtain

1
σ(B)

∫
B
|f (y)|dσ(y) � Dn

∫
SO(n+1)

M̃d(f ◦ u)(u−1x)du

and thus

M̃(f )(x) � Dn

∫
SO(n+1)

M̃d(f ◦ u)(u−1x)du. (2.8)

Since W ∈ A∞(Sn) , we can choose 1 < p < ∞ such that W ∈ Ap(Sn) . Then, it
follows by (2.1) that W◦u ∈ Ap(Sn) and C(p, W◦u) = C(p, W) for all u ∈ SO(n+1) .
Therefore it follows by (2.4), (2.5), (2.6), (2.8), by Jensen’s inequality and Fubini’s
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theorem that,∫
Sn
Φ(‖M̃(f )(x)‖)W(x)dσ(x) �

�
∫

Sn
Φ

(
Dn

∫
SO(n+1)

‖M̃d(f ◦ u)(u−1x)‖du

)
W(x)dσ(x)

� cb
∫

Sn
Φ

(∫
SO(n+1)

‖M̃d(f ◦ u)(u−1x)‖du

)
W(x)dσ(x)

� cb
∫

Sn

∫
SO(n+1)

Φ(‖M̃d(f ◦ u)(u−1x)‖)W(x)dudσ(x)

= cb
∫

SO(n+1)

∫
Sn
Φ(‖M̃d(f ◦ u)(y)‖)W ◦ u(y)dσ(y)du

� Kcb
∫

SO(n+1)

∫
Sn
Φ(Md(‖f ◦ u‖)(y))W ◦ u(y)dσ(y)du

� Kcb
∫

SO(n+1)

∫
Sn
Φ(DnM(‖f ◦ u‖)(y))W ◦ u(y)dσ(y)du

� Kc2b
∫

SO(n+1)

∫
Sn
Φ(M(‖f ◦ u‖)(u−1x))W(x)dσ(x)du

where b is the unique integer satisfying 2b−1 < Dn � 2b . But M(‖f ◦ u‖)(u−1x) =
M(‖f ‖)(x) and hence we obtain∫

Sn
Φ(‖M̃(f )(x)‖)W(x)dσ(x) � Kc2b

∫
Sn
Φ(M(‖f ‖)(x))W(x)dσ(x). (2.9)

Now, let f =
∑∞

j=1 f jej and f k =
∑k

j=1 f jej, k � 1 . Since (2.9) is true for all
f k, k � 1 , it follows by the Monotone Convergence Theorem that (2.7) is true.

Finally, let 1 < p < ∞ , Φ(t) = tp , W ∈ Ap(Sn) and f =
∑∞

j=1 f jej ∈ Lp
X(W) .

Then by (2.7) we obtain

‖
�+m∑
j=�

M(f j)ej‖Lp
X(W) � K1/p‖M(‖

�+m∑
j=�

f jej‖)‖Lp
R

(W)

for all positive integers � and m . But the operator M is bounded on Lp
R
(W) (see [1,

4, 9]) and hence

‖
�+m∑
j=�

M(f j)ej‖Lp
X(W) � K′‖

�+m∑
j=�

f jej‖Lp
X(W).

From the above inequality we can conclude that
∑∞

j=1 M(f j)ej converges in Lp
X(W) to

a function M̃(f ) and that the operator f �→ M̃(f ) is bounded on Lp
X(W) . �

REMARK 2.2. Let X be a Banach lattice of real-valued measurable functions on a
σ -finite measure space (Ω, B,μ) with the UMD property. Let us denote by H (X)
the set of all functions of the type f =

∑k
j=1 ajf j where aj ∈ X , f j ∈ L1

R
, k � 1 .



598 BENJAMIN BORDIN AND SÉRGIO A. TOZONI

We have that H (X) is dense in Lp
X for 1 � p < ∞ . For f ∈ H (X) we define

Md(f )(x) = sup
x∈Q

Q∈A n

1
σ(Q)

∫
Q
|f (y)|dσ(y)

and

M(f )(x) = sup
B

1
σ(B)

∫
B
|f (y)|dσ(y),

where the supremum is taken over all B = Bn(t, �) with � > 0 and t ∈ Sn such that
x ∈ Bn(t, �) .

It was proved in [12] that, if W ∈ A∞(A n) , there exists a constant K such that∫
Sn
Φ(‖Md(f )‖)Wdσ � K

∫
Sn
Φ(Md(‖f ‖))Wdσ

for all f ∈ H (X) . Then, if W ∈ A∞(Sn) , we can obtain the inequality (2.9) for the
operator M instead of M̃ and for f ∈ H (X) .
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