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THE PROPERTIES OF FOUR ELEMENTS

IN ORLICZ–MUSIELAK SPACES

BARTOSZ MICHERDA

Abstract. “The property of four elements” (PFE) , closely related to the isotonicity of the metric
projection operator, has been recently introduced and proved in ordered Hilbert spaces, Lp -
spaces and Orlicz-Musielak spaces (see [5], [6], [12]). Moreover, a dual inequality named “the
upper property of four elements” (UPFE) for norms in Lp -spaces has been discussed in [13].

In this paper we prove that the inequality (UPFE) holds in all Orlicz-Musielak spaces
generated by a convex modular. It is also shown that both properties of four elements can be
reversed (with some other constants) if the function generating the modular satisfies the condition
(Δ2 ). This generalizes Theorems 3.1, 3.4 from [13].
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