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IN ORLICZ–MUSIELAK SPACES
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(communicated by L.-E. Persson)

Abstract. “The property of four elements” (PFE) , closely related to the isotonicity of the metric
projection operator, has been recently introduced and proved in ordered Hilbert spaces, Lp -
spaces and Orlicz-Musielak spaces (see [5], [6], [12]). Moreover, a dual inequality named “the
upper property of four elements” (UPFE) for norms in Lp -spaces has been discussed in [13].

In this paper we prove that the inequality (UPFE) holds in all Orlicz-Musielak spaces
generated by a convex modular. It is also shown that both properties of four elements can be
reversed (with some other constants) if the function generating the modular satisfies the condition
(Δ2 ). This generalizes Theorems 3.1, 3.4 from [13].

1. Introduction

The metric projection operator onto a closed convex subset of a Banach space
is widely used as an important tool in many different areas of mathematics. This
operator has been studied by several authors from various points of view, for example
differentiability [2], [3], smoothness [4] and uniform continuity [1].

Since 1986, the projection operator has been investigated from the point of view of
isotonicitywith respect to an ordering given by a pointed convex cone [5], [6], [7], [8], [9],
[10], [11], [12]. This is an important property which can be used in the study of many
problems such as Variational Inequalities, Complementarity Problems, Optimization
and Numerical Analysis (see [5] and the references given there).

In 1995, a special inequality related to the isotonicity, named “the property of four
elements” (PFE) was introduced in [5]. Since then, this property has been considered
for Hilbert spaces, Lp -spaces and Lyapunov functionals in the papers [12], [13] and for
modular spaces in [6]. Recently, Isac and Persson have examined another interesting
latticial property, named “the upper property of four elements” (UPFE) (see [13]).
This property is important for the study of the antiprojection operator in Lp -spaces and
Hilbert lattices.

The aim of this paper is to generalize some results from [13] to the case of Orlicz-
Musielak spaces. Section 2 contains a brief summary of the basic facts concerning
modulars. In Section 3 we prove that the property (UPFE) is valid in Musielak-Orlicz
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spaces generated by a convex modular. We also point out a connection between the
condition (UPFE) and the antiisotonicity of the antiprojection operator. Section 4 is
devoted to the study of some inequalities related with the properties of four elements.
We show that the inequalities (PFE) and (UPFE) for Orlicz-Musielak modulars both
can be partially reversed if the generating function satisfies the property (Δ2 ).

2. Preliminaries

Let X be a vector space over K (K = R or K = C ).

DEFINITION 2.1. (see e.g. [15, p. 1]) A function ρ : X → [0, +∞] is called a
modular if the following properties are satisfied:

(1) ρ(x) = 0 if and only if x = 0 ,
(2) ρ(αx) = ρ(x) if α ∈ K and |α| = 1 ,
(3) ρ(αx + βy) � ρ(x) + ρ(y) if α, β � 0 and α + β = 1 .

The set Xρ =
{

x ∈ X : lim
α→0

ρ(αx) = 0
}

is called a modular space. It is easy to

show that Xρ is a vector subspace of X .
If (3) is replaced by
(3’) ρ(αx + βy) � αρ(x) + βρ(y) if α, β � 0 and α + β = 1 ,

ρ is said to be a convex modular.

DEFINITION 2.2. (see [15, p. 33]) Let (Ω,Σ,μ) be a measurable space and let
Φ : Ω × R+ → R+ be a ϕ -function with a parameter, i.e. Φ satisfies the following
properties:

(ϕ 1) for every t ∈ Ω , Φ(t, ·) : R+ → R+ is a non-decreasing, continuous
function such that Φ(t, 0) = 0 and Φ(t, x) > 0 for x > 0 .

(ϕ 2) for every x ∈ R+ , Φ(·, x) : Ω → R+ is a Σ -measurable function. Here
X denotes the set of all real Σ -measurable functions defined on Ω , with equality
μ -almost everywhere. For f ∈ X , set

ρΦ(f ) =
∫
Ω
Φ(t, |f (t)|) dμ(t).

ρΦ is the Orlicz-Musielak modular given by Φ and the corresponding modular space
XρΦ will be called Orlicz-Musielak space. If the function Φ is independent of t , the
Orlicz-Musielak space XρΦ is said to be the Orlicz space. If

(ϕ 3) Φ(t, ·) : R+ → R+ is convex for every t ∈ Ω ,
then ρΦ is a convex modular.

Suppose that Xρ is a modular space and K ⊂ Xρ a pointed convex cone, i.e.
K + K ⊂ K , αK ⊂ K for all α ∈ R+ and K ∩ (−K) = {0} . Then we can define an
ordering on Xρ given by K ( x � y if and only if x−y ∈ K ). Denote x∧y = min(x, y)
and x ∨ y = max(x, y) (with respect to the ordering given by K ). We will always
suppose that Xρ is a lattice, i.e. x ∧ y and x ∨ y exist for any x, y ∈ Xρ .

DEFINITION 2.3. A subset D of Xρ is called latticially closed if x ∧ y ∈ D and
x ∨ y ∈ D for all x, y ∈ D .
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EXAMPLE 2.4. Every Orlicz-Musielak space XρΦ can be ordered by the pointed
convex cone K =

{
x ∈ XρΦ : x � 0

}
. Then the following subsets of XρΦ are latticially

closed:
a) D = {x ∈ XρΦ : f 2 � x � f 1} , where f 1 , f 2 ∈ XρΦ and f 2 � f 1 ,
b) D = {x ∈ XρΦ : x is a simple function defined on Ω} ,
c) D =

⋂
α∈A

Dα , where {Dα}α∈A is a family of latticially closed subsets of XρΦ ,

d) D =
⋃
α∈A

Dα , where {Dα}α∈A is an oriented family of latticially closed subsets

of XρΦ , i.e. for any α1 , α2 ∈ A there exists α3 ∈ A such that Dα1 ∪ Dα2 ⊂ Dα3 .
If Ω ⊂ R , then the subsets of all non-decreasing and all continuous elements of

XρΦ are also latticially closed.

3. The properties (LPFE) and (UPFE) in Orlicz-Musielak spaces

Now we are ready to define the properties of four elements in modular spaces.
Assume that Xρ is a modular space ordered by a pointed convex cone K and D ⊂ Xρ
is a latticially closed subset.

DEFINITION 3.1. (see [6]) We say that ρ satisfies the lower property of four
elements (LPFE) with respect to D and K if for any x, y ∈ Xρ such that x � y and
for any w, z ∈ D , we have

ρ(x − w) + ρ(y − z) � ρ(x − w ∨ z) + ρ(y − w ∧ z). (1)

DEFINITION 3.2. We say that ρ satisfies the upper property of four elements
(UPFE) with respect to D and K if for any x, y ∈ Xρ such that x � y and for any
w, z ∈ D , we have

ρ(x − w) + ρ(y − z) � ρ(x − w ∧ z) + ρ(y − w ∨ z). (2)

REMARK 3.3. Suppose that ρ1, ρ2, . . . , ρn are modulars, each satisfying the prop-
erty (LPFE) (resp. (UPFE) ) with respect to D and K and α1,α2, . . . ,αn are non-

negative numbers. Then the modular ρ =
n∑

k=1
αkρk also has the property (LPFE) (resp.

(UPFE) ) with respect to D and K . However, the modular ρ̃ = max{ρ1, . . . , ρn} may
not satisfy these conditions (see Example 3.9).

The property (LPFE) in modular spaces has been recently studied in [6]. The
main result of that paper was the following

THEOREM 3.4. Suppose that XρΦ is an Orlicz-Musielak space given by a function
Φ which satisfies the condition (ϕ 3), K =

{
x ∈ XρΦ : x � 0

}
and D is a latticially

closed subset of XρΦ . Then ρΦ has the property (LPFE) with respect to D and K .

Now we prove a version of Theorem 3.4 for the property (UPFE) . We will need
the following technical lemmas.
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LEMMA 3.5. (Lim’s inequality (see e.g. [14], p. 194) If ϕ : R+ → R+ is a convex
function such that ϕ(0) = 0 and a, b, c � 0 with c � a , then

ϕ(a) + ϕ(b + c) � ϕ(a + b) + ϕ(c).

COROLLARY 3.6. If ϕ : R+ → R+ is a convex function such that ϕ(0) = 0 , then
for all a, b, c � 0 , we have

ϕ(a + b) + ϕ(b + c) � ϕ(b) + ϕ(a + b + c) (3)

and
ϕ(a) + ϕ(b) � ϕ(a + b) � ϕ(a + b + c). (4)

Moreover, ϕ must be a non-decreasing function on R+ .

LEMMA 3.7. Assume that ϕ : R+ → R+ is a convex function such that ϕ(0) = 0
and x1, x2, x3, x4 are real numbers with x1 � x3 . Then

ϕ(|x1 − x2|) + ϕ(|x3 − x4|) � ϕ(|x1 − x2 ∧ x4|) + ϕ(|x3 − x2 ∨ x4|). (5)

Proof. Let us first observe that the inequality (5) reduces to an equality if x4 � x2 .
So it’s sufficient to prove our lemma for x2 � x4 . We need to consider 6 cases.

i) x2 � x4 � x1 � x3 . Put a = x1 − x3 , b = x4 − x1 , c = x2 − x4 , then
a, b, c � 0 . By (3), we have

ϕ(x2 − x1) + ϕ(x4 − x3) = ϕ(a + b) + ϕ(b + c)
� ϕ(b) + ϕ(a + b + c) = ϕ(x4 − x1) + ϕ(x2 − x3),

and (5) is proved.
ii) x1 � x3 � x2 � x4 . We argue as in part (i), taking a = x2 − x4 , b = x3 − x2 ,

c = x1 − x3 .
iii) x2 � x1 � x4 � x3 . Set a = x2 − x1 , b = x4 − x3 , c = x1 − x4 . From (4) it

follows that

ϕ(x2 − x1) + ϕ(x4 − x3) = ϕ(a) + ϕ(b)
� ϕ(a + b + c) = ϕ(x2 − x3) � ϕ(x1 − x4) + ϕ(x2 − x3),

which is the desired conclusion.
iv) x1 � x2 � x3 � x4 . Put a = x1 − x2 , b = x3 − x4 , c = x2 − x3 . Reasoning

as in the previous case we get (5).
v) x2 � x1 � x3 � x4 . Since ϕ is non-decreasing, we see that

ϕ(x2 − x1) + ϕ(x3 − x4) � ϕ(x1 − x4) + ϕ(x2 − x3),

and (5) is proved.
vi) x1 � x2 � x4 � x3 . Then, for the same reasons as in case v),

ϕ(x1 − x2) + ϕ(x4 − x3) � ϕ(x1 − x4) + ϕ(x2 − x3),

which completes the proof.

We can now formulate our result which shows that (UPFE) is valid in Orlicz-
Musielak spaces.
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THEOREM 3.8. Suppose that XρΦ is an Orlicz-Musielak space given by a function
Φ : Ω× R+ → R+ which satisfies the condition (ϕ 3), D is a latticially closed subset
of XρΦ and K =

{
x ∈ XρΦ : x � 0

}
. Then ρΦ has the property (UPFE) with respect

to D and K .

Proof. Fix x, y ∈ Xρ such that x � y , w, z ∈ D and t ∈ Ω . Set x1 = x(t) ,
x2 = w(t) , x3 = y(t) , x4 = z(t) and define ϕt(c) = Φ(t, c) for c ∈ R+ . Since
x1 � x3 , we can apply Lemma 3.7 to function ϕt obtaining

Φ(t, |(x − w)(t)|) + Φ(t, |(y − z)(t)|)
� Φ(t, |(x − w ∧ z)(t)|) + Φ(t, |(y − w ∨ z)(t)|). (6)

Integrating (6) over t we get the inequality (2), and the proof is complete.

EXAMPLE 3.9. Let Ω = [0, 2] and define Φ1(t) = t2 , Φ2(t) = t for t ∈ R+ .
Since Φ1 and Φ2 are convex functions, Theorems 3.4 and 3.8 show that the modulars
ρΦ1 and ρΦ2 satisfy the properties of four elements with respect to the set D of all
simple functions defined on Ω .

Now, consider the modular ρ = max{ρΦ1 , ρΦ2} . Choose any α ∈ (3, +∞) ,
β ∈ (0, 1) and put x = w = αI[0,1) , y = βI[0,1) , z = αI[1,2] , where IA denotes the
characteristic function of A . Then x � y and w, z ∈ D , but we have

ρ(x − w) + ρ(y − z) = max{α2 + β2,α + β} = α2 + β2

< α2 + β = ρ(x − w ∨ z) + ρ(y − w ∧ z).

Taking x = z = αI[0,1) , y = βI[0,1) and w = αI[0,1) + βI[1,2] , we get

ρ(x−w) + ρ(y− z) = β + (α − β)2 > β2 + (α − β)2 = ρ(x−w∧ z) + ρ(y−w∨ z).

From this it follows that ρ does not satisfy the properties (LPFE) and (UPFE) with
respect to D .

It is known that (LPFE) implies the isotonicity of the projection operator (see [5],
[6] for more details). We will now show that the property (UPFE) is related to the
antiisotonicity of the antiprojection operator.

Let D be a non-empty subset of a modular space Xρ and choose x ∈ Xρ . We will
denote by Pa

D(x) the set of all elements y ∈ D such that

ρ(x − y) = sup
d∈D

ρ(x − d).

The set Pa
D(x) is called the antiprojection of x onto D .

THEOREM 3.10. Suppose that Xρ is a modular space ordered by a pointed convex
cone K , D ⊂ Xρ a non-empty latticially closed subset and x, y ∈ Xρ with x � y . If
both Pa

D(x) , Pa
D(y) are non-empty and if ρ satisfies the property (UPFE) with respect

to D and K , then there exist w ∈ Pa
D(x) and v ∈ Pa

D(y) such that v � w .

Proof. Choose any w ∈ Pa
D(x) and z ∈ Pa

D(y) . Then w∨ z, w∧ z ∈ D . Since the
property (UPFE) is satisfied, we have

ρ(x − w) + ρ(y − z) � ρ(x − w ∧ z) + ρ(y − w ∨ z) � ρ(x − w) + ρ(y − w ∨ z).
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Consequently, ρ(y − z) � ρ(y − w ∨ z) . Taking v = w ∨ z , we get v ∈ Pa
D(y) and

v � w , which is our assertion.

COROLLARY 3.11. Let XρΦ be an Orlicz-Musielak space as in Theorem 3.8 and
D ⊂ XρΦ a latticially closed subset. Then for any x, y ∈ XρΦ such that x � y and
Pa

D(x) , Pa
D(y) are both singletons, we have Pa

D(y) � Pa
D(x) .

4. The reversed properties of four elements in Orlicz-Musielak spaces

In this section we wish to investigate when the inequalities (1) and (2) hold in the
reversed direction (with some other constants). First we review some of the standard
facts on Orlicz-Musielak modulars. For more details we refer the reader to [15].

Let Φ : Ω× R+ → R+ be a ϕ -function with a parameter.

DEFINITION 4.1. We say that Φ has the property (Δ2 ) if there exist K � 2 and a
non-negative function h ∈ L1(Ω) such that

Φ(t, 2x) � KΦ(t, x) + h(t) for all t ∈ Ω and x ∈ R+. (7)

This is an important condition which implies many interesting properties of the
modular ρΦ . The following remark summarizes a few of them.

REMARK 4.2. If Φ satisfies (Δ2 ) and X is defined as in Definition 2.2, then
(a) XρΦ = {f ∈ X : ρΦ(f ) < ∞} ,
(b) XρΦ = {f ∈ X : ρΦ(αf ) < ∞ for every α > 0} ,
(c) ρΦ is a continuous modular, i.e. lim

α→1
ρΦ(αx) = ρΦ(x) for all x ∈ XρΦ .

If, moreover, the measure μ is atomless and σ -finite, then the properties (a) and (b)
are equivalent to (Δ2 ).
In case of Φ independent of t and μ(Ω) = ∞ , (Δ2 ) is equivalent to the condition

Φ(2x) � KΦ(x) for all x � 0.

If Φ is independent of t and μ(Ω) < ∞ , then (7) means exactly that Φ has the
property (Δ2 ) at ∞ , i.e.

Φ(2x) � KΦ(x) for all x � x0 (with some x0 > 0).

We will show that modulars satisfying the condition (Δ2 ) have some other prop-
erties, related to the inequalities studied in Section 3. Our proof is based on several
intermediate results.

LEMMA 4.3. Suppose that ϕ : R+ → R+ is a convex function satisfying ϕ(0) = 0
and a, b, c are non-negative numbers. If there exist K � 2 and M � 0 such that
ϕ(2x) � Kϕ(x) + M for any x ∈ R+ , then

ϕ(a + b) � K
2

(ϕ(a) + ϕ(b)) + M (8)
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and
ϕ(a + b + c) � A(ϕ(a) + ϕ(b) + ϕ(c)) + N, (9)

where A = K2

4 , N = (K
2 + 1)M .

Proof. By assumption, K
2 � A . We have

ϕ(a + b) � 1
2
ϕ(2a) +

1
2
ϕ(2b) � 1

2
(Kϕ(a) + M) +

1
2
(Kϕ(b) + M)

=
K
2

(ϕ(a) + ϕ(b)) + M.

Hence

ϕ(a + b + c) � K
2

(ϕ(a + b) + ϕ(c)) + M

� K
2

(
K
2

(ϕ(a) + ϕ(b)) + M + ϕ(c)) + M

=
K2

4
(ϕ(a) + ϕ(b)) +

K
2
ϕ(c) + (

K
2

+ 1)M

� A(ϕ(a) + ϕ(b) + ϕ(c)) + N,

and the lemma follows.

LEMMA 4.4. Let ϕ be as in Lemma 4.3. Then for all x1, x2, x3, x4 ∈ R with
x1 � x3 , we have

ϕ(|x1 − x2|) + ϕ(|x3 − x4|) � A[ϕ(|x1 − x2 ∨ x4|)
+ ϕ(|x3 − x2 ∧ x4|) + Bϕ((x1 ∧ x4 − x3 ∨ x2) ∨ 0)] + N, (10)

where A = K2

4 , B = 1 + 4
K2 , N = (K

2 + 1)M .

Proof. If x2 � x4 , then the third term on the right hand side of (10) is equal to
zero and (10) is satisfied. So we may assume that x4 � x2 . We need to consider six
cases.

i) x4 � x2 � x1 � x3 . Set a = x1 − x3 , b = x2 − x1 , c = x4 − x2 . Observe that
a, b, c � 0 . By (4) and (9), we have

ϕ(x2 − x1) + ϕ(x4 − x3) = ϕ(b) + ϕ(a + b + c)
� ϕ(b) + A(ϕ(a) + ϕ(b) + ϕ(c)) + N � A(ϕ(a) + 2ϕ(b) + ϕ(c)) + N

� A(ϕ(a + b) + ϕ(b + c)) + N = A(ϕ(x2 − x3) + ϕ(x4 − x1)) + N,

which is our claim.
ii) x1 � x3 � x4 � x2 . Taking a = x4 − x2 , b = x3 − x4 , c = x1 − x3 and

reasoning as in the previous case, we get (10).
iii) x4 � x1 � x2 � x3 . Define a = x2 − x3 , b = x1 − x2 , c = x4 − x1 . From (9)

it follows that

ϕ(x1 − x2) + ϕ(x4 − x3) = ϕ(b) + ϕ(a + b + c)
� ϕ(b) + A(ϕ(a) + ϕ(b) + ϕ(c)) + N = A(ϕ(a) + ϕ(c) + Bϕ(b)) + N

= A(ϕ(x2 − x3) + ϕ(x4 − x1) + Bϕ(x1 − x2)) + M,
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and (10) is proved.
iv) x1 � x4 � x3 � x2 . We argue as in part (iii), choosing a = x3 − x2 ,

b = x4 − x3 , c = x1 − x4 .
v) x4 � x1 � x3 � x2. Put a = x3 − x2 , b = x1 − x3 , c = x4 − x1 . Then,

according to (8), we have

ϕ(x1 − x2) + ϕ(x4 − x3) = ϕ(a + b) + ϕ(b + c)

� K
2

(ϕ(a) + ϕ(b)) + M +
K
2

(ϕ(b) + ϕ(c)) + M

� A(ϕ(a) + ϕ(c) +
4
K
ϕ(b)) + N

� A(ϕ(a) + ϕ(c) + Bϕ(b)) + N

= A(ϕ(x3 − x2) + ϕ(x4 − x1) + Bϕ(x1 − x3)) + N,

as required.
vi) x1 � x4 � x2 � x3. The proof is completely similar as that of part (v), with

a = x1 − x4 , b = x4 − x2 , c = x2 − x3 .

We are thus led to the following analogue of Theorem 3.4.

THEOREM 4.5. Suppose that XρΦ is an Orlicz-Musielak space generated by a
function Φ : Ω× R+ → R+ which satisfies the conditions (ϕ 3) and (Δ2 ). Then, for
all x, y, w, z ∈ XρΦ such that x � y , we have

ρΦ(x − w) + ρΦ(y − z) � A[ρΦ(x − w ∨ z) + ρΦ(y − w ∧ z)
+ BρΦ((x ∧ z − y ∨ w) ∨ 0)] + C, (11)

where A = K2

4 , B = 1 + 4
K2 , C = (K

2 + 1)
∫
Ω

h(t) dμ(t) .

Proof. Choose any t ∈ Ω and put x1 = x(t) , x2 = w(t) , x3 = y(t) , x4 = z(t) ,
ϕt(c) = Φ(t, c) for c ∈ R+ . From (7) we see that ϕt(2c) � Kϕt(c) + h(t) . Lemma
4.4 now implies

Φ(t, |(x − w)(t)|) + Φ(t, |(y − z)(t)|) � A(Φ(t, |(x − w ∨ z)(t)|)
+ Φ(t, |(y − w ∧ z)(t)|) + BΦ(t, ((x ∧ z − y ∨ w) ∨ 0)(t)) + (

K
2

+ 1)h(t). (12)

Intergrating (12) over t , we complete the proof.

We can also rephrase Corollary 3.11 as follows.

THEOREM 4.6. Let XρΦ satisfy the hypotheses of Theorem 4.5. Then, for all
x, y, w, z ∈ XρΦ such that x � y , we have

ρΦ(x − w) + ρΦ(y − z) � A[ρΦ(x − w ∧ z) + ρΦ(y − w ∨ z)
− BρΦ((x ∧ w − y ∨ z) ∨ 0)] − C, (13)

where A = 4
K2 , B = 1 + K2

4 , C = 2(K+2)
K2

∫
Ω

h(t) dμ(t) .

The proof goes by arguing as in the previous case and using the corresponding
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LEMMA 4.7. Assume that ϕ : R+ → R+ is a convex function such that ϕ(0) = 0
and ϕ(2x) � Kϕ(x)+M for some K � 2 , M � 0 and for all x � 0 . If x1, x2, x3, x4 ∈
R and x1 � x3 , then

ϕ(|x1 − x2|) + ϕ(|x3 − x4|) � A[ϕ(|x1 − x2 ∧ x4|)
+ ϕ(|x3 − x2 ∨ x4|) − Bϕ((x1 ∧ x2 − x3 ∨ x4) ∨ 0)] − N, (14)

with A = 4
K2 , B = 1 + K2

4 and N = 2M(K+2)
K2 .

Proof of Lemma 4.7. We check at once that (14) is satisfied when x4 � x2 . So
it suffices to consider the same six cases as in Lemma 3.7. Define K̃ = K2

4 and
Ñ = (K

2 + 1)M.

i) x2 � x4 � x1 � x3 . Put a = x1 − x3 , b = x4 − x1 , c = x2 − x4 . As in the
proof of Lemma 4.4, we get

ϕ(x4 − x1) + ϕ(x2 − x3) = ϕ(b) + ϕ(a + b + c)

� K̃(ϕ(a + b) + ϕ(b + c)) + Ñ

= K̃(ϕ(x4 − x3) + ϕ(x2 − x1)) + Ñ,

which, divided by K̃ , gives the desired conclusion.
iii) x2 � x1 � x4 � x3 . Set a = x4 − x3 , b = x1 − x4 , c = x2 − x1 . Then

ϕ(x1 − x4) + ϕ(x2 − x3) = ϕ(b) + ϕ(a + b + c)

� K̃(ϕ(a) + ϕ(b) + (1 +
1

K̃
)ϕ(b)) + Ñ

= K̃(ϕ(x4 − x3) + ϕ(x2 − x1) + (1 +
1

K̃
)ϕ(x1 − x4)) + Ñ,

and the formula (14) follows easily.
v) x2 � x1 � x3 � x4 . Considering a = x3 − x4 , b = x1 − x3 and c = x2 − x1 ,

we obtain

ϕ(x1 − x4) + ϕ(x2 − x3) = ϕ(a + b) + ϕ(b + c)

� K̃(ϕ(a) + ϕ(c) +
4
K
ϕ(b)) + Ñ

� K̃(ϕ(x3 − x4) + ϕ(x2 − x1) + (1 +
1

K̃
)ϕ(x2 − x4)) + Ñ,

and, in consequence, the inequality (14).
The proof of the remaining cases is the same as above so we omit the details.

REMARK 4.8. In the case of Lp -spaces Theorems 4.5 and 4.6 have been proved in
[13].
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