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Abstract. Some inequalities for norms and spectral radius involving operator monotone functions
have been obtained. Lieb’s concavity for trace of certain function has also been considered in
general form.

1. Introduction

In what follows, H denotes a finite dimensional Hilbert space. L (H) is the space
of bounded linear operators on H, while L+(H) is the cone of positive semidefinite
operators on H and P(H) is the cone of positive operators on H. Let I, J be intervals
in R. SI(H) will denote the set of all selfadjoint operators in L (H) whose spectrum
in contained in I . For an operator A ∈ L (H) , spec(A) denotes the spectrum of A.
The trace of an A ∈ L (H) is denoted by tr(A) . A real valued function f defined
on an interval I is called operator monotone on I if for A, B ∈ SI(H) with A � B ,
we have f (A) � f (B) , where f (A) is defined by familiar functional calculus. A real
valued function f defined on an interval I is called operator concave on I if

f (λA + (1 − λ )B) � λ f (A) + (1 − λ )f (B)

for all A, B ∈ SI(H) and 0 � λ � 1 . A function f on I is called submultiplicative
(respectively supermultiplicative) if for all x, y ∈ I

f (xy) � f (x)f (y) (respectively f (xy) � f (x)f (y))

whenever xy ∈ I . In Section 2, we shall obtain some inequalities for spectral radius
involving operator monotone functions. A general class of functions which contains
operator monotone functions is also considered in this section. Some inequalities for
norms for functions in this class have been proved. In Section 3, we consider Lieb’s
concavity theorem in general form.
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2. Inequalities for Spectral Radius and Norms

The spectral radius for an A ∈ L (H) , is denoted by spr(A) and is defined by

spr(A) = sup{|λ | : λ ∈ spec(A)}.
If A is normal, i.e., AA∗ = A∗A then spr(A) = ‖A‖ , where ‖ · ‖ is the operator norm
on L (H) . A norm |‖ · |‖ on L (H) is called symmetric, or unitarily invariant, if
|‖A|‖ = |‖UAV|‖ for all A ∈ L (H) and all unitary operators U, V ∈ L (H) . The
operator (spectral) norm ‖ · ‖ on L (H) is such a norm. In [5,8], it is proved that for
A, B ∈ P(H) ,

spr(AsBs) � (spr(AB))s (1)

and
‖AsBs‖ � ‖AB‖s (2)

for all 0 � s � 1 . The function f (x) = xs , 0 � s � 1 is operator monotone on
(0,∞) . Thus one might conjecture that for all A, B ∈ P(H) and for all positive
operator monotone functions f on (0,∞)

spr(f (A)f (B)) � f (spr(AB)) (3)

and
‖f (A)f (B)‖ � f (‖AB‖). (4)

However, this fails. Observe that if either of the inequalities (3) or (4) is to hold, then
the function f must be supermultiplicative. Since an operator monotone function need
not be supermultiplicative, the inequalities (3) or (4) need not be true for an operator
monotone function in general. In this section, we shall prove suitable generalizations
of inequalities (1) and (2).

THEOREM 2.1. Let f be a positive operator monotone function on I = (0,∞) .
Let A, B ∈ P(H) and spr(AB) � 1 . Then

spr(f (A)(f (B−1))−1 � 1.

Proof.

spr(AB) � 1 =⇒ spr(B1/2AB1/2) � 1

=⇒ B1/2AB1/2 � I

=⇒ A � B−1

=⇒ f (A) � f (B−1)

=⇒ (f (B−1))−1/2f (A)(f (B−1))−1/2 � I

=⇒ spr{(f (B−1))−1/2f (A)(f (B−1))−1/2} � 1

=⇒ spr(f (A)(f (B−1))−1) � 1.
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THEOREM 2.2. Let f be a positive operator monotone function on I = (0,∞)
and let f be submultiplicative. Let A, B ∈ P(H) . Then

spr(f (A)(f (B−1))−1) � f (spr(AB)).

Proof. Let spr(AB) = α . Then spr( A
αB) = 1 . Therefore, by Theorem 2.1,

spr
(
f
( A
α

)
(f (B−1))−1

)
� 1.

Now

f (A) = f
( A
α
α

)
� f

( A
α

)
f (α),

since f is submultiplicative. Consequently,

0 � (f (B−1))−1/2 f (A)
f (α)

(f (B−1))−1/2 � (f (B−1))−1/2f
( A
α

)
(f (B−1))−1/2,

and hence

spr{(f (B−1))−1/2 f (A)
f (α)

(f (B−1))−1/2} � spr{(f (B−1))−1/2f
( A
α

)
(f (B−1))−1/2}.

Thus

spr(f (A)(f (B−1))−1) = spr(f (α)(f (B−1))−1/2 f (A)
f (α)

(f (B−1))−1/2)

� spr(f (α)(f (B−1))−1/2f
( A
α

)
(f (B−1))−1/2)

= spr(f (α)f
( A
α

)
(f (B−1))−1)

� f (α) = f (spr(AB)).

Next we consider a more general class of functions and prove some norm inequalities
for functions in this class. Let I be an interval in R. Consider the class of functions:

LI = {f : I → [0,∞) such that A, B ∈ SI(H), A2 � B2 implies

(f (A))2 � (f (B))2}.
The following lemma shows that the class LI is a positive convex cone.

LEMMA 2.3. Let f , g ∈ LI . Then (i) αf ∈ LI for all α � 0 . (ii) f + g ∈ LI .

Proof. (i) Let A, B ∈ SI(H) be such that A2 � B2 . Then (f (A))2 � (f (B))2 ,
which implies, (αf (A))2 � (αf (B))2 . Thus αf ∈ LI .

(ii) Let A, B ∈ SI(H) and A2 � B2 . Then (f (A))2 � (f (B))2 and (g(A))2 �
(g(B))2 . Therefore

(f (A) + g(A))2 = (f (A))2 + (g(A))2 + 2f (A)g(A)

� (f (B))2 + (g(B))2 + 2f (B)g(B)

= (f (B) + g(B))2

since f (A)g(A) � f (B)g(B) [see 3]. So f + g ∈ LI .
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PROPOSITION 2.4. Let I = (0,∞) . Then every positive operator monotone func-
tion on I is in LI .

Proof. Let f be a positive operatormonotone function on I . Then by [11,Theorem
1], f admits the integral representation

f (x) = a + bx +
∫ ∞

0

x
x + t

dμ(t)

where a, b � 0 and μ is a finite positive measure on (0,∞) . From Lemma 2.3 and the
above integral representation it follows that we need only to prove that for each t > 0 ,
the function f t(x) = x

x+t is in LI . Let A, B ∈ P(H) with A2 � B2 . Then

(f t(A))2 � (f t(B))2 ⇔ [A(A + tI)−1]2 � [B(B + tI)−1]2

⇔ (I + tA−1)−2 � (I + tB−1)−2

⇔ (I + tA−1)2 � (I + tB−1)2

⇔ I + t2A−2 + 2tA−1 � I + t2B−2 + 2tB−1.

The last inequality is true. Thus f t ∈ LI .

THEOREM 2.5. Let A, B ∈ P(H) , I = (0,∞) and ‖AB‖ � 1 . Then for all
positive f ∈ LI ,

‖f (A)(f (B−1))−1‖ � 1.

Proof.

‖AB‖ � 1 =⇒ ‖BA2B‖ � 1

=⇒ BA2B � I

=⇒ A2 � B−2

=⇒ (f (A))2 � (f (B−1))2

=⇒ (f (B−1))−1(f (A))2(f (B−1))−1 � I

=⇒ ‖(f (B−1))−1(f (A))2(f (B−1))−1‖ � 1

=⇒ ‖f (A)(f (B−1))−1‖ � 1.

THEOREM 2.6. Let A, B ∈ P(H) and I = (0,∞) . Then for all positive submul-
tiplicative f ∈ LI ,

‖f (A)(f (B−1))−1‖ � f (‖AB‖).
Proof. Let ‖AB‖ = α . Then ‖ A

αB‖ = 1 . Therefore, by Theorem 2.5,

∥∥∥f
( A
α

)
(f (B−1))−1

∥∥∥ � 1.

Now

f (A) = f
( A
α
α

)
� f

( A
α

)
f (α),
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since f is submultiplicative. Consequently,

(f (B−1))−1
( f (A)

f (α)

)2
(f (B−1))−1 � (f (B−1))−1

(
f
( A
α

))2
(f (B−1))−1.

Thus

‖f (A)(f (B−1))−1‖2 =
∥∥∥(f (α))2(f (B−1))−1

( f (A)
f (α)

)2
(f (B−1))−1

∥∥∥
� (f (α))2

∥∥∥(f (B−1))−1
(
f
( A
α

))2
(f (B−1))−1

∥∥∥
= (f (α))2

∥∥∥f
( A
α

)
(f (B−1))−1

∥∥∥2

� (f (α))2 = (f (‖AB‖))2.

Hence
‖f (A)(f (B−1))−1‖ � f (‖AB‖).

We prove our next result for all unitarily invariant norms. A basic property of unitarily
invariant norms is that they are symmetric gauge functions of the singular values of the
operator. For a positive semidefinite operator T its singular values are the same as its
eigen values. Let T ∈ L+(H) and let its eigen values be enumerated as

λ1(T) � λ2(T) � · · · � λn(T).

Then the Ky Fan k − norms of T are defined as

‖T‖k =
k∑

j=1

λj(T),

k = 1, 2, . . . , n .

LEMMA 2.7. Let x1 � x2 � · · · � xn � 0 and y1 � y2 � · · · � yn � 0 be such
that

∏k
j=1 xj �

∏k
j=1 yj , k = 1, 2, . . . , n . Then

∑k
j=1 xj �

∑k
j=1 yj , k = 1, 2, . . . , n .

LEMMA 2.8. Let A, B ∈ L+(H) . Then |‖A|‖ � |‖B|‖ for all unitarily invariant
norms |‖ · |‖ if and only if ‖A‖k � ‖B‖k , k = 1, 2, . . . , n .

For a proof of the above lemmas, the reader is referred to [4, 9] .

THEOREM 2.9. Let I = (0,∞) and f ∈ LI be submultiplicative and positive.
Then

|‖(f (B−1))−1f (A)(f (B−1))−1|‖ � |‖(f ((BAB)1/2))2|‖
for all A, B ∈ P(H) .

Proof. By Theorem 2.6, we have

‖(f (B−1))−1f (A)(f (B−1))−1‖ = ‖[(f (A))1/2(f (B−1))−1]∗[(f (A))1/2(f (B−1)−1]‖
= ‖[(f (A))1/2(f (B−1))−1]‖2

� ‖f (A1/2)(f (B−1))−1‖2

� (f (‖A1/2B‖))2

= (f (‖BAB‖1/2))2,
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that is,
λ1((f (B−1))−1f (A)(f (B−1))−1 � (f ((λ1(BAB))1/2))2.

Replacing A and B by their antisymmetric tensor powers,we obtain for k = 1, 2, . . . , n ,

k∏
j=1

λj((f (B−1))−1f (A)(f (B−1))−1) �
k∏

j=1

(f ((λj(BAB))1/2))2.

By Lemma 2.7, this leads to

k∑
j=1

λj((f (B−1))−1f (A)(f (B−1))−1) �
k∑

j=1

(f ((λj(BAB))1/2))2,

k = 1, 2, . . . , n . Thus

‖(f (B−1))−1f (A)(f (B−1))−1‖k � ‖(f ((BAB)1/2))2‖k

k = 1, 2, . . . , n . Hence by Lemma 2.8,

|‖(f (B−1))−1f (A)(f (B−1))−1|‖ � |‖(f ((BAB)1/2))2|‖.
This completes the proof of the theorem.

The following corollary which is a special case of the above theorem when f (x) =
xr , 0 � r � 1 is proved in [2].

COROLLARY 2.10. Let A, B ∈ P(H) . Then

|‖BrArBr|‖ � |‖(BAB)r|‖,
for all 0 � r � 1 .

REMARK 2.11. Let I = (0,∞) . Observe that a function f ∈ LI if and only if
x → (f (

√
x))2 is operator monotone on I . Consequently, if f ∈ LI , then x → f (

√
x)

is operator monotone on I . Since the functions x → x
1+x and x → log(1 + x) are

in LI . Therefore, the functions x → (
√

x
1+

√
x
)2 and x → (log(1 +

√
x))2 are operator

monotone on I and hence by [3, Theorem 2.3], the function x →
√

x
1+

√
x
log(1 +

√
x)

is operator monotone on I . In this way one can obtain more examples of operator
monotone functions and hence inequalities for spectral radius and norm for suitable
functions.

REMARK 2.12. Let I = (0,∞) . Let f be a positive supermultiplicitave operator
monotone function on I . Then x → (f (x−1))−1 is a submultiplicative operator
monotone function on I . Since for a function h which depends upon the eigen values
of an operator, we have h(AB) = h(BA) for A, B ∈ P(H) . Consequently, we obtain

spr(f (A)(f (B−1))−1) � (f ((spr(AB))−1))−1

and
‖f (A)(f (B−1))−1‖ � (f (‖AB‖−1))−1,

for A, B ∈ P(H) .
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3. Lieb’s Concavity

The geometric mean # introduced by Pusz and Woronowicz [13] (see also [10]),
for A, B ∈ P(H) is defined as

A#B = A1/2(A−1/2BA−1/2)1/2A1/2.

Thus if A commutes with B , then

A#B = (AB)1/2.

If A, B ∈ L+(H) , then the geometric mean is defined by continuity. The following
results hold:

(i) (αA)#(αB) = α(A#B) for all α � 0 .
(ii) (A + C)#(B + D) � (A#B) + (C#D) .
(iii) A � C , B � D =⇒ A#B � C#D .
A map φ : SI(H) × SJ(H) → R is called jointly concave if

φ(λA1 + (1 − λ )A2, λB1 + (1 − λ )B2) � λφ(A1, B1) + (1 − λ )φ(A2, B2)

for all A1, A2 ∈ SI(H) ; B1, B2 ∈ SJ(H) and 0 � λ � 1 . The space L (H) is a
Hilbert space, where the inner product is defined as

〈A, B〉 = tr(A∗B),

A, B ∈ L (H) .
For our main theorem in this section, we need the following lemmas.

LEMMA 3.1. Let A, B ∈ P(H) . Let A and B be the left and the right multipli-
cation operators on the space L (H) induced by A and B respectively, i.e.,

A (X) = AX and B(X) = XB.

Then A and B are positive operators on L (H) .

LEMMA 3.2. Let R1, R2, S1, S2, T1, T2 be in P(H) . Suppose R1 commutes with
R2 , S1 commutes with S2 and T1 commutes with T2 , and R1 � λS1 + (1 − λ )T1 ,
R2 � λS2 + (1 − λ )T2 , 0 � λ � 1 . Then for all 0 � s, t ; s + t � 1

Rs
1R

t
2 � λSs

1S
t
2 + (1 − λ )Ts

1T
t
2.

Proof. Let E be the set of all (s, t) ; s, t � 0 for which inequality

Rs
1R

t
2 � λSs

1S
t
2 + (1 − λ )Ts

1T
t
2

is true. Clearly (0, 0) , (0, 1) and (1, 0) are in E , and E is closed. We shall prove that
E is convex. Let (s1, t1) , (s2, t2) ∈ E . Then

Rs1
1 Rt1

2 � λSs1
1 St1

2 + (1 − λ )Ts1
1 Tt1

2

and
Rs2

1 Rt2
2 � λSs2

1 St2
2 + (1 − λ )Ts2

1 Tt2
2 .
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Using (iii) , (ii) and (i) respectively, we get

R(s1+s2)/2
1 R(t1+t2)/2

2 = (Rs1
1 Rt1

2 )#(Rs2
1 Rt2

2 )

� (λSs1
1 St1

2 + (1 − λ )Ts1
1 Tt1

2 )#(λSs2
1 St2

2 + (1 − λ )Ts2
1 Tt2

2 )

� λ{(Ss1
1 St1

2 )#(Ss2
1 St2

2 )} + (1 − λ ){(Ts1
1 Tt1

2 )#(Ts2
1 Tt2

2 )}
= λS(s1+s2)/2

1 S(t1+t2)/2
2 + (1 − λ )T(s1+s2)/2

1 T(t1+t2)/2
2 .

Therefore ((s1 + s2)/2, (t1 + t2)/2) ∈ E . So E is convex. This proves the lemma.

THEOREM 3.3. Let f and g be positive operator concave functions on I and J
respectively. Let X ∈ L (H) and s, t � 0 be such that s + t � 1 . Then the map

φ(A, B) = tr{X∗(f (A))sX(g(B))t}
is jointly concave on SI(H) × SJ(H) .

Proof. Let A1, A2 ∈ SI(H) ; B1, B2 ∈ SJ(H) and 0 � λ � 1 . Let A1 , A2 and
A be the leftmultiplication operators induced by f (A1) , f (A2) and f (λA1+(1−λ )A2)
respectively; and B1 , B2 and B be the right multiplication operators induced by
g(B1) , g(B2) and g(λB1 + (1 − λ )B2) respectively. By Lemma 3.1, A1 , A2 , A ,
B1 , B2 and B are positive operators. Moreover, A1 commutes with B1 , A2

commutes with B2 and A commutes with B . Also, we have

A � λA1 + (1 − λ )A2

and
B � λB1 + (1 − λ )B2,

since f and g are operator concave on I and J respectively. Hence by Lemma 3.2,

A sBt � λA s
1 Bt

1 + (1 − λ )A s
2 Bt

2

for 0 � s, t ; s + t � 1 . Thus for every X ∈ L (H) ,

〈X, (f (λA1 + (1 − λ )A2))sX(g(λB1 + (1 − λ )B2))t〉
� 〈X, λ (f (A1))sX(g(B1))t + (1 − λ )(f (A2))sX(g(B2))t〉

or that

tr{X∗(f (λA1 + (1 − λ )A2))sX(g(λB1 + (1 − λ )B2))t}
� λ tr{X∗(f (A1))sX(g(B1))t} + (1 − λ )tr{X∗(f (A2))sX(g(B2))t}.

This completes the proof.

COROLLARY 3.4. Let f and g be positive operator concave functions on I =
(0,∞) , and J = (0,∞) respectively. Let X ∈ L (H) and s, t � 0 be such that
s + t � 1 . Then the map

ψ(A, B) = tr{X∗f (As)Xg(Bt)}
is jointly concave on SI(H) × SJ(H) .

Proof. The proof of the corollary follows from Theorem 3.3, since the functions
f 1(x) = (f (xs))1/s and g1(x) = (g(xt))1/t are also operator concave on (0,∞) .
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