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(communicated by T. Erdélyi)

Abstract. Wederive the lp version of the classical Blaschke-Santalo inequality for polar volumes
as a consequence of more subtle convexity estimates for the volume of the p -ball in Euclidean
space. We also give analogs for the (p, q) -substitution norm.

1. The problem

Take a convex body C in Rn and define its polar body to be the set

C◦ := {y ∈ R
n : 〈 y, x〉 � 1 for all x ∈ C}.

Denoting the n -dimensional Euclidean volume of a set S ⊆ Rn by Vn(S) , the Blaschke-
Santalo inequality says that

Vn(C) Vn(C◦) � Vn(E) Vn(E◦) = Vn(Bn(2))2 (1)

where E is any ellipsoid and Bn(2) is the unit ball with respect to the Euclidean norm,
see [6] or [5].

In this note, we investigate this inequality in the case of the unit ball with respect
to the ‖ · ‖p -norm in Rn ,

Bn(p) := {x ∈ R
n :

n∑
i=1

|xi|p � 1}.

We have Bn(p)◦ = Bn(p′) where 1
p + 1

p′ = 1 .
Is there a direct proof of (1) when C = Bn(p) ? What, in this special case, is

the underlying reason for the inequality (1)? It will turn out that the volume function
Vn(p) ≡ Vn(Bn(p)) satisfies a much more general set of inequalities which amounts
to a modified form of log-convexity for this function. This modified convexity (with
respect to two arbitrary means) is of the type investigated by J. Aczél in [1] and later by
J. Matkowski and J. Rätz in [3] and [4].
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The volume of the unit ball in the ‖ · ‖p -norm, Vn(p) , was first determined by
Dirichlet by explicitly evaluating the iterated integrals. He obtained

Vn(p) = 2n
Γ(1 + 1

p )
n

Γ(1 + n
p )

,

cf. [2], Section 1.8. The followingMaple code derives this formula as an iterated integral
for arbitrary p and fixed n . The intermediate steps give beta function values. It can
easily be converted into a human proof valid for arbitrary n .

vol := proc(n)
local f,x,i,ul,u,j,t; global p;
p := evaln(p);
if n=1 then 2 else
f := (1-add(x[i]^p,i=1..n-1))^(1/p);
for i from n-1 by -1 to 1 do
f := subs(x[i]=t,f); f := int(f,t);
ul := 1-add(x[j]^p,j=1..i-1); u := ul^(1/p);
f := subs(t^p=ul,f); f := subs(t=u,f);
f := map(normal,f); f := simplify(f);

od;
2^n*f;

fi; end:

# The volume of the p-ball in R^3 is: V3 := vol(3);
# The volume of the Euclidean sphere is : eval(V3,p=2);

Also, from Euler’s product formula

1
Γ(z)

= z eγ z
∞∏
k=1

[(
1 +

z
k

)
e−z/k

]

we get the representation

Vn(p) = 2n
∞∏
k=1

1 + n
kp(

1 + 1
kp

)n .

For n = 2 and n = 3 , this reduces, quite elegantly, to

V2(p) = 4
∞∏
k=1

(
1 − 1

(pk + 1)2

)
and V3(p) = 8

∞∏
k=1

(
1 − 3pk + 1

(pk + 1)3

)
.

In particular, explicit evaluations of these products such as V2(4) = π3/2

Γ(3/4)2 follow.
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2. Generalized Convexity and the Main Results

THEOREM 2.1. For every α > 1 , the function Vα(p) := 2α
Γ(1 + 1

p )
α

Γ(1 + α
p )

satisfies

Vα(p)λ Vα(q)1−λ < Vα

(
1

λ
p + 1−λ

q

)
, (2)

where p, q > 0 , p �= q , and λ ∈ (0, 1) .

It is trivial that inequality (2) can be iterated finitely to give

∏
i

Vα(pi)λi < Vα

(
1∑

i λi/pi

)

for all λi ∈ (0, 1) with
∑

i λi = 1, and all pi > 0 with not all of them equal. In
particular, when α = n , λ1 = λ2 = 1/2 and 1/p1 + 1/p2 = 1 we recover the
p−norm case of the Blaschke-Santalo inequality (1).

We will now develop a proof for the theorem, with some digressions.
If we define Uα(p) := − ln(Vα(p)/2α) , then inequality (2) is equivalent to

Uα

(
1

λ
p + 1−λ

q

)
< λ Uα(p) + (1 − λ ) Uα(q) (3)

for the asserted values of p, q, λ . This is a modified form of convexity, where the
(weighted) arithmetic mean in the argument of Uα is replaced by the (weighted)
harmonic mean. This deserves closer attention, because such a modified convexity can
be defined at least for more general quasi-arithmetic means. Thus, take a continuous,
strictly monotonic function ϕ : I → R . Then

M(x, y) := ϕ−1

(
ϕ(x) + ϕ(y)

2

)

is called a quasi-arithmetic mean, M : I2 → I , and similarly,

M(λ )(x, y) := ϕ−1(λ ϕ(x) + (1 − λ )ϕ(y))

for λ ∈ [0, 1] is the weighted version of M . Here, λ ∈ (0, 1) and x < y always
implies x < M(x, y) < y . The function ϕ is called the Kolmogoroff-Nagumo function
of M . Of special interest are the power means Ma on R+ , defined by

ϕa(x) :=
{

xa if a �= 0,

ln(x) if a = 0.

They satisfy Ma(x, y) < Mb(x, y) for a < b if x �= y . For a = 1 , we get the arithmetic
mean A = M1 , for a = 0 the geometric mean G = M0 , and for a = −1 the harmonic
mean H = M−1 .
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For any two quasi-arithmetic means M, N (with Kolmogoroff-Nagumo functions
ϕ,ψ defined on intervals I, J ), a function f : I → J can be called (M, N) -convex if it
satisfies

f (M(λ )(x, y)) � N(λ )(f (x), f (y)) (4)

for all x, y ∈ I and λ ∈ [0, 1] , and strictly M -convex if the inequality is strict except
for x = y or λ = 0, 1 . If N is the arithmetic mean, N = A , we just say that f is
M -convex.

We remark that for power means Ma, Mb with a < b we have the implications

f Mb -convex and f increasing =⇒ f Ma -convex,
f Ma -convex and f decreasing =⇒ f Mb -convex.

Since for differentiable f , usual convexity gives rise to characterizations in terms of
the derivatives of f , one may ask if the same is true for (M, N) -convexity. However,
it turns out that things are much simpler than they appear on first glance. Assume for
convenience that ψ is strictly increasing. Then simply set s := ϕ(x) and t := ϕ(y)
in (4) to obtain after some manipulations the equivalent inequality

ψ
(
f
(
ϕ−1 (λ s + (1 − λ )t)

))
� λψ(f (ϕ−1(s))) + (1 − λ )ψ(f (ϕ−1(t)))

for all s, t ∈ ϕ(I) . Thus f is M -convex on I if and only if ψ◦f ◦ϕ−1 is convex on ϕ(I)
in the usual sense. This was probably first observed by J. Aczél in [1]. In particular,
if f and ϕ are differentiable with ϕ′(x) �= 0 on I , then f is M -convex if and only
if (ϕ−1)′(x) f ′(ϕ−1(x)) is increasing; f is strictly M -convex if the monotonicity is
strict.

This concludes the brief excursion to the realm of modified convexity, except
for the remark that one can, of course, consider an even wider notion of convexity by
taking two strict means M, N (not necessarily quasi-arithmetic) and calling a function f
(M, N) -midpoint-convex if it satisfies

f (M(x, y)) � N(f (x), f (y))

for x, y ∈ I . Such convexity appears to be more difficult than the special case discussed
above, and it might be interesting to study this in more detail. (For the so-called Stolarski
means this was done in [3] and [4].)

In this setting, log-convexity of a function is precisely (A, G) -convexity. For
example, the Gamma function Γ is (A, G) -convex. As another example, the theorem
says that 1/Vn is (H, G) -convex. Since 1/Vn is decreasing, it is also (A, G) -convex,
and the arithmetic-geometric mean inequality implies that 1/Vn is both (H, A) and
(A, A) -convex.

On the other hand, Vn itself is neither convex nor concave for n � 3 . In fact,
V3(p) has an inflection point at p = 1.0823906.. , V4(p) at p = 1.6369256.. , V5(p)
at p = 2.1925855.. , and these seem to increase with increasing n .

We can now apply these findings to the function Uα on R+ with M as the
harmonic mean, i.e., M is generated by the function ϕ(x) = 1/x . We employ the psi
function

ψ(x) := (lnΓ(x))′,
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and we note the identities

ψ ′(1 + x) =
∞∑
k=1

1
(k + x)2

=
∫ ∞

0

u
eu − 1

e−ux du,

valid for all x > 0 (see [2]). In order to prove inequality (3) and thus the theorem, we
must prove that the function

Wα(x) := Uα(1/x) = ln(Γ(1 + αx)) − α ln(Γ(1 + x))

is strictly convex on R+ for every α > 1 . This is true if and only if W ′′
α (x) =

α2 ψ ′(1 + αx) − α ψ ′(1 + x) is strictly positive on R+ . Multiplying by x/α , we see
that this is true if the function x �→ xψ ′(1 + x) is strictly increasing on R+ . This is
what we will now show to conclude the proof of the theorem. In fact, we shall show
more.

LEMMA 2.1. The function ρ(x) :=
d
dx

xψ ′(1 + x) is completely monotonic on

[0,∞) , i.e., (−1)kρ(k)(x) � 0 for x > 0 and k = 0, 1, 2, . . . .

Proof. We have that, for x > 0,

ψ ′(1 + x) =
∫ ∞

0
f (u)e−ux du, where f (u) :=

u
eu − 1

,

so that

ρ(x) =
∫ ∞

0
f (u)e−ux du − x

∫ ∞

0
uf (u)e−ux du.

Integrating the final integral by parts yields

x
∫ ∞

0
uf (u)e−ux du =

∫ ∞

0
{f (u) + uf ′(u)}e−ux du.

Hence, for x > 0,

ρ(x) = −
∫ ∞

0
uf ′(u)e−ux du,

and consequently

ρ(k)(x) = −(−1)k
∫ ∞

0
uk+1f ′(u)e−ux du for k = 1, 2, . . . .

Since

−f ′(u) =
(u − 1)eu + 1

(eu − 1)2
> 0 for u > 0,

it follows that ρ(x) is completely monotonic on [0,∞). A detailed study of completely
monotonic functions can be found in [7].
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3. Comments and Extensions

1. We remark that we can also give a positive lower bound on ( 2
3 ,∞) for the

function ρ(x) , namely

0 <
1

2x2
− 1

3x3
� ρ(x) for all x >

2
3
. (5)

To prove (5), we use a variant of the formula on p. 29 of [2] for n = 1 ,

lnΓ(1 + x) =
(

x +
1
2

)
ln(x) − x +

1
2

ln 2π +
1

12x

− 2
x

∫ ∞

0

(∫ t

0

z2

x2 + z2
dz

)
dt

e2πt − 1
.

(6)

For notational convenience, we define an operator L by (Lg)(x) := g′′(x) + x g′′′(x)
and note that ρ(x) = L(lnΓ)(1 + x) . Now

L(first line of (6)) =
1

2x2
− 1

3x3
,

and

L

(
1

x (x2 + z2)

)
= −4

12x6 + 3x4z2 + 4x2z4 + z6

x3 (x2 + z2)4
,

which shows that L applied to the second line of (6) is positive. Thus

ρ(x) = L(ln Γ)(1 + x) � 1
2x2

− 1
3x3

.

2. Now one might ask the question of whether the surface area Sn(p) of the
p -ball in Rn satisfies similar convexity conditions. We do not know the answer. The
area Sn(p) in general does not have an explicit representation; it can, however, be
expressed via the integral

Sn(p) = 2n
∫

Bn−1(p)

⎛
⎜⎝1 +

∑n−1
i=1 x2p−2

i(
1 −∑n−1

i=1 xp
i

)(2p−2)/p

⎞
⎟⎠

1/2

dx1 . . . dxn−1.

Evaluating this integral numerically for n = 2 , it seems that neither log(S2(p)) nor
log(S2(1/p)) are convex or concave on [1, 2] , but that S2 itself is concave on [2,∞] .

3. A most useful generalization of the lp -norms are the substitution norms:

‖(x1, x2, · · · , xn)‖p, q := ‖(‖x1‖q1 , ‖x2‖q2 , · · · , ‖xn‖qn)‖p

where q = (q1, . . . , qn) andwhere each xi lies in some Euclidean space Rmi . Denoting
by Vn,m(p, q) the volume of the unit ball Bn,m(p, q) with respect to this norm (with
m = (m1, . . . , mn) ), we again have a closed form:

Vn,m(p, q) = V∑mi
(p) ·

n∏
i=1

Vmi(qi)
Vmi(p)

=

∏n
i=1 Γ(1 + mi

p )

Γ(1 + 1
p

∑n
i=1 mi)

·
n∏

i=1

Vmi(qi). (7)
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If qi ≡ q and mi ≡ m , this reduces to

Vn,m(p, q) = Vnm(p)
(

Vm(q)
Vm(p)

)n

= Vn

( p
m

)(Vm(q)
2

)n

,

which exhibits hidden symmetries and pretty special cases. The simplest case is that of
the volume Vn,C(p) of the p -ball in C

n where all qi and all mi equal 2.
To prove (7), we first remark the identity

∫
‖x‖q�1

(
1 − ‖x‖p

q

)μ/p
dx = 2m

Γ(1 + 1
q )

m

Γ(1 + m
q )

·
Γ(1 + μ

p )Γ(1 + m
p )

Γ(1 + μ+m
p )

(8)

for all μ � 0 , which follows by restricting the integration to the positive orthant and
then using Theorem 1.8.5 in [2] with f (t) := (1 − tp/q)μ/p . The resulting integral in
that theorem can be reduced to a beta function.

The volume formula (7) follows from this by induction over n . In fact, using
homogeneity of volume and Fubini’s theorem, the volumes are easily seen to satisfy

Vn,m(p, q) =
∫
‖xn‖qn�1

(
1 − ‖x‖p

qn

)∑n−1

i=1
mi/p

dx · Vn−1,m∗(p, q∗) (9)

where a∗ = (a1, . . . , an−1) for a vector a = (a1, . . . , an) . Now, (7) is true for n = 1 ,
because then the substitution norm is just the q1 -norm in Rm1 , and the induction step
follows by (8) and (9).

To extend and recover the Blaschke-Santalo inequality in this case, we note that
Bn,m(p, q)◦ = Bn,m(p′, q′) where 1

p + 1
p′ = 1 and 1

qi
+ 1

q′i
= 1 . Similarly to the consid-

erations in Section 2, the inequality follows if we prove that the function 1/Vn,m(p, q)
is (H, G) -convex in every component.

Since the volume (7) depends multiplicatively on the p - and the q -components,
and since (H, G) -convexity of the q -components is precisely the content of our main
theorem, all that remains to be proved is that the function

Wn,m(x) := lnΓ
(

1 + x
n∑

i=1
mi

)
−

n∑
i=1

lnΓ(1 + x mi)

is strictly convex in x on R+ for all vectors m of positive reals. This is true if and
only if

W ′′
n,m(x) =

(
n∑

i=1
mi

)2

ψ ′
(

1 + x
n∑

i=1
mi

)
−

n∑
i=1

m2
i ψ ′(1 + x mi)

is strictly positive on R+ . But this again follows from the strict monotonicity of the
function x �→ xψ ′(1 + x) , because we can estimate

mi · ψ ′(1 + x mi) <
∑

mi · ψ ′(1 + x
∑

mi).
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[4] J. MATKOWSKI AND J. RÄTZ, Convexity functions with respect to an arbitrary mean, Int. Ser. Numer.

Math. 123, 249–258 (1997).
[5] G. PISIER, The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press

(1989).
[6] L. SANTALO, Integral Geometry and Geometric Probability, Addison Wesley (1984).
[7] D. V. WIDDER, The Laplace Transform, Princeton University Press (1941).

(Received April 13, 2000) David Borwein
Depertment of Mathematics

University of Western Ontario
London, Ontario N6A 5B7

Canada
e-mail: dborwein@uwo.ca

Jonathan Borwein & Greg Fee
CECM, Simon Fraser University

Dept. of Mathematics and Statistics
Burnaby, BC V5A 1S6

Canada
e-mail: jborwein@cecm.sfu.ca

Roland Girgensohn
GSF-Forschungszentrum

Inst. für Biomathematik und Biometrie
85758 Neuherberg

Germany
e-mail: girgen@janus.gsf.de

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


