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SPHERICALLY SYMMETRIC FUNCTIONS WITH A

CONVEX SECOND DERIVATIVE AND APPLICATIONS

TO EXTREMAL PROBABILISTIC PROBLEMS

IOSIF PINELIS

Abstract. We describe the class of all functions ϕ: [0,∞) → R for which the second derivative
g′′ϕ (x; y, y) of the spherically symmetric function gϕ (x) := ϕ(|x|) in the direction of y is convex
in x , where x and y are vectors in a Hilbert space H and | · | is the norm in H . Applications
to extremal probabilistic problems are given.
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