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SPHERICALLY SYMMETRIC FUNCTIONS WITH A

CONVEX SECOND DERIVATIVE AND APPLICATIONS

TO EXTREMAL PROBABILISTIC PROBLEMS

IOSIF PINELIS

(communicated by G. Peskir)

Abstract. We describe the class of all functions ϕ: [0,∞) → R for which the second derivative
g′′ϕ (x; y, y) of the spherically symmetric function gϕ (x) := ϕ(|x|) in the direction of y is convex
in x , where x and y are vectors in a Hilbert space H and | · | is the norm in H . Applications
to extremal probabilistic problems are given.

1. Introduction

The convexity of the second derivative of generalizedmoment functions in extremal
probabilistic problemswas apparently used first, even though implicitly, by Whittle [13],
who obtained the following Khinchine-type inequality:
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� E|γ |p, (1)

where p � 3 , the ai ’s are any real numbers such that
∑n

i=1 a2
i = 1 , γ is a standard

normal random variable (r.v.), and the εi ’s are independent Rademacher r.v.’s, so that
P(εi = 1) = P(εi = −1) = 1/2 . Inequality (1) is exact in the sense that, for any
given p � 3 , E|γ |p is the exact upper bound on E

∣∣∑n
i=1 εiai

∣∣p over all ai ’s with∑n
i=1 a2

i = 1 ; this follows from the central limit theorem.
The only property of the moment function g(t) = |t|p that is essential for (1) is

that its second derivative is convex if p � 3 . Thus, one has the following generalization
of (1):

Eg

(
n∑

i=1

εiai

)
� Eg(γ ) (2)
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for all g ∈ C2
conv(R) ; here and in what follows, C2

conv(R) denotes the set of all functions
g: R → R whose second derivative g′′ is finite and convex. Cf. Eaton [3, 4] and Pinelis
[7].

In [7], inequality (2) was extended to spherically symmetric generalized moment
functions g defined on a Hilbert space. Here we offer further extensions involving
Hilbert-space-valuedmultilinear and evenmultiaffine forms in independentRademacher
r.v.’s ε1, . . . , εn (known also as Rademacher “chaoses”), in place of the linear form∑n

i=1 εiai .
Cox and Kemperman [2, (3.14)] obtained the following result:

Eg(X + Y) � Eg(X) + Eg(Y), (3)

where X and Y are independent mean zero r.v.’s and g is a function in C2
conv(R) such

that g(0) = g′(0) = g′′(0) = 0 . The conditions g′(0) = g′′(0) = 0 are not in fact
needed here.

Utev [12] extended inequality (3) to the case of Banach-space-valued summands. In
the same paper [12], he also obtained a number of other exact comparison inequalities
for generalized moment functions with a convex second derivative for Hilbert- and
Banach-space-valued r.v.’s.

Of all generalized moment functions g defined on a Hilbert space H , the spheri-
cally symmetric functions, i.e. the functions of the norm — of the form gϕ(x) := ϕ(|x|)
— naturally are of particular interest.

The structure of this paper is as follows.
In Section 2, notation and definitions are introduced.
In Section 3, various necessary and sufficient conditions are stated for a spherically

symmetric function to have a convex second derivative.
In Section 4, applications to extremal probabilistic problems are described.
Section 5 is devoted to the proofs.

2. Notation and definitions

Let V be any vector space over R .
Let C2

weak(V) stand for the set of all functions g: V → R such that the first two
derivatives of the function R � t �→ g(x + ty) at t = 0 , denoted by g′(x; y) and
g′′(x; y, y) respectively, exist and are finite for all x and y in V .

One can generalize the class C2
conv(R) , defined above in the Introduction, at least

in two ways, as follows.
Let C2

conv,1(V) stand for the set of all functions g ∈ C2
weak(V) such that the

mapping R � t �→ g′′(x + ty; y, y) is convex, for each pair (x, y) ∈ V × V .
Let C2

conv,2(V) stand for the set of all functions g ∈ C2
weak(V) such that the

mapping V � x �→ g′′(x; y, y) is convex, for each y ∈ V . In other words, C2
conv,2(V) is

the set of all functions g ∈ C2
weak(V) such that the mapping R � t �→ g′′(x + tz)(y, y)

is convex, for each triple (x, y, z) ∈ V × V × V .
It is obvious that C2

conv,2(V) ⊆ C2
conv,1(V) for any V .

Let H be a real Hilbert space of dimension � 1 with a scalar product (xy) and
the corresponding norm |x| :=

√
(xx) , where x and y are in H .
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In Section 3, we shall describe the classes C2
conv,sph,1(H) and C2

conv,sph,2(H) of
all functions ϕ: [0,∞) → R for which the spherically symmetric function gϕ : H → R

defined by
gϕ(x) := ϕ(|x|) ∀x ∈ H

belongs to C2
conv,1(H) and C2

conv,2(H) , respectively.
Clearly, for H = R , the classes C2

conv,sph,1(H) and C2
conv,sph,2(H) are one and the

same class; it will be denoted by C2
conv,sph(R) .

Note that the functions belonging to the classes C2
conv,sph,1(H) , C2

conv,sph,2(H) ,
and C2

conv,sph(R) are defined on [0,∞) and not on H or on R .
For any real-valued function, defined in neighborhood of a point t ∈ R , let

f (t+) := lim
s↓t

f (s); f ′
+(t) := lim

s↓t

f (s) − f (t)
s − t

(if these limits exist);

D+f (t) := lim inf
s↓t

f (s) − f (t)
s − t

( ∈ [−∞,∞]
)
;

D0
+f (t) := f (t); Dk

+f (t) := D+Dk−1
+ f (t) ∀k = 1, 2, . . .

if Dk−1
+ f assumes only finite values in a right-hand side neighborhood of t . D+ is

known as the lower right Dini derivative; see e.g. page 56 in [5]. Similarly defined are
the left-hand side versions f (t−), f ′−, D− , and Dk− .

Note that if ϕ belongs to C2
conv,sph,1(H) or C2

conv,sph,2(H) , then it belongs to
C2

conv,sph(R) , and so, the second derivative ϕ′′ is finite and convex on (0,∞) , whence

D+ϕ = ϕ′, D2
+ϕ = ϕ′′, and D3

+ϕ = (ϕ′′)′+ on (0,∞).

Moreover, one has the following simple proposition.

PROPOSITION 1. A function ϕ: [0,∞) → R belongs to C2
conv,sph(R) iff it is

continuous at 0 and twice continuously differentiable on (0,∞) , its second derivative
ϕ′′ is convex on (0,∞) , and, finally, there exist the limits

ϕ′(0) := ϕ′(0+) = 0; ϕ′′(0) := ϕ′′(0+) ∈ R; (ϕ′′)′+(0) ∈ [0,∞).

For any ϕ ∈ C2
conv,sph(R) and any t > 0 , let

h2(t) := h2,ϕ(t) := tϕ′′(t) − ϕ′(t);

h3(t) := h3,ϕ(t) := t2(ϕ′′)′+(t) − 2h2(t);

h4(t) := h4,ϕ(t) := t3D4
+ϕ(t).

In view of Proposition 1, for any ϕ ∈ C2
conv,sph(R) ,

h2(0) := h2(0+) = 0, (4)

(h2)′+(t) = t(ϕ′′)′+(t) � 0 ∀t � 0, (5)
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and so, h2 is nondecreasing on [0,∞) and

h2(t) � 0 ∀t � 0; (6)

furthermore, for any t � 0 ,

h2(t) = 0 iff h2(s) = 0 ∀s ∈ [0, t]. (7)

3. Characterizations of spherically symmetric functions with a convex second
derivative

The following is the basic result.

THEOREM 1. Assume that dimH � 2 , to avoid the trivial case H = R .
Then ϕ ∈ C2

conv,sph,2(H) iff ϕ ∈ C2
conv,sph(R) and the differential inequality

3h4(t)h2(t) � h3(t)2 ∀t ∈ (0,∞) (8)

is true.

If for some t > 0 one has h4(t) = ∞ , it is assumed that inequality (8) holds for
such a value of t ; at that, it does not matter whether h2(t) = 0 or not (cf. (6)); nor
does the value of h3(t) matter in such a case.

REMARK 1. Suppose that ϕ ∈ C2
conv,sph(R) and the differential inequality (8)

is true for all t ∈ (0,∞) \ F , where F is any finite set. Then it is still true that
ϕ ∈ C2

conv,sph,2(H) . This is clear from the proof of Theorem 1, given below, in
Section 5; review, in particular, the proof of the “if” part of Lemma 6 there.

REMARK. Theorem 1 will hold if in the definitions of h2 , h3 , and h4 one replaces
D+ everywhere by D− .

REMARK. It is obvious that, if ϕ ∈ C2
conv,sph,2(H) , then ϕ ∈ C2

conv,sph(R) . On
the other hand, if dimH = 1 , then not all functions ϕ ∈ C2

conv,sph,2(H) satisfy (8);
e.g., consider the functions ϕ(t) := (t − a)3

+ for a > 0 ; here and in what follows,
t+ := max(0, t) for all real t . Cf. Corollary 2 below.

REMARK. Obviously, instead of the “spherically symmetric” functions gϕ(x) =
ϕ(|x|) , one may as well consider the “elliptically symmetric” functions of the form
ϕ (|x|A) , where |x|A :=

√
(xAx) and A is any nonnegative-definite self-adjoint linear

operator in H . For the necessity of (8), one would then have to require that dimA(H) �
2 , instead of dimH � 2 .

COROLLARY 1. For any H , the power function ϕp(t) := tp belongs to
C2

conv,sph,2(H) iff p = 0 or p = 2 or p � 3 .

Utev [12] showed that ϕp ∈ C2
conv,sph,2(H) for p ∈ {2, 4, 6} ∪ [8,∞) .
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COROLLARY 2. For any H with dimH � 2 and any a > 0 , the function
ϕa,p(t) := (t − a)p

+ belongs to C2
conv,sph,2(H) iff p � 7/2 .

Using Corollaries 1 and 2 and the fact that C2
conv,sph,2(H) is a convex cone, one can

find many other examples of functions in C2
conv,sph,2(H) . Thus, the functions defined

for t > 0 by the expressions

a + bt2 +
∫ ∞

3
tpμ(dp) and a + bt2 +

∫ ∞

0+
(t − s)7/2

+ ν(ds) (9)

belong to C2
conv,sph,2(H) , where a and b are any real numbers and μ and ν are any

measures such that
∫∞

3 tpμ(dp) < ∞ ∀t ∈ (0,∞) and ν is finite.
The first of the two expressions (9) contains such examples as et − t , cosh t ,

et
√

t − t
√

t , and ⎧⎨
⎩

tβ − tα

ln t
if t ∈ (0,∞) \ {1}

β − α if t = 1,

(10)

where 3 � α < β ; example (10) corresponds to μ(dp) := I{α < p < β}dp ; as
usual, I{A} denotes the indicator of an assertion A , so that I{A} = 1 if A is true and

I{A} = 0 otherwise. Note that expression (10) asymptotically behaves as
tα

| ln t| when

t ↓ 0 and as
tβ

ln t
when t → ∞ . A more interesting and pure (without ln t ) example

of similar behavior of functions in C2
conv,sph,2(H) is given below after Corollary 3.

Concerning the second of the two expressions in (9), note that in place of 7/2
there, one could take any p � 7/2 . However, that would not produce new examples,
because for any p > 7/2 and any s > 0

(t − s)p
+ =

∫ ∞

0+
(t − u)7/2

+ νs,p(du),

where

νs,p(du) :=
Γ(p + 1)

Γ(9/2)Γ(p − 7/2)
(u − s)p−9/2

+ du.

It is possible to solve differential inequality (8) “explicitly” for ϕ . The “solution”
is given by the key identity (48). This leads to the following “parametric” representation
of C2

conv,sph,2(H) .

THEOREM 2. Let ϕ: [0,∞) → R and dimH � 2 .
Then ϕ ∈ C2

conv,sph,2(H) iff for all t � 0

ϕ(t) = a + bt2 + cI{t > t0}
∫ t

t0+
du · (t2 − u2) exp

∫ u

t0+ε
rK(s)ds, (11)

where a ∈ R , b ∈ R , c � 0 , t0 ∈ [0,∞] , ε > 0 , and

rK(t) :=
3K(t)

t(t2 − K(t))
, t > t0, (12)
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for some nondecreasing function K: (t0,∞) → R such that

∀t > t0 0 � K(t) < t2; (13)

also, if t0 ∈ (0,∞) , then K must satisfy the additional condition∫ t0+ε

t0+
rK(s)ds = ∞. (14)

In particular, (11) implies that ϕ(t) = a + bt2 for all t ∈ [0, t0] . In the case
t0 = ∞ , (11) must be understood simply as ϕ(t) = a + bt2 for all t � 0 . Concerning
the integral in (11) under the exp sign (for which it may happen that u < t0 + ε ) and
other such integrals, we understand an integral of the form

∫ s
t f (u)du with s < t as(

− ∫ t
s f (u)du

)
.

The following two propositions complement the above theorem.

PROPOSITION 2. Representation (11) is essentially unique. Suppose that ϕ may
be represented in the form (11). Then

a = ϕ(0); b =
ϕ′′(0)

2
. (15)

Now further assume that c is nonzero in (11). Then

t0 = sup{t > 0: h2(t) = 0}; (16)

K(t) = t2
t2D3

+ϕ(t) − 2tϕ′′(t) + 2ϕ′(t)
t2D3

+ϕ(t) + tϕ′′(t) − ϕ′(t)
∀t > t0; (17)

moreover, the denominator t2D3ϕ+(t)+ tϕ′′(t)−ϕ′(t) is strictly positive for all t > t0 ;
if {t > 0: h2(t) = 0} = ∅ , then sup{t > 0: h2(t) = 0} := 0 ; as to ε , it may be any
positive real number; however, the value of c is uniquely determined by the choice of
ε > 0 provided that t0 < ∞ . Thus, for every ε > 0 , one has a parametrization of the
set C2

conv,sph,2(H) of functions ϕ by means of the set of the 5-tuples (a, b, c, t0, K) .

PROPOSITION 3. Suppose that ϕ ∈ C2
conv,sph(R) , K(t) is defined by (17), and t0 is

defined by (16); in particular, t0 := ∞ if h2 = 0 on (0,∞) . Then ϕ ∈ C2
conv,sph,2(H)

iff K is non-decreasing on (t0,∞) .

While Theorem 1 is convenient for checking whether a given function is in
C2

conv,sph,2(H) , Theorem2 ismore suitable for construction of functions in C2
conv,sph,2(H)

possessing particular properties. The following useful corollary is our first illustration
of this point.

COROLLARY 3. Let ϕ ∈ C2
conv,sph,2(H) . Then there exists a nondecreasing

sequence (ψm)∞m=1 in C2
conv,sph,2(H) approximating ϕ in the sense that, for every m ,

ψm = ϕ on [0, m] and such that ψm(t) ∼ cmt3 as t → ∞ , for some sequence (cm)∞m=1
in (0,∞) .

Corollary 3 will be used in this paper to prove Theorem 6 below.
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EXAMPLE 1. A nontrivial example of a function in C2
conv,sph,2(H) is given by

ϕK≡1(t) := (4t2 + 11)
√

(t2 − 1)+ − (9t2 + 6) arc tan
√

(t2 − 1)+ ,

corresponding to the following choice of parameters in (11):

a = b = 0, t0 = 1, and K = 1 on (1,∞).

This function asymptotically behaves as 4t3 when t → ∞ and as k · (t − 1)7/2 when

t ↓ 1 , where k :=
96

√
2

35
; cf. Corollaries 1 and 2. Its third derivative, ϕ′′′

K≡1(t) , rapidly

increases from 0 to 24 when t increases from 1 to ∞ .

Also, note that the function ϕp(t) = tp in C2
conv,sph,2(H) with p � 3 corresponds

to a = b = t0 = 0 and K(t) = αt2 ∀t > 0 with α ∈ [0, 1) (so that (13) holds),

where the correspondence between p � 3 and α ∈ [0, 1) is given by p =
3

1 − α
.

For any ϕ ∈ C2
conv,sph(R) one has the Taylor expansion

ϕ(u) = ϕ(0) + ϕ′′(0)
u2

2
+

1
6

∫
t�0

(u − t)3
+d(f ′′)′+(t) (18)

for all u � 0 ; cf. (3.2) in [7]. This means that any ϕ ∈ C2
conv,sph(R) can be represented

as the limit of linear combinations with nonnegative coefficients of functions of the
following three types: (i) the constants; (ii) u �→ au2 , a ∈ R , and (iii) u �→ b(u− t)3

+ ,
t � 0 , b � 0 . (Speaking somewhat loosely, one can say that these three types of
functions constitute the extreme rays of this convex cone of functions, C2

conv,sph(R) ;
this cone is actually closed with respect to the pointwise convergence; cf. the proof of
Proposition A.1 in [7]). Thus, the simple to obtain linear representation (18) is very
useful, as it allows one to reduce any comparison inequality between r.v.’s ξ and η of
the type Eϕ(|ξ |) � Eϕ(|η|) for all ϕ ∈ C2

conv,sph(R) to the same inequality but only
for the extreme functions ϕ , of the three above types; for example, see the proof of
Lemma 3.1 in [7].

Unlike (18), representation (11) is highly nonlinear (even though monotonic) in
K , while C2

conv,sph,2(H) is still a convex cone of functions. Hence, some natural and
interrelated questions arise here.

Open problem

• Is there a tractable linear representation for the functions ϕ ∈ C2
conv,sph,2(H)

if dimH � 2 ?
• What are then the extreme rays of the convex cone C2

conv,sph,2(H) ? What
do they have to do with functions like the one described in Example 1?

Class C2
conv,sph,1(H) is much easier to describe that C2

conv,sph,2(H) :

THEOREM 3. C2
conv,sph,1(H) = C2

conv,sph(R) .
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4. Applications

4.1. Generalized moment comparison inequalities with generalized moment func-
tions in C2

conv,sph,1(H) (As we have just stated in Theorem 3, C2
conv,sph,1(H) =

C2
conv,sph(R) .)

Let us denote any vector (t1, . . . , tn) ∈ R
n by the same bold-faced letter, t , and

let
t(i) := (t1, . . . , ti−1, ti+1, · · · , tn)

for all i ∈ {1, . . . , n} ; similarly, with letters ε and ξ in place of t .
Let us refer to a function M: Rn → V as multiaffine if it is affine in each of its n

arguments; that is, if the function Mi,t(i) : R → V defined by

Mi,t(i) (ti) := M(t)

is affine: for every i ∈ {1, . . . , n} and every t(i) ∈ R
n−1 there are vectors ai,t(i) and

bi,t(i) in V such that

M(t) = Mi,t(i) (ti) = ai,t(i) + tibi,t(i) ∀ti ∈ R.

It is easy to see that a function M: Rn → V is multiaffine iff M admits a repre-
sentation of the form

M(t) =
∑

J⊆{1,...,n}

(∏
i∈J

ti

)
cJ ∀t ∈ R

n,

where
∏
i∈∅

ti := 1 and cJ ∈ V ∀J ⊆ {1, . . . , n} .

In the special case when cJ �= 0 only if card J = 1 , the multiaffine form M(t) is
just a linear form (in t1, . . . , tn ) with values in V .

Let ε1, . . . , εn be independent Rademacher r.v.’s, as in the Introduction.
Let ξ1, . . . , ξn be independent (not necessarily identically but) symmetrically

distributed real-valued r.v.’s such that

Eξ 2
1 = · · · = Eξ 2

n = 1.

In particular, the ξi ’s may be independent standard normal r.v.’s. Let

ε := (ε1, . . . , εn) and ξ := (ξ1, . . . , ξn).

THEOREM 4. Let a function M: Rn → V be multiaffine. Then

Eg(M(ε)) � Eg(M(ξ)) whenever g ∈ C2
conv,1(V). (19)

If M: Rn → V is multiaffine, then M(ε) is the sum of so-called Rademacher
“chaoses” of different degrees.

Theorems 4 and 3 imply the following.
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THEOREM 5. Let a function M: Rn → H be multiaffine. Then

Eϕ(|M(ε)|) � Eϕ(|M(ξ)|) whenever ϕ ∈ C2
conv,sph(R). (20)

The latter result was obtained in [7] in the special case when M(t) is a linear
form (in t1 . . . , tn ); in that case, obviously, |M(t)|2 is an arbitrary nonnegative-definite
quadratic form in t1 . . . , tn .

4.2. Generalized moment comparison inequalities with generalized moment func-
tions in C2

conv,sph,2(H) . In this subsection, we shall assume that the Hilbert space H is
separable. This condition is imposed in order that the sum of any H -valued r.v.’s be a
r.v.

THEOREM 6. Let X1, . . . , Xn be independent zero-mean H -valued r.v.’s, with the
sum S := X1 + · · · + Xn . Then one has the following general and exact version of the
Rosenthal [11] lower bound:

Eϕ(|S|) �
n∑

i=1

Eϕ(|Xi|) (21)

for any generalized moment function ϕ ∈ C2
conv,sph,2(H) with ϕ(0) = 0 ; cf. the

Cox-Kemperman inequality (3). In particular,

E|S|p �
n∑

i=1

E|Xi|p ∀p � 3; (22)

E(|S| − a)p
+ �

n∑
i=1

E(|Xi| − a)p
+ ∀p � 7

2
∀a > 0. (23)

In [12], inequality (22) was obtained for p � 8 .

THEOREM 7. Let G be a finite Borel measure on H such that
∫

H xG(dx) = 0 .
Let X (G) be the set of all finite sequences (X1, . . . , Xn) of independent zero-mean
H -valued r.v.’s such that

n∑
i=1

P(Xi ∈ A) = G(A) (24)

for all Borel A ⊆ H \{0} ; here the length n of the sequence is not fixed. Let Xident(G)
be the set of all the sequences (X1, . . . , Xn) ∈ X (G) with identically distributed
X1, . . . , Xn . Finally, let PG := Pois(G) be the compound Poisson distribution in H
with the Lévy measure G , so that the characteristic functional of PG is given by∫

H
ei(ux)PG(dx) = exp

∫
H
(ei(ux) − 1)G(dx)

for all u ∈ H . Then

sup
X (G)

Eϕ

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
)

= sup
Xident(G)

Eϕ

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
)

=
∫

H
ϕ(|x|)PG(dx) (25)
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for all ϕ ∈ C2
conv,sph,2(H) . In particular,

sup
X (G)

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

= sup
Xident(G)

E

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p

=
∫

H
|x|pPG(dx) ∀p � 3. (26)

These results hold if in (24) the equality sign is replaced by “�”.

Relation (26) was obtained in [12] for p � 8 .
Theorem 7 takes its origin in Prokhorov [10], where H = R . This line of inquiry

was developed in [8], [6], [12], and [9]. The proof, below, of relations (21) and (25) is
based on results of [12].

5. Proofs

In what follows, f : [0,∞) → R and [a, b) ⊆ [0,∞) . Lemmas 1–4 below are
elementary and essentially well known. They will be given here for easy reference.
Lemmas 1 and 2 will be given with no proofs.

If a reader is willing to assume that f is a restriction to [0,∞) of a smooth
enough function, defined on R , then Lemmas 1–4 are not needed; such an additional
assumption would also make the reading a little easier at a few places below. However,
then such subtle examples as Example 1 on page 13 would be lost, and also that would
probably make it more difficult to approach the open problem stated on page 13.

LEMMA 1. If f is continuous on [a, b) , then it is convex on [a, b) iff f ′
+ is

defined, finite, right-continuous, and nondecreasing on [a, b) .

LEMMA 2. Let c ∈ (a, b) and let f be continuous on [a, b] and convex on [a, c)
and on (c, b] . Then f is convex on [a, b] iff f ′

−(c) � f ′
+(c) .

Now one can prove Proposition 1.
Proof of Proposition 2. Let ϕ ∈ C2

conv,sph(R) , so that the second derivative g′′ of
the function g(·) := ϕ(| · |) is finite and convex, and hence continuous, on R . Then
ϕ′′[= g′′] is convex on (0,∞) , and

∃ϕ′′(0+) = g′′(0) ∈ R. (27)

Therefore, one can extend ϕ′′ from (0,∞) to [0,∞) by the formula ϕ′′(0) :=
ϕ′′(0+) . Next, by Lemma 1,

(g′′)′+(0) = lim
t↓0

ϕ′′(t) − ϕ′′(0)
t

= (ϕ′′)′+(0) ∈ R,

and, analogously,

(g′′)′−(0) = lim
t↑0

ϕ′′(|t|) − ϕ′′(0)
t

= −(ϕ′′)′+(0).

It follows that

(ϕ′′)′+(0) =
(g′′)′+(0) − (g′′)′−(0)

2
∈ [0,∞),
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in view of Lemma 2. Since g is even, one has g′(0) = 0 , and so,

g′′(0) = lim
t↓0

ϕ′(t)
t

, (28)

so that ϕ′(0+) = 0 . The “only if” part is proved.
To prove the “if” part, observe that, by the l’Hospital rule,

g′(0) = lim
t→0

ϕ(|t|) − ϕ(0)
t

= ϕ′(0) = 0;

g′′(0) = lim
t→0

ϕ′(|t|)
|t| = ϕ′′(0) = lim

t→0
g′′(t).

It remains to use the above equalities, the equality (g)′′±(0) = ±(ϕ′′)′+(0) , and Lemma
2. �

LEMMA 3. Let f = u1u2 + u3 on [a, b) for some functions u1 , u2 , and u3 , such
that u1 is nondecreasing or continuous (or, more generally, such that u1(t−) � u1(t)
∀t ∈ (a, b) ), u2 is nonnegative and continuous, and u3 is continuous. Or, more
generally, assume that f (t−) � f (t) ∀t ∈ (a, b) . Then f is nondecreasing on [a, b)
iff D+f � 0 on [a, b) .

Proof. This statement is also essentially well known; cf., e.g., Theorem 3.4.4 (or
Exercise 1 on page 76) in [5]. A short proof is obtained by checking that D+f � 0
implies that sup{t ∈ [c, b): f (s) � f (c) − ε(s − c) ∀s ∈ [c, t]} = b for any c ∈ [a, b)
and any ε > 0 . �

LEMMA 4. Let f (t) = u(u1(t))u2(t) + u3(t) for all t ∈ [a, b) , where function u
is nondecreasing on [a, b) , function u1 is strictly increasing on [a, b) , function u2 is
nonnegative on [a, b) , and ∀i ∈ {1, 2, 3} ∃(ui)′+(a) ∈ R . Then

D+f (a) � u(u1(a))(u2)′+(a) + (u3)′+(a);

moreover, if (D+u)(u1(a)) < ∞ or (u1)′+(a)u2(a) > 0 , then

D+f (a) = (D+u)(u1(a))(u1)′+(a)u2(a) + u(u1(a))(u2)′+(a) + (u3)′+(a).

Proof. This is proved essentially the same way as for usual derivatives. �

LEMMA 5. ϕ ∈ C2
conv,sph,2(H) iff ϕ ∈ C2

conv,sph(R) and gϕ(x; y, y) is convex
in x on every straight line not through 0, for every y ∈ H .

Proof. One only needs to check the “if” part. To that end, it suffices to show that
the second derivative g′′ϕ(x; y, y) is continuous in x .

Calculations yield

g′′ϕ(x; y, y) = ϕ′′(|x|) (xy)2

|x|2 +
ϕ′(|x|)
|x|

|x|2|y|2 − (xy)2

|x|2 (29)
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if x �= 0 . This and Proposition 1 imply the continuity of g′′ϕ(x; y, y) in x �= 0 .
Further, (29) implies that, for x �= 0 and y �= 0 ,

g′′ϕ(x; y, y) =
(
τϕ′′(|x|) + (1 − τ)

ϕ′(|x|)
|x|

)
|y|2, (30)

where

τ :=
(xy)2

|x|2|y|2 ,

so that 0 � τ � 1 . Taking now (27) and (28) into account, one has

lim
x→0

g′′ϕ(x; y, y) = ϕ′′(0)|y|2 = g′′ϕ(0; y, y). (31)

Therefore, g′′ϕ(x; y, y) is continuous in x at x = 0 as well, provided that y �= 0 . Finally,
g′′ϕ(x; y, y) = 0 for all x if y = 0 . �

Take any vectors x , y , and z in H . Then one can write

y = αx + βz + u (32)

for some α and β in R and some u ∈ H such that

(xu) = (zu) = 0.

Let

Δ := Δ(x, z) :=
√
|x|2|z|2 − (xz)2;

A := A(x, z) := |x|4 ((xz)2h4(|x|) + Δ2 · h3(|x|)
)
;

B := B(x, z) := (xz)4h4(|x|) + 6(xz)2Δ2 · h3(|x|) + 3Δ4 · h2(|x|);
C := C(x, z) := (xz)|x|2 ((xz)2h4(|x|) + 3Δ2 · h3(|x|)

)
;

U := U(x, z) := |x|2|u|2 ((xz)2h3(|x|) + Δ2 · h2(|x|)
)
.

LEMMA 6. Let dimH � 2 . Then ϕ ∈ C2
conv,sph,2(H) iff ϕ ∈ C2

conv,sph(R)
and U , A , B , and AB − C2 are nonnegative for all z �= 0 and x �= 0 in H such that
h4(|x|) < ∞ .

Proof. Let x0 �= 0 and z �= 0 in H be such that

0 �∈ {x0 + sz: s ∈ R}. (33)

Let
f (t) := f (x0, y, z; t) := g′′ϕ(x0 + tz; y, y), (34)

where y ∈ H and t ∈ R .
Rewrite (29) as

f (t) = (xy)2 h2(|x|)
|x|3 + |y|2ϕ

′(|x|)
|x| ; (35)

here and to the end of the proof of Lemma 6,

x := x0 + tz, (36)
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so that x �= 0 for any t ∈ R , in view of (33). On the other hand, for any nonzero x ∈ H
there exist nonzero x0 and z in H and t ∈ R such that both (33) and (36) hold; this
follows because dim H � 2 .

For all s > 0 ,(
ϕ′(s)

s

)′
=

h2(s)
s2

; (h2)′+(s) =
h3(s) + 2h2(s)

s
; D+h3(s) =

h4(s)
s

; (37)

here we used Lemma 4. Now, using (37) and again Lemma 4, one has for all t ∈ R

|x|7D2
+f (t) = H(x, y, z) − (h3(|x|) + 2h2(|x|)) · (xy)2(xz)2

+(h3(|x|) − h2(|x|)) ·
(
|x|2
(
4(xy)(xz)(yz) + (xy)2|z|2 + (xz)2|y|2

)
− 5(xy)2(xz)2

)
+h2(|x|) · |x|4

(
2(yz)2 + |y|2|z|2) ,

where H(x, y, z) � 0; (38)

if, in addition, one has D4
+ϕ(|x|) < ∞ or (xy)(xz) �= 0 , then

H(x, y, z) = h4(|x|) · (xy)2(xz)2; (39)

note that h4(|x|) < ∞ iff D4
+ϕ(|x|) < ∞ . When (39) holds, then, using (32), one can

rewrite (38) as

|x|7D2
+f (t) = Aα2 + Bβ2 + 2Cαβ + U, ∀t ∈ R; (40)

this is the crucial observation in the proof of Theorem 1.
If ϕ ∈ C2

conv,sph,2(H) , then, by Lemmas 5 and 1, one has D2
+f (t) � 0 for all

t ∈ R , and then the “only if” part of Lemma 6 follows from (40), because, for any x
and z in H , one may take α, β ∈ R and u ∈ H arbitrarily in (32) to thus set y .

Let us now prove the “if” part. Let y ∈ H . Consider the following two cases:
(i) for all t ∈ R , (xy) = (x0y) + t(zy) = 0 and (ii) there is at most one number
t0 ∈ R such that (x0y) + t0(zy) = 0 . In Case (i), (xy) = (zy) = 0 , and so, one may
take u = y in (32), whence by (38) one has D2

+f (t) � |x|−7U � 0 ∀t ∈ R . In Case
(ii), one has (40) for all t ∈ R \ {t0} \ {t1} , where t1 := −(x0z)/|z|2 – because for
such t , one has (xy)(xz) �= 0 .

Thus, in either case,

∃t0 ∈ R ∃t1 ∈ R ∀t ∈ R \ {t0} \ {t1} D2
+f (t) � 0. (41)

Note that, for any t ∈ R , |x0 + sz| increases in s ∈ [t,∞) if (xz) � 0 , where x
is given by (36) as before, and |x0 + sz| decreases in s ∈ [t, t + δ) for some δ > 0 if
(xz) < 0 . It now follows from (29) and (34) that

f ′
±(t) = (ϕ′′)′sign(|x|)

(xy)2(xz)
|x|3 + F(x, y, z),

where sign := ± if (xz) � 0 and sign := ∓ if (xz) < 0 ; F(x, y, z) is some
expression in x , y , and z .
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Thus, in all cases f ′
+(t) � f ′−(t) for all t ∈ R — since ϕ ∈ C2

conv,sph(R) , and
so, ϕ′′ is convex. Now, in view of Lemmas 1–3, (41) implies that f is convex on R .
Thus, gϕ(x; y, y) is convex in x on every straight line not through 0. It remains to use
Lemma 5.

LEMMA 7. If ϕ ∈ C2
conv,sph(R) , then functions h2 , h3 , and h4 are nonnegative

on (0,∞) .

Proof. By (6), h2 � 0 on (0,∞) . Next, it follows from Proposition 1 and
Lemma 1 that D3

+ϕ = (ϕ′′)′+ is nondecreasing on (0,∞) . Therefore, D4
+ϕ � 0 ,

whence h4 � 0 and, in view of (37), D+h3 � 0 on (0,∞) . Again by Proposition 1,
h3(0+) = 0 , and so, by Lemma 3, h3 � 0 on (0,∞) .

LEMMA 8. For any ϕ ∈ C2
conv,sph(R) , any nonzero x ∈ H , and any z ∈ H , A ,

B , and U are nonnegative.

Proof. This follows from Lemma 7.

LEMMA 9. Suppose that dimH � 2 , x ∈ H \ {0} , and h4(|x|) < ∞ . Then

(∀z �= 0 AB − C2 � 0) iff 3h4(|x|)h2(|x|) � h3(|x|)2.

Proof. By the continuity and the condition dimH � 2 , AB − C2 � 0 for all
z �= 0 iff AB − C2 � 0 for all z such that

0 < (xz)2 < |x|2|z|2.
Assuming the latter conditions, one can see that

AB − C2

|x|4Δ6
= p〈 2+q〈+r,

where

〈 := 〈 (x, z) :=
(xz)2

|x|2|z|2 − (xz)2
;

p := h3(|x|)h4(|x|); q := 3
(
h2(|x|)h4(|x|) − h3(|x|)2

)
; r := 3h2(|x|)h3(|x|).

The condition dimH � 2 implies that ∀x ∈ H \ {0} ∀t > 0 ∃z ∈ H 〈 (x, z) = t .
Hence, AB−C2 � 0 for all z �= 0 iff pt2 + qt+ r � 0 for all t > 0 iff p � 0 ,
r � 0 , and (q � 0 or q2 − 4pr � 0 ). Now, q2 − 4pr = 3(3a − b)(a − 3b) and
q = 3(a − b) , where

a := h2(|x|)h4(|x|) and b := h3(|x|)2.

Therefore, (q � 0 or q2 − 4pr � 0 ) iff 3a � b iff 3h4(|x|)h2(|x|) � h3(|x|)2 .
It remains to notice that p � 0 and r � 0 , by Lemma 7. �
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Proof of Theorem1. If ϕ ∈ C2
conv,sph,2(H) and dim H � 2 , then ϕ ∈ C2

conv,sph(R) ,
and, by virtue of Lemmas 6 and 9, condition (8) is satisfied. This proves the “only if”
part of the theorem. The “if” part follows from Lemmas 8, 9, and 6. �

Proof of Corollary 1. This follows from Theorem 1, because, for ϕ := ϕp , one
has

3h4(t)h2(t) − h3(t)2 = 2p3(p − 2)2(p − 3)t2p−2

for t > 0 . �

Proof of Corollary 2. W.l.o.g., a = 1 , because ϕa,p(t) = apϕ1,p(t/a) if a > 0 .
For ϕ := ϕ1,p , p := r + 7/2 , and s > 0 , one has

8(
r + 7

2

)2
s2r+1

(
3h4(1 + s)h2(1 + s) − h3(1 + s)2

)
= 150r + 220r2 + 104r3 + 16r4 + 255s + 902rs + 980r2s + 424r3s + 64r4s

+ 445s2 + 1518rs2 + 1556r2s2 + 648r3s2 + 96r4s2 + 285s3 + 994rs3 + 1052r2s3

+ 440r3s3 + 64r4s3 + 63s4 + 228rs4 + 256r2s4 + 112r3s4 + 16r4s4,

which is nonnegative if r � 0 , i.e., if p � 7/2 . Hence, by Theorem 3, ϕa,p ∈
C2

conv,sph,2(H) provided that a > 0 and p � 7/2 . On the other hand, for ϕ := ϕ1,p

one has

lim
s↓0

3h4(1 + s)h2(1 + s) − h3(1 + s)2

s2p−6
= 2p2(p − 1)2(p − 2)(p − 7/2).

Hence, if ϕ1,p ∈ C2
conv,sph,2(H) , then either p � 7/2 or p � 2 . But ϕ1,p ∈

C2
conv,sph,2(H) implies ϕ1,p ∈ C2

conv,sph(R) , so that, by Proposition 1, ϕ′′
1,p must be

convex, whence p � 3 . Thus, if ϕ1,p ∈ C2
conv,sph,2(H) , then p � 7/2 . �

Proof of Theorem 2.
“only if” part
Since ϕ ∈ C2

conv,sph,2(H) , one has ϕ ∈ C2
conv,sph(R) , and so, the conditions described

in Proposition 1 hold. Let us define a and b as in (15). W.l.o.g., a = b = 0 ; otherwise,
we would just deal with the function ϕ(t) − a − bt2 (instead of ϕ(t) ), which is easily
seen to be in C2

conv,sph,2(H) iff ϕ is in C2
conv,sph,2(H) . Also we have that ϕ′(0) = 0

and ϕ′′ is convex. Thus,

ϕ(0) = ϕ′(0) =ϕ′′(0) = 0; (42)
(ϕ′′)′+ � 0; ϕ′′ � 0 (43)

on (0,∞) . Next,

h2(s) = s2

(
ϕ′(s)

s

)′
∀s > 0. (44)

Thus, if h2(t) = 0 for some t > 0 , then, according to (7), h2 = 0 on (0, t] , and
so, ∃k ∈ R ∀s ∈ (0, t] ϕ′(s) = ks , whence ∃k1 ∈ R ∀s ∈ (0, t] ϕ(s) = ks2/2 + k1 .
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Now, by (42), one has ϕ = 0 on [0, t] . We see that if h2(t) = 0 for some t > 0 , then
h2 = 0 on [0, t] and ϕ = 0 on [0, t] . Vice versa, if ϕ = 0 on [0, t] for some t > 0 ,
then obviously h2 = 0 on [0, t] .

Let t0 be defined by (16). If t0 = ∞ , then ϕ = 0 on [0,∞) ; in this case (11)
trivially takes place with a = b = c = 0 .

For the rest of the proof of the “only if” part, assume that 0 � t0 < ∞ . Then
both functions h2 and ϕ , being continuous, are strictly positive on (t0,∞) and zero
on [0, t0] . Hence, the continuous functions ϕ′ and ϕ′′ are also zero on [0, t0] .

Let now, for all t > t0 ,

r(t) := D+ ln
h2(t)
t2

= D+ ln

((
ϕ′(t)

t

)′)
=

(
ln

((
ϕ′(t)

t

)′))′

+

. (45)

Using Lemma 4, one has

r(t) =
h3(t)
th2(t)

and D+r(t) =
h4(t)h2(t) − 3h3(t)h2(t) − h3(t)2

t2h2(t)2
(46)

for all t > t0 .
Let next

K(t) :=
t3r(t)

3 + tr(t)
∀t > t0. (47)

This definition is correct, since it follows from (46) and Lemma 7 that r(t) ∈ [0,∞)
for all t > t0 . In view of (47), this is equivalent to (13).

Now it is easy to see that

r = rK

on (t0,∞) , where rK is defined by (12).
The key fact in the proof of Theorem 2 is that for all t > t0 ,

D+K(t) =
t

(3 + tr(t))2

3h4(t)h2(t) − h3(t)2

h2(t)2
; (48)

here we used Lemma 4 again. To check (45), one may also use (46).
Identity (48) implies that K is nondecreasing on (t0,∞) iff 3h4h2 − h2

3 � 0 on
(t0,∞) .

According to (46) and Proposition 1, r(t+) = r(t) � r(t−) for all t > t0 . It now
follows from (45) that ∀ε > 0 ∃c1 > 0 ∀t > t0(

ϕ′(t)
t

)′
= c1 exp

∫ t

t0+ε
r(s)ds. (49)

If t0 > 0 , then, as we saw, ϕ = 0 on [0, t0] . By (42),
ϕ′(t)

t
→ ϕ′′(0) = 0

as t ↓ 0 . Also, we saw that the continuous on [0,∞) function ϕ′ is zero on [0, t0] .
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Hence,
ϕ′(t)

t
→ 0 as t ↓ t0 , whether t0 = 0 or t0 > 0 . Therefore, (49) and (42)

imply that for all t > t0

ϕ′(t)
t

= c1

∫ t

t0+
du · exp

∫ u

t0+ε
r(s)ds; (50)

ϕ(t) = c1

∫ t

t0+
vdv ·

∫ v

t0+
du · exp

∫ u

t0+ε
r(s)ds

= c1

∫ t

t0+
du ·

(
exp

∫ u

t0+ε
r(s)ds

)∫ t

u
vdv

= c
∫ t

t0+
du · (t2 − u2) exp

∫ u

t0+ε
r(s)ds, (51)

where c := c1/2 > 0 . Thus, one has (11) (with a = b = 0 ).
Using (50), one has for all t > t0

1
c1

ϕ′′(t) =
∫ t

t0+
du · exp

∫ u

t0+ε
r(s)ds + t exp

∫ t

t0+ε
r(s)ds; (52)

1
c1

(ϕ′′)′+(t) = 2 exp
∫ t

t0+ε
r(s)ds + tr(t+). (53)

Assume now that t0 > 0 . Recall that ϕ′′ is continuous and ϕ′′(t0) = 0 . Then
(52) implies that exp

∫ t
t0+ε r(s)ds → 0 as t ↓ t0 . This proves (14). The “only if” part

of the theorem is thus completely proved.
“if” part

Suppose that all that follows the word “iff” in the statement of Theorem 2 is true. We
want to show that then ϕ ∈ C2

conv,sph,2(H) . W.l.o.g., a = b = 0 and t0 < ∞ . Then
(51), (50), (52), and (53) hold for all t > t0 with r := rK and c1 := 2c . Note that (12)
and (13) imply r(t) � 0 for t > t0 . Hence, (53) implies that (ϕ′′)′+ > 0 on (t0,∞) ,
and then (5) implies that h2 is strictly increasing on (t0,∞) . Next, (52) and (14)
imply that ϕ′′(t0+) = 0 , whether t0 = 0 or t0 > 0 . Also, (52) yields ϕ′(t0+) = 0 .
Hence, h2(t0+) = 0 . Since h2 is strictly increasing on (t0,∞) , it is strictly positive on
(t0,∞) . Then, as we saw, one has (48), whence 3h4h2 − h2

3 � 0 on (t0,∞) . On the
other hand, on the interval (0, t0) (if non-empty), the function ϕ and all its derivatives
are 0, as well as the function 3h4h2 − h2

3 . Hence, (8) holds ∀t ∈ (0,∞) \ {t0} . Thus,
in view of Remark 1, it remains to verify that ϕ ∈ C2

conv,sph(R) .
As has been shown, h2 > 0 and 3h4h2 � h2

3 on (t0,∞) , whence h4(t) =
t3D4

+ϕ(t) � 0 for all t > t0 , and so, D4
+ϕ � 0 on (t0,∞) . This implies that ϕ′′ is

convex on (t0,∞) . In addition, ϕ′′ = 0 on (0, t0) and (ϕ′′)′+(t0) � 0 (by virtue of
(53) and the nonnegativity of r on (t0,∞) ). It follows that ϕ′′ is convex on (0,∞) .

Since ϕ′′ is also finite on (0,∞) , one has (ϕ′′)′+(t0) < ∞ . Finally, as has been
shown, ϕ′(t0+) = ϕ′′(t0+) = 0 . Hence, ϕ′(0+) = ϕ′′(0+) = 0 if t0 = 0 . If
t0 > 0 , then the equalities ϕ′(0+) = ϕ′′(0+) = 0 are trivial, since ϕ = 0 on (0, t0) .
Now it remains to refer to Proposition 1.

Theorem 2 is completely proved. �
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Proof of Propositions 2 and 3. These follow from the above reasoning, most of
which can be turned back. In particular, it follows from (47) and (45) that for all t > t0

K(t) = t2
tD+h2(t) − 2h2(t)
tD+h2(t) + h2(t)

,

whence one has (17); the denominator in (17) coincides with tD+h2(t) + h2(t) and
hence is strictly positive for all t > t0 , according to (5), (6), and (16). �

Proof of Corollary 3. In representation (11), replace K by Km defined by

Km(t) := K(t) ∧ K(m) ∀t > t0,

to obtain ψm , in place of ϕ , for every natural m . Thus, Km = const on [m,∞) . It is
easy to see that the resulting sequence (ψm)∞m=1 satisfies all the requirements stated in
Corollary 3; cf. Example 1 on page 13. �

Proof of Theorem 3. Essentially, this theorem follows from [7, Lemma 3.1]. Alter-
natively, in (32) and thence in (40), one may set z = y and thus α = 0 , β = 1 , and
u = 0 . Now it remains to use Lemma 8. �

Proof of Theorem 4. This follows from Lemma 3.2 of [7]; cf. the proof of
Theorem 2.3 therein; the condition that the function f in Lemma 3.2 of [7] be even
is actually not needed, because the distributions of both the εi ’s and the ξi ’s are
symmetric, so that Ef (εi) = Ef symm(εi) and Ef (ξi) = Ef symm(ξi) , where f symm(t) :=
(f (t) + f (−t))/2 . �

Proof of Theorem 6. Theorem 2 of [12] implies that

Eg(S) �
n∑

i=1

Eg(Xi)

for any function g ∈ F2(H) with g(0) = 0 such that E|g(Xi)| < ∞ ∀i , where F2(H)
is the class of all functions g ∈ C2

weak(H) satisfying the following conditions:
(i) g is twice Fréchet-differentiable with a continuous second derivative g′′ (in

fact, one seems to need here something different: that the map H × H � (x, y) �→
g′′(x; y, y) be bounded on all bounded sets in H × H ; recall that bounded sets in an
infinite-dimensional Hilbert spaces need not be compact);

(ii) g′′(x; y, y) is convex in x ∈ H for every y ∈ H ;
(iii) ∃ cg ∈ (0,∞) |g(x + y)| � cg · (1 + |g(x)|)(1 + |g(y)|) for all x and y in

H .
Thus, to prove (21), it suffices to check conditions (i)–(iii) for the functions

gm: H → R (in place of g ) defined by

gm(x) := ψm(|x|) ∀x ∈ H,

where ψm are as in Corollary 3.



SPHERICALLY SYMMETRIC FUNCTIONS... 25(
The condition E|g(Xi)| < ∞ ∀i can be circumvented here. Indeed, if ϕ(t) =

bt2 for all real t , then (21) is a trivial equality. Hence, it suffices to prove (21) only

for such ϕ ∈ C2
conv,sph,2(H)

[
⊆ C2

conv,sph(R)
]

that a = b = 0 in (11), so that one has

(42), whence, in view of Proposition 1, ϕ is convex, and so, Eϕ(|S|) � Eϕ(|Xi|) ∀i ,

by Jensen’s inequality.
)

That the map H × H � (x, y) �→ g′′m(x; y, y) is bounded on all bounded sets in
H × H follows from (29), (31), and Proposition 1; note that one has (31) uniformly in
y over all y in any bounded set. This verifies (i).

That gm satisfies conditions (ii) and (iii) for all m is obvious.
Thus, (21) is proved. Now (22) and (23) follow by Corollaries 1 and 2. �

Proof of Theorem 7. The inequality

sup
X (G)

Eϕ

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
)

�
∫

H
ϕ(|x|)PG(dx)

is not difficult to deduce from Theorem 6; cf. the proof of Theorem 4 in [12]. The
inequality ∫

H
ϕ(|x|)PG(dx) � sup

Xident(G)
Eϕ

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
)

follows from the analogue of the Fatou lemma for convergence in distribution [1,
Theorem 5.3] if one considers, for n � G(H) , the i.i.d. r.v.’s X1, . . . , Xn with the
common distribution determined by the condition

P(Xi ∈ A) :=
1
n
G(A) for all Borel A ⊆ H \ {0};

cf. [8]. Finally, the inequality

sup
Xident(G)

Eϕ

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
)

� sup
X (G)

Eϕ

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
)

is trivial. �
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