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MAXIMUM OF GREEN’S FUNCTIONS AND LIAPUNOV
INEQUALITIES FOR THE STURM-LIOUVILLE PROBLEM

LAURIE BATTLE

(communicated by A. M. Fink)

Abstract. First we find the Green’s function for the Sturm-Liouville problem with separated
boundary conditions. Then we calculate maximum values of the Green’s function to determine
Liapunov-type inequalities.

1. Introduction
We consider the Sturm-Liouville problem with separated boundary conditions

W' +px)u=Au in |[a,b]

u(a) = hu'(a) (1)

u(b) = Hu'(b)
where p € L'[a,b],||p|| > 0, and 7, H € R. Assuming A = 0 is an eigenvalue of
(1), we obtain a lower bound for ||p||,, of the Liapunov type, where the bound depends
on the values of 7 and H in the boundary conditions. The lower bound is determined
by the maximum values of Green’s functions associated with A = 0.

The Liapunov inequality applies to the case where i = H = 0. It states that
if A = 0 is an eigenvalue of (1) with boundary conditions u(a) = u(b) = 0, then
Pl > 3= . Proofs of Liapunov’s inequality (with Dirichlet boundary conditions)
may be found in the survey papers [1,3]. The same inequality was proven for antiperiodic
boundary conditions [2,p.21]. We extend this result to the separated boundary conditions
in the following theorem:

THEOREM. If A = 0 is an eigenvalue of (1) but is not an eigenvalue of v’ = Au
with the same boundary conditions, i.e., if h # H — 1, then ||p| . = C(H,h), where

Lo oH —ah—1
1. C(H,h) = |—=—— '
(H,h) h(aH — 1) 4
(H,h) € {—¥L2 SH< 5 h<min{(3 - 2V2)H + 223 AU
{H <32, h< =gt U{h > max{g —H, =1}
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. H— oh— 1
2. C(A,h) = ¥ ¢ ’ if
H(1 + oh)
(FLh)ﬁ{F@ Lz -Ayuh< L2, -A<h<(B+2V2)H - 11U
7 2 7 A A 7 1
{h>_¢x’h< leQH}Lj{legﬁghg*E*H}
~ aH — oh —1 U - -
e A CEE SRt
- - |4o(eH—oh—1)| . -
4. C(H.h) = _ A ) e
(H. 1) (1 — aH — ah)? i (H,h)

~ ~ \/—7 ~ ~ ~
{max{—1 —H, 3-2V2)H+ 2223, 3+2V2)H-L1}y<h< i -A}.

These four regions are sketched in Fig. 4 below for o = 1 and are labeled g,
g2, 83, 84, respectively. The definitions of C(H , 71) agree on the boundaries between
regions, so that C(H, k) is continuous. For this reason, we allow the formulas for
C(H,h) to overlap. O

By defining the function U(s) := u(x), where s = =%, we may assume that
a=0and b = 1. Infact, if A = 0 is an eigenvalue of (1), then A = 0 is an

eigenvalue of

U"(s) + P(s)U(s) = AU(s) in [0,1]
U(0) = hU'(0) ()
U(1) = HU'(1)

where P(s) = a—> ,h=ah, H=aH (a = ;). This follows from the fact that
u'(x) = alU'(s), u"(x) = a?U"(s), u(a) = U(0), and u(b) = U(1).

2. Lower bound for ||P|,, determined by the Green’s function

Now assume A = 0 is an eigenvalue of (1). Then A = 0 is an eigenvalue of (2)
and the eigenfunction U can be written

U(r) :/0 G(t,5)(—P(s)U(s)) ds,

where G(t, s) is the Green’s function [4, p.168].
Let 0 < 7o < 1 be such that |U(ty)| = max{|U(¢)| : 0 <7 < 1}. Then

/0 Glto, )| [P(s)] [U(s)] ds

1
< mwﬂG@@kognsglﬂUmﬂ/iW@ﬂds
0

Thus
1

max{|G(r,s)[ 10 < f,s < 1}’ (3)

So the maximum of the Green’s function determines a lower bound for ||P||,, .

1Pl =
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3. Calculation of max G(z,s)
Now to solve for G(z,s) for the case when H,h < oo, note that u;(x) :=x+h

and u,(x) := x+ H — 1 both satisfy u” = 0, and they satisfy the boundary conditions
u1(0) = huj(0), up(1) = Hu)(1). Then the formula for the Green’s function is

—ul(s)uz(t)7 st
c(0)
G(1,5)
—u(1)uz(s)
—, s>t
c(0)
where ¢(0) = det m(t) w() (ko rHH=1) h—H+1 (see [4]
- ui(t) uh(n)) 1 1 -
p.148). So
h)(t+H—1
CHBOEHD
G(1,s) = P 4
(t,5) (t+h)(s+H—1) “)
, s>t
H-h-1
Since u; and u; must be linearly independent, we must have 7 #% H — 1. So we will
consider all values of H, h except when h = H — 1.

Since G(t,s) = G(s,1), the maximum of G over (t,5) € [0, 1] x [0, 1] will occur
in the region where s > ¢. In this region, using (4)

(t+h)(s+H—1)
H—-—h-1

G(t,s) =

which we will now use.

Next we observe that the maximum value of G in the triangle 0 < 7 < s < 1 must
occur on the boundary. For if sy is fixed in [0,1], 2 (1, 50) = $tH-1 is constant. So
G is linear as a function of ¢ along the line s = sy and hence the maximum of G along
the line s = sp must occur at either endpoint.

In particular, the maximum along the boundary line s = 1 must occur at an
endpoint. Similarly, the maximum along the boundary line # = 0 must occur at an
endpoint, since %—f(O, s) = 7—— is constant. Along the diagonal s = ¢, %(t; (t,1) =
%, which is zero if r = %’h So the maximum along the diagonal must
occur at an endpoint or at (:=2=E 1282k f 0 < I2H=R < 1 In conclusion, the
maximum of G over the triangle must occur at one of the points (0,0), (1,1),(0,1), or
at(llgh 1— Hh)1f0<1 Hh<1

Then the maximum of G in the triangle is the maximum of the absolute value of

the four values

G0.0= G760 = 5
(1+h)H 1-H—h 1-H—h\ —(1—H+h)?
G(1,1) = H—h—1 G( 2 72 >_4(Hh1)'
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Each of these has the term H — h — 1 in the denominator, which can be removed when
comparing them. So define

gi(H,h) :==h(H—1)  g3(H,h):=hH
QoH. ) = (14 WH  galH,h) i= 7(1— H + R

Now we must find max{|g(H, h)|,|g2(H, h)|, |g3(H, k)|, |gs(H, h)|} for all val-
ues of H h < oo,h # H — 1. But by using symmetry we need only consider
the half-plane 7 > —H. The symmetry over the line 7 = —H follows from
the following calculations: g(H,h) = g,(—h,—H), g3(H,h) = g3(—h,—H), and
g4(Ha h) = g4(7ha 7H) :

We represent all possible values for (H, &) using the plane with H as the horizontal
axis and h as the vertical axis. Notice that

1
H> o e [H] > |H = 1] = [gs] > [a] (5)
1
Bz =5 = 1> ] = el > gl (6)
So we choose our four cases as the quadrants determined by the lines H = % and
h= —% . In each case we can eliminate one or two possibilites for the maximum by

refering to (5) and (6). The four cases are as follows:

LL.H>3,h>-1 Eliminate g; by (5) and g3 by (6)
2. H> 1 h< -1 Eliminate g; by (5) and g, by (6)
3. H< 31, h>—3 Eliminate g3 by (5) and (6)
4. H< 3,h< -3 Eliminate g3 by (5) and g, by (6)
h
AN 3T
\\\Case 3,1 Case |
<
L ' H
3.2 ] A
! ™\ Case2
21 \\\
5l h=—H

Figure 1. Symmetry over h = —H

As noted earlier, we need only consider the half-plane & > —H because of
symmetry. So case 4 is completely determined by case 1, and cases 2 and 3 can be cut
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in half (consider the shaded region in Fig. 1, except where h = H — 1.). Also recall
that g4 is considered only if 0 < # <l,ie,if -1-H<h<1-—H.

1. H>3h>—3

Since g; and g3 are eliminated, we compare g, and g4 .
(@ h>1-H

Since g4 is not considered in this region, |g| is the maximum.
b) h<1-H

H>j=h<l-H<j;= —1<h<}, and

h>-1=H<1-h<3=Li<H<I.

Then —1 < 1 —H+h <1 = |g] = (1 —H+h)? < ;. Now |g] =
|(1+h)H| = (1+h)H > %-1=1.Then |g| > |g4|,s0 |g2| is the maximum.

2. H>3h<-4

Since g; and g, are eliminated, we compare gz and g4 .
@ h>1-H

Since g4 is not considered in this region, |g3| is the maximum.
(b)) h<1-H

H>1and h<—3=1-H+h<0.

h<l—-H=1—-H+h22h.

So2h <1-H+h<0= (1-H+h)><4h*. So |g4| = ;(1—H+h)> < h?.
Now |g3| = |hH| = —hH > (—h)(—h) = h? since H > —h > 0. Then |g3| > |g4],
S0 |g3/| is the maximum.

3. H<j3h>—3 (Fig. 2)

h
1
\
\
\
N
N\,
N\,
N\,
N
— \\
h=—H \_ 054
N
\
\
q
q
Q
N\,
N\,
\\
S H
1 0.5 N 0.5 1
N
. N
p— N h=1-H
TI2H 0.5 A
\\
.
\\
N
\\

h=(3+2 2)H1

Figure 2. Case 3

Since g3 is eliminated, we compare g;, g2, and g4.
(@ h>1—-H
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Since g4 is not considered in this region, we compare g; and g;.
i. H<O0
lg1| = |h(H —1)| =h(1l —H) =h—hH since h > 1 —H > 1>0.
lg2| = [H(1+h)| = —H(1 +h) = —H — hH < h — hH since we are assuming
h > —H. Then |g| > |g2], so |gi] is the maximum.
i. H>0
|g1| = |h(H — 1)] = h(1 — H) since h > 1 —H > 4> 0.
g2l = [H(1+ )| = H(L + ).
Note that 1 — 2H > 0 since H < 1. So

21 2H<:>h(172H)>H<:>hth>H+hH<:>

Ml—H)Z2H(1+h) < |h(H—-1)| =2 |H(1 + h)| <= |g1| > |g2|-

So |gi| is the maximum when h > 5 and [g>| is the maximum when 7 < 2.
(b) h<1-H
i H<O0

Since h > —H > 0, the argument in (a)(i) applies to this case because it requires
only that 4 > 0 and not that 27 > 1 — H, and the argument shows that |g| > |g2].

Next we show that |g4| > |gi|. First observe that |g4| > |gi| on the boundary of
this region:

If h = —H |g(H,~H)| = Y1 -2H)? =H>-H+ 1, and |g1(H,~H)| =
|~H(H — 1) = —H(1 — H) = H> = H. So |g4] > |31,

I =1, [ga(F, 1~ H)| = {(1= H 1 H)* = (2(1H)) = (1= H)",
and |gy (H, 1 — H)| = |(1 — H)(H — 1)] = (1 — H)>. So lga] = |gu].

It H = 0,[ga(0.n)] = 2(1+h)%, and [gi(0,h)] = h. So lga| > e if
T(L4+2h+h*) —h>0,ie,if f(h) = h2 2h4+120.Now f'(h) =2h—2<0
for h < 1, but 0 < h < 1 on this boundary line. Since f is decreasing on (0,1),
f(h) = f(1) = 0, which shows that |g4| > |g1].

Next we show that |g4| > |gi1| in this entire region by showing the function
g(H,h) := |g4| — |g1| = 5(1 — H + h)> — h(1 — H) is nonnegative. We already know
it is nonnegative on the boundary.

Now 28 (Hh) = (1 —~H+h)+h=L(~1+H+h) <0since h<1—H.
Since 2 W does not change sign in this region and since g > 0 on the boundary, g > 0
in the region. That s, |g4| > |g1| in the region.

ii. H>0 (Fig.3)
In this region, we make the following claim:

CLAIM. h > 2 ifand only if |g1| > |ga].

Proof. If h > 0, the argument from (a)(ii) applies because it requires only that
h > 0 and not that h>1—H.If h <0, notice that h < = 2H This is true because
0 < H <1 implies - >0, while h < 0. Now |g| = |h(H — 1)| = —h(1 —H) =
—h+hH,and |g| = |H(1+h)| =H(l+h) = H+ hH > —h + hH = |g|, since
h>—H.So |g| > a1 <= h < .
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Now we show that |g4| is the maximum if 2 > (3 +2v2)H — 1, and |ga| is the
maximum if & < (3 +2v2)H — 1 (Fig. 3):

A. Suppose h > (3 +2v/2)H — 1. First observe that |g4| is the maximum on the
boundary of this region (A in Fig. 3):

h=(3+2/2 )H~1

Figure 3. Case 3(b)(ii)

If H =0, that |g4] > |g1| was shown in (b)(i). Now 0 < & < 1 on this
boundary line, so & > 0 = - since H = 0. Then |g1| > |g2| by the claim. So
84| = 81] = g2l

If h=1—H, we show that h > £ on this boundary line. Now h=1—H >
= if (1 —H)(1 —2H) > H ,i.e., if g(H) :=2H* —4H + 1 > 0. The intersection
point of the lines h = | — H and h = (3+2V2)H — 1 is at H = 1—\/75, SO
0K<KHKLI1- % on this boundary line. But g'(H) =4H — 4 < 0 for H < 1, so
g is decreasing over (0,1 — 4) Then g(H) > g(1 — 4) = 0, which proves that
h> 2. Then |gi| > |g2| by the claim.

Now |g4(H,1—H)| = 1(2(1 = H))*> = (1 - H)? and |gi(H,1 - H)| = (1 - H)*. So
|84l = [g1] = lg2]-

H

If h = (3 +2v2)H — 1, we claim that h < 7 (7)

Now h = (3+2v2)H—1 < - if (3+2v2)H—1)(1-2H) < H,ie.if g(H) :=
(6+4v2)H? — (4+2v/2)H+1 > 0. Now g'(H) = (12+8v2)H — (4+2v/2) < 0 for
H< 1,%_ Since the intersection point of the lines # = 1—H and h = (34+2v2)H—1
occursat H =1 — %,H <1- % on this boundary line. Since g’ is negative over

this interval, g is decreasing. So g(H) > g(1 — %) = 0. This proves (7), and then
|g2| = |g1| follows from the claim.
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Now [gs(H, (3+-2VD)H-1)| = L(2+2v2)H)? = (3+-2V2)H?, and [ga(H, (3+
2V2)H — 1) = [(1 + (3 +2V2)H — DH| = (3+2\f)H2 S0 |ga| = [g2| = &1l

Ifh——chenh<OsmceH>0andIZH 0 since 0 < H < 5.
It follows that h < -, and then |gz| > |gi| by the claim. Now |g4(H,—H)| =
t(1=2H)? =H?>-H+},and |g2(H,—H)| = |(1— H)H| = H— H*. So |g4| > |52
if g(H) := 2H* —2H + § > 0. On this boundary line, 0 < H < 1 — ‘/5. But
¢'(H) = 4H — 2 is negative for H < 1, so g is decreasing over (0,1 — i) Then
g(H) > g(1 — ¥2) = 0. This shows that g4 > |g2| > |g1].

2
Next observe that |g4| is the maximum in the region by considering the functions

fi(H,h) = |ga] = |g1| = (1 — H+h)* — |h(H — 1)|, and f>(H,h) := |ga| — |g2| =
H1—H+h)?*—|1+hH|=3(1—H+h)>— (1+h)H. We know that f1,f> > 0
on the boundary of this region, and we must show that f,f, > 0 in the entire region.
If >0, fi(Hh)=1(1—H+h)*—h(l — H), and af‘(Hh) —I(1-H+
h)+h=3(=1+H+h) < 0 since h < 1—H.If h <O, |[fi(H h)| =+(1-H+h)>+
h(l1—H),and gJ;‘,(H,h) = ——(1—H+h) h=1(-1+H- 3h) L(—1+4H) since
h>—H.But (3+2V2)H —1<h <0 implies that H < 75— =3 -2v2 < 3.
So |%(H,h)\ < $(—1+4H) < 0. Since f; > 0 on the boundary and % is always
negative in the region, f; > 0 in the region. That is, |g4| > |g1| in the region.

Now |f2(H,h)| = Y(1—H+h)>—(1+h)H ,s0 % (H,h) = —L(1—H+h)—(1+h) =
N-3+H-3n) < (-3+1+3)=-1<0since H< 1 and h > —1. Since
f2 = 0 on the boundary and gf 2 is always negatlve in the region, f, > 0 in the region.
That is, |g4| > |g2| in the region.

B. Suppose i < (3 +2v2)H —

We showed in (7) that if (H, h) is a point on the boundary line 4 = (34+2v2)H—1,
then (3+2v2)H — 1 < Z-. Soin this case, h < (3+2v2)H — 1 < ;£ . Then
|g2| = |g1| by the claim.

Now observe that |g| > |g4| on the boundary of this region (B in Fig. 3):

If h = (3+2v2)H — 1), then |g4| = |g2| as shown in the argument following
(7).

If h=—H, |g4(H,—H)| = H* — H+ 1 and |g,(H,—H)| = H — H* as shown
in A. So |g2| > |gu| if f(H):= —2H>+2H — } > 0. Now f'(H) = —4H +2 >0

for H < % But % - ﬁ < H L l on this boundary line, so f is increasing and
f(H )>f(l——)_0 Thlsshowsthat lg2| = |gal.
Ifh=1-H, |gs(H,1 —H)|=12(1-H))>=(1-H)>=1-2H+H?,and

(8a(H, 1~ H)| = |2— H)H| = 2H—H>. So |ga| > [ga] if f (H) = —2H>+4H 1>
0. But 1—\/7i <HK % on this boundary line, and f'(H) = —4H+4 > 0 for H < 1.
Since f is increasing over (1 — \/75, 0. fH) =f(1- i) = 0. This shows that
82| > |gal.-

It H=7. [ga(z. 1) = 3(z+h)* = g6 + 3k + 3", and [ga(3, B)] = (1+1)3 =
L4+ 1n.So |go| = |gal if f(h) :=—1R*+ih+ L >0.Now f/(h) = —ih+1>0
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for h < % Since —% <h < % on this boundary line, f is increasing. So f (k) >

f(3) = % > 0. This shows that [g>| > [g4].

Nextobserve that |g,| > |g4| in the region by showing that the function f (H, h) :=
|g2| — |gs| = |(1+h)H| — $(1 —H+h)?> = (1+h)H — +(1— H+h)* isnonnegative.
We already know that f > 0 on the boundary. Now (;-—H(H h) =1+h+3(1—-H+h) =
2+3hle>%—%f%smceh —tand H< 1 .So\af(Hh)\/2>0
Since f > 0 on the boundary and 7 = 0 in the region, f > 0 in the region. That is,

|g2| > |g4| in this region.

The results of all cases where H,h < oo and h # H — 1 are illustrated in Fig.
4, assuming [a,b] = [0, 1]. Recall that symmetry is used to determine the half-plane
h < —H , where g; mapsto g», gz maps to itself, and g4 maps to itself.

Figure 4. Maximum of the g;

The maximum value for the case &7 = 0, H = oo and for the case h = oo, H = 0
are as expected from the picture (Fig. 4):

1. H=00,h=0

Here, the boundary conditions from (2) are U(0) =0,U’(1) =0.

The functions u;(x) := x and uy(x) := c, for any ¢ # 0, both satisfy «” =0,
and they satisfy the boundary conditions u;(0) = 0, u5(1) = 0. Then the Green’s
function (for s > ¢) is calculated to be

—ui(Dua(s)  —tc
G(t,s) = <(0) = =1
Clearly, the maximum of |G(z,s)| = ¢ over [0, 1] x [0, 1] is I, when # = 1 and for any
0 < s < 1. In particular, the maximum occurs when (z,s) = (1, 1), which corresponds

to g&.
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2.H=0,h=0
Here, the boundary conditions from (2) are U’(0) =0,U(1) =0.
The functions u;(x) := ¢, forany ¢ # 0, and u,(x) := x—1, both satisfy u” =0,
and #{(0) =0, uz(1) = 0. Then the Green’s function (for s > t) is calculated to be
—u(Hua(s) —c(s—1)

G(t,s) = <(0) = - =1-s

Clearly, the maximum of |G(z,s)] = 1 — s over [0,1] x [0,1] is 1, when s = 0 and
for any 0 < # < 1. In particular, the maximum occurs when (#,s) = (0,0), which
corresponds to gj .

This completes all cases assuming the interval is [0, 1]. Notice how the values for
C(H,h) in the theorem are obtained from the maximum values of the Green’s functions
for the interval [0, 1] (where @ =1 —0 = 1) by using (3):

1 H—-h-1

G0,0)| | nEH-1) | if |g1] is the maximum

! _ izl if |g2] is the maximum
G, 0|~ |HO +h) 82

Co(H, h) =
1 H—-h-1
= ) if |g3] is the maximum
G(0,1) hH

1 B ’4(H —h—-1)
G(=h TH (1—H+ h)?
The regions described for each case in the theorem are illustrated in Fig. 4, for the
interval [0, 1]. As shown earlier, to extend this result from the interval [0, 1] to [a, D],

substitute oz for h, oA for H,and 2% for P(s), where o = ;- and s = at(x—a).

, if |g4| is the maximum

1 b
/ |P(s)| ds > Co(H,h) = Co(aH, oth) <= / Ip(x)| dx > aCo(aH, ah) = C(H, h)
0 a
The theorem follows from this substitution.

4. An application

One application of this result involves a vibrating wire satisfying the wave equation
with elastic boundary conditions:

Uxy = p(x)utt
u(0,1) = huy(0, 1)
u(1,t) = Hu,(1,1)

where p(x) is the density of the wire, h > 0, and H < 0. Using separation of
variables, look for a solution of the form u(x,#) = w(x)v(¢). This gives the eigenvalue
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problem for w,
—w'(x) = Ap(x)w(x), w(0) = hw'(0), w(1) = HW'(1) (8)
Now multiply (8) by w(x) and integrate both sides to get

1 1
/ —w'wdx=2A / pw? dx.
0 0

Using integration by parts, this becomes

1 1
\2 — W/W 1 _ W2 X
/o (w')” dx lo /1/0 pw” d.
Then
) 1
/ (w’)2 dx — H(w'(l))2 + h(w’(O))z = )L/ pw2 dx (9)
o 0

The left-hand side of (9) is nonnegative because 7 > 0 and H < 0. If the left-hand side
equals zero, then w' must equal zero, which implies that w is constant. Then w = 0
because w(0) = hw'(0) = 0 and w is constant. But w = 0 is not an eigenfunction, so
the assumption that the left-hand side of (9) equals zero is false. So the left-hand side
(and hence the right-hand side) of (9) must be strictly positive. The fact that p(x) > 0
(because it is the density) and the fact that A fol pw? dx > 0 imply that A > 0.

Let Ay be the least eigenvalue of (8). Note that A = 0 is an eigenvalue of
w' + Aopw = Aw, 50 [|A0p(x)]| 119 1) > C(H, h) by the theorem. Then

C(H,h)  C(H,h)

Ao = =
||PHL1<0,1> M

where M = ||p|| (g ) is the total mass.
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