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MAXIMUM OF GREEN’S FUNCTIONS AND LIAPUNOV

INEQUALITIES FOR THE STURM–LIOUVILLE PROBLEM

LAURIE BATTLE

(communicated by A. M. Fink)

Abstract. First we find the Green’s function for the Sturm-Liouville problem with separated
boundary conditions. Then we calculate maximum values of the Green’s function to determine
Liapunov-type inequalities.

1. Introduction

We consider the Sturm-Liouville problem with separated boundary conditions
⎧⎪⎨
⎪⎩

u′′ + p(x)u = λu in [a, b]
u(a) = h̃u′(a)
u(b) = H̃u′(b)

(1)

where p ∈ L1[a, b], ‖p‖L1 > 0 , and h̃, H̃ ∈ � . Assuming λ = 0 is an eigenvalue of
(1), we obtain a lower bound for ‖p‖L1 of the Liapunov type, where the bound depends
on the values of h̃ and H̃ in the boundary conditions. The lower bound is determined
by the maximum values of Green’s functions associated with λ = 0 .

The Liapunov inequality applies to the case where h̃ = H̃ = 0 . It states that
if λ = 0 is an eigenvalue of (1) with boundary conditions u(a) = u(b) = 0 , then
‖p‖L1 > 4

b−a . Proofs of Liapunov’s inequality (with Dirichlet boundary conditions)
may be found in the survey papers [1,3]. The same inequalitywas proven for antiperiodic
boundary conditions [2,p.21]. We extend this result to the separated boundary conditions
in the following theorem:

THEOREM. If λ = 0 is an eigenvalue of (1) but is not an eigenvalue of u′′ = λu
with the same boundary conditions, i.e., if h̃ �= H̃ − 1 , then ‖p‖L1 � C(H̃, h̃) , where
α = 1

b−a and

1. C(H̃, h̃) =
∣∣∣∣αH̃ − αh̃ − 1

h̃(αH̃ − 1)

∣∣∣∣ if

(H̃, h̃) ∈ {−
√

2
2α � H̃ � 1

2α , h̃ � min{(3 − 2
√

2)H̃ + 2
√

2−3
α , −H̃}}∪

{H̃ � −
√

2
2α , h̃ � H̃

1−2αH̃
} ∪ {h̃ � max{ 1

α − H̃, H̃
1−2αH̃

}}
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2. C(H̃, h̃) =
∣∣∣∣αH̃ − αh̃ − 1

H̃(1 + αh̃)

∣∣∣∣ if

(H̃, h̃) ∈ {H̃ � 1
2α , h̃ � − 1

2α } ∪ {h̃ �
√

2
2α ,−H̃ � h̃ � (3 + 2

√
2)H̃ − 1

α }∪
{h̃ �

√
2

2α , h̃ � H̃
1−2αH̃

} ∪ { H̃
1−2αH̃

� h̃ � − 1
α − H̃}

3. C(H̃, h̃) =
∣∣∣∣αH̃ − αh̃ − 1

αh̃H̃

∣∣∣∣ if (H̃, h̃) ∈ {H̃ � 1
2α , h̃ � − 1

2α } ,

4. C(H̃, h̃) =
∣∣∣∣4α(αH̃ − αh̃ − 1)

(1 − αH̃ − αh̃)2

∣∣∣∣ if (H̃, h̃) ∈
{max{− 1

α − H̃ , (3 − 2
√

2)H̃ + 2
√

2−3
α , (3 + 2

√
2)H̃ − 1

α } � h̃ � 1
α − H̃} .

These four regions are sketched in Fig. 4 below for α = 1 and are labeled g1 ,
g2 , g3 , g4 , respectively. The definitions of C(H̃, h̃) agree on the boundaries between
regions, so that C(H̃, h̃) is continuous. For this reason, we allow the formulas for
C(H̃, h̃) to overlap. �

By defining the function U(s) := u(x) , where s = x−a
b−a , we may assume that

a = 0 and b = 1 . In fact, if λ = 0 is an eigenvalue of (1), then λ = 0 is an
eigenvalue of ⎧⎨

⎩
U′′(s) + P(s)U(s) = λU(s) in [0,1]
U(0) = hU′(0)
U(1) = HU′(1)

(2)

where P(s) = p(x)
α2 , h = αh̃ , H = αH̃ (α = 1

b−a ) . This follows from the fact that
u′(x) = αU′(s) , u′′(x) = α2U′′(s) , u(a) = U(0) , and u(b) = U(1) .

2. Lower bound for ‖P‖L1 determined by the Green’s function

Now assume λ = 0 is an eigenvalue of (1). Then λ = 0 is an eigenvalue of (2)
and the eigenfunction U can be written

U(t) =
∫ 1

0
G(t, s)(−P(s)U(s)) ds,

where G(t, s) is the Green’s function [4, p.168].
Let 0 � t0 � 1 be such that |U(t0)| = max{|U(t)| : 0 � t � 1} . Then

|U(t0)| �
∫ 1

0
|G(t0, s)| |P(s)| |U(s)| ds

� max{|G(t, s)| : 0 � t, s � 1} |U(t0)|
∫ 1

0
|P(s)| ds.

Thus

‖P‖L1 � 1
max{|G(t, s)| : 0 � t, s � 1} . (3)

So the maximum of the Green’s function determines a lower bound for ‖P‖L1 .



GREEN’S FUNCTIONS AND LIAPUNOV INEQUALITIES 29

3. Calculation of maxG(t, s)

Now to solve for G(t, s) for the case when H, h < ∞ , note that u1(x) := x + h
and u2(x) := x + H − 1 both satisfy u′′ = 0 , and they satisfy the boundary conditions
u1(0) = hu′1(0) , u2(1) = Hu′2(1) . Then the formula for the Green’s function is

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

−u1(s)u2(t)
c(0)

, s < t

−u1(t)u2(s)
c(0)

, s � t

where c(0) = det

(
u1(t) u2(t)
u′1(t) u′2(t)

)
=

(
t + h t + H − 1

1 1

)
= h − H + 1 (see [4]

p.148). So

G(t, s) =

⎧⎪⎨
⎪⎩

(s + h)(t + H − 1)
H − h − 1

, s < t

(t + h)(s + H − 1)
H − h − 1

, s � t
. (4)

Since u1 and u2 must be linearly independent, we must have h �= H − 1 . So we will
consider all values of H, h except when h = H − 1 .

Since G(t, s) = G(s, t) , the maximum of G over (t, s) ∈ [0, 1]× [0, 1] will occur
in the region where s � t . In this region, using (4)

G(t, s) =
(t + h)(s + H − 1)

H − h − 1

which we will now use.
Next we observe that the maximum value of G in the triangle 0 � t � s � 1 must

occur on the boundary. For if s0 is fixed in [0,1], ∂G
∂t (t, s0) = s0+H−1

H−h−1 is constant. So
G is linear as a function of t along the line s = s0 and hence the maximum of G along
the line s = s0 must occur at either endpoint.

In particular, the maximum along the boundary line s = 1 must occur at an
endpoint. Similarly, the maximum along the boundary line t = 0 must occur at an
endpoint, since ∂G

∂s (0, s) = h
H−h−1 is constant. Along the diagonal s = t, ∂G

∂t (t, t) =
2t+H+h−1

H−h−1 , which is zero if t = 1−H−h
2 . So the maximum along the diagonal must

occur at an endpoint or at ( 1−H−h
2 , 1−H−h

2 ) if 0 < 1−H−h
2 < 1 . In conclusion, the

maximum of G over the triangle must occur at one of the points (0, 0), (1, 1), (0, 1) , or
at ( 1−H−h

2 , 1−H−h
2 ) if 0 < 1−H−h

2 < 1 .
Then the maximum of G in the triangle is the maximum of the absolute value of

the four values

G(0, 0) =
h(H − 1)
H − h − 1

G(0, 1) =
hH

H − h − 1

G(1, 1) =
(1 + h)H
H − h − 1

G

(
1 − H − h

2
,
1 − H − h

2

)
=

−(1 − H + h)2

4(H − h − 1)
.
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Each of these has the term H − h− 1 in the denominator, which can be removed when
comparing them. So define

g1(H, h) := h(H − 1) g3(H, h) := hH

g2(H, h) := (1 + h)H g4(H, h) :=
1
4
(1 − H + h)2.

Now we must find max{|g1(H, h)| , |g2(H, h)| , |g3(H, h)| , |g4(H, h)|} for all val-
ues of H, h < ∞, h �= H − 1 . But by using symmetry we need only consider
the half-plane h � −H . The symmetry over the line h = −H follows from
the following calculations: g1(H, h) = g2(−h,−H) , g3(H, h) = g3(−h,−H) , and
g4(H, h) = g4(−h,−H) .

We represent all possible values for (H, h) using the plane with H as the horizontal
axis and h as the vertical axis. Notice that

H � 1
2
⇐⇒ |H| � |H − 1| ⇐⇒ |g3| � |g1| , (5)

h � −1
2
⇐⇒ |h + 1| � |h| ⇐⇒ |g2| � |g3| . (6)

So we choose our four cases as the quadrants determined by the lines H = 1
2 and

h = − 1
2 . In each case we can eliminate one or two possibilites for the maximum by

refering to (5) and (6). The four cases are as follows:

1. H � 1
2 , h � − 1

2 Eliminate g1 by (5) and g3 by (6)
2. H � 1

2 , h � − 1
2 Eliminate g1 by (5) and g2 by (6)

3. H < 1
2 , h � − 1

2 Eliminate g3 by (5) and (6)
4. H < 1

2 , h < − 1
2 Eliminate g3 by (5) and g2 by (6)

Figure 1. Symmetry over h = −H

As noted earlier, we need only consider the half-plane h � −H because of
symmetry. So case 4 is completely determined by case 1, and cases 2 and 3 can be cut
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in half (consider the shaded region in Fig. 1, except where h = H − 1 .). Also recall
that g4 is considered only if 0 < 1−H−h

2 < 1 , i.e., if −1 − H < h < 1 − H .

1. H � 1
2 , h � − 1

2
Since g1 and g3 are eliminated, we compare g2 and g4 .

(a) h > 1 − H
Since g4 is not considered in this region, |g2| is the maximum.

(b) h � 1 − H
H � 1

2 =⇒ h � 1 − H � 1
2 =⇒ − 1

2 � h � 1
2 , and

h � − 1
2 =⇒ H � 1 − h � 3

2 =⇒ 1
2 � H � 3

2 .
Then −1 � 1 − H + h � 1 =⇒ |g4| = 1

4 (1 − H + h)2 � 1
4 . Now |g2| =

|(1 + h)H| = (1 + h)H � 1
2 · 1

2 = 1
4 . Then |g2| � |g4| , so |g2| is the maximum.

2. H � 1
2 , h � − 1

2
Since g1 and g2 are eliminated, we compare g3 and g4 .

(a) h > 1 − H
Since g4 is not considered in this region, |g3| is the maximum.

(b) h � 1 − H
H � 1

2 and h � − 1
2 =⇒ 1 − H + h � 0 .

h � 1 − H =⇒ 1 − H + h � 2h .
So 2h � 1−H +h � 0 =⇒ (1−H +h)2 � 4h2 . So |g4| = 1

4 (1−H +h)2 � h2 .
Now |g3| = |hH| = −hH � (−h)(−h) = h2 since H � −h > 0 . Then |g3| � |g4| ,
so |g3| is the maximum.

3. H < 1
2 , h � − 1

2 (Fig. 2)

Figure 2. Case 3

Since g3 is eliminated, we compare g1 , g2 , and g4 .
(a) h > 1 − H
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Since g4 is not considered in this region, we compare g1 and g2 .
i. H < 0

|g1| = |h(H − 1)| = h(1 − H) = h − hH since h > 1 − H > 1
2 > 0 .

|g2| = |H(1 + h)| = −H(1 + h) = −H − hH � h − hH since we are assuming
h � −H . Then |g1| � |g2| , so |g1| is the maximum.

ii. H � 0
|g1| = |h(H − 1)| = h(1 − H) since h > 1 − H > 1

2 > 0 .
|g2| = |H(1 + h)| = H(1 + h) .
Note that 1 − 2H > 0 since H < 1

2 . So

h � H
1 − 2H

⇐⇒ h(1 − 2H) � H ⇐⇒ h − hH � H + hH ⇐⇒
h(1 − H) � H(1 + h) ⇐⇒ |h(H − 1)| � |H(1 + h)| ⇐⇒ |g1| � |g2| .

So |g1| is the maximum when h � H
1−2H and |g2| is the maximum when h � H

1−2H .
(b) h � 1 − H

i. H < 0
Since h � −H > 0 , the argument in (a)(i) applies to this case because it requires

only that h > 0 and not that h > 1 − H , and the argument shows that |g1| � |g2| .
Next we show that |g4| � |g1| . First observe that |g4| � |g1| on the boundary of

this region:
If h = −H, |g4(H,−H)| = 1

4 (1 − 2H)2 = H2 − H + 1
4 , and |g1(H,−H)| =

|−H(H − 1)| = −H(1 − H) = H2 − H . So |g4| � |g1| .
If h = 1−H , |g4(H, 1 − H)| = 1

4 (1−H +1−H)2 = 1
4 (2(1−H))2 = (1−H)2 ,

and |g1(H, 1 − H)| = |(1 − H)(H − 1)| = (1 − H)2 . So |g4| = |g1| .
If H = 0, |g4(0, h)| = 1

4 (1 + h)2 , and |g1(0, h)| = h . So |g4| � |g1| if
1
4 (1 + 2h + h2) − h � 0 , i.e., if f (h) := h2 − 2h + 1 � 0 . Now f ′(h) = 2h − 2 < 0
for h < 1 , but 0 � h � 1 on this boundary line. Since f is decreasing on (0,1),
f (h) � f (1) = 0 , which shows that |g4| � |g1| .

Next we show that |g4| � |g1| in this entire region by showing the function
g(H, h) := |g4| − |g1| = 1

4 (1 − H + h)2 − h(1 − H) is nonnegative. We already know
it is nonnegative on the boundary.

Now ∂g
∂H (H, h) = − 1

2 (1 − H + h) + h = 1
2 (−1 + H + h) � 0 since h � 1 − H .

Since ∂g
∂H does not change sign in this region and since g � 0 on the boundary, g � 0

in the region. That is, |g4| � |g1| in the region.
ii. H � 0 (Fig. 3)

In this region, we make the following claim:

CLAIM. h � H
1−2H if and only if |g1| � |g2| .

Proof. If h � 0 , the argument from (a)(ii) applies because it requires only that
h > 0 and not that h > 1 − H . If h < 0 , notice that h < H

1−2H . This is true because

0 � H � 1
2 implies H

1−2H � 0 , while h < 0 . Now |g1| = |h(H − 1)| = −h(1−H) =
−h + hH , and |g2| = |H(1 + h)| = H(1 + h) = H + hH � −h + hH = |g1| , since
h � −H . So |g2| � |g1| ⇐⇒ h � H

1−2H .
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Now we show that |g4| is the maximum if h � (3 + 2
√

2)H − 1 , and |g2| is the
maximum if h � (3 + 2

√
2)H − 1 (Fig. 3):

A. Suppose h � (3 + 2
√

2)H − 1 . First observe that |g4| is the maximum on the
boundary of this region (A in Fig. 3):

Figure 3. Case 3(b)(ii)

If H = 0 , that |g4| � |g1| was shown in (b)(i). Now 0 � h � 1 on this
boundary line, so h � 0 = H

1−2H since H = 0 . Then |g1| � |g2| by the claim. So
|g4| � |g1| � |g2| .

If h = 1 −H , we show that h � H
1−2H on this boundary line. Now h = 1 − H �

H
1−2H if (1 − H)(1 − 2H) � H , i.e., if g(H) := 2H2 − 4H + 1 � 0 . The intersection

point of the lines h = 1 − H and h = (3 + 2
√

2)H − 1 is at H = 1 −
√

2
2 , so

0 � H � 1 −
√

2
2 on this boundary line. But g′(H) = 4H − 4 < 0 for H < 1 , so

g is decreasing over (0, 1 −
√

2
2 ) . Then g(H) � g(1 −

√
2

2 ) = 0 , which proves that
h � H

1−2H . Then |g1| � |g2| by the claim.
Now |g4(H, 1−H)| = 1

4 (2(1−H))2 = (1−H)2 and |g1(H, 1−H)| = (1−H)2 . So
|g4| = |g1| � |g2| .

If h = (3 + 2
√

2)H − 1, we claim that h � H
1 − 2H

(7)

Now h = (3+2
√

2)H−1 � H
1−2H if ((3+2

√
2)H−1)(1−2H) � H , i.e., if g(H) :=

(6+4
√

2)H2−(4+2
√

2)H+1 � 0 . Now g′(H) = (12+8
√

2)H−(4+2
√

2) < 0 for

H < 1−
√

2
2 . Since the intersection point of the lines h = 1−H and h = (3+2

√
2)H−1

occurs at H = 1 −
√

2
2 , H � 1 −

√
2

2 on this boundary line. Since g′ is negative over

this interval, g is decreasing. So g(H) � g(1 −
√

2
2 ) = 0 . This proves (7), and then

|g2| � |g1| follows from the claim.
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Now |g4(H, (3+2
√

2)H−1)| = 1
4 ((2+2

√
2)H)2 = (3+2

√
2)H2, and |g2(H, (3+

2
√

2)H − 1)| = |(1 + (3 + 2
√

2)H − 1)H| = (3 + 2
√

2)H2 . So |g4| = |g2| � |g1| .
If h = −H , then h � 0 since H � 0 , and H

1−2H � 0 since 0 � H � 1
2 .

It follows that h � H
1−2H , and then |g2| � |g1| by the claim. Now |g4(H,−H)| =

1
4 (1− 2H)2 = H2 −H + 1

4 , and |g2(H,−H)| = |(1−H)H| = H−H2 . So |g4| � |g2|
if g(H) := 2H2 − 2H + 1

4 � 0 . On this boundary line, 0 � H � 1
2 −

√
2

4 . But

g′(H) = 4H − 2 is negative for H < 1
2 , so g is decreasing over (0, 1

2 −
√

2
4 ) . Then

g(H) � g( 1
2 −

√
2

4 ) = 0 . This shows that |g4| � |g2| � |g1| .
Next observe that |g4| is the maximum in the region by considering the functions

f 1(H, h) := |g4| − |g1| = 1
4 (1 − H + h)2 − |h(H − 1)| , and f 2(H, h) := |g4| − |g2| =

1
4 (1 − H + h)2 − |(1 + h)H| = 1

4 (1 − H + h)2 − (1 + h)H . We know that f 1, f 2 � 0
on the boundary of this region, and we must show that f 1, f 2 � 0 in the entire region.

If h � 0 , f 1(H, h) = 1
4 (1 − H + h)2 − h(1 − H) , and ∂f 1

∂H (H, h) = − 1
2 (1 − H +

h)+h = 1
2 (−1+H+h) < 0 since h � 1−H . If h < 0 , |f 1(H, h)| = 1

4 (1−H+h)2+
h(1−H) , and ∂f 1

∂H (H, h) = − 1
2 (1−H+h)−h = 1

2 (−1+H−3h) < 1
2 (−1+4H) since

h � −H . But (3 + 2
√

2)H − 1 � h < 0 implies that H < 1
3+2

√
2

= 3 − 2
√

2 < 1
4 .

So | ∂f 1

∂H (H, h)| � 1
2 (−1 + 4H) < 0 . Since f 1 � 0 on the boundary and ∂f 1

∂H is always
negative in the region, f 1 � 0 in the region. That is, |g4| � |g1| in the region.

Now |f 2(H, h)| = 1
4 (1−H+h)2−(1+h)H , so ∂f 2

∂H (H, h) = − 1
2 (1−H+h)−(1+h) =

1
2 (−3 + H − 3h) < 1

2 (−3 + 1
2 + 3

2 ) = − 1
2 < 0 since H < 1

2 and h � − 1
2 . Since

f 2 � 0 on the boundary and ∂f 2

∂H is always negative in the region, f 2 � 0 in the region.
That is, |g4| � |g2| in the region.

B. Suppose h � (3 + 2
√

2)H − 1 .
We showed in (7) that if (H, h) is a point on the boundary line h = (3+2

√
2)H−1 ,

then (3 + 2
√

2)H − 1 < H
1−2H . So in this case, h � (3 + 2

√
2)H − 1 < H

1−2H . Then
|g2| � |g1| by the claim.

Now observe that |g2| � |g4| on the boundary of this region (B in Fig. 3):
If h = (3 + 2

√
2)H − 1) , then |g4| = |g2| as shown in the argument following

(7).
If h = −H , |g4(H,−H)| = H2 − H + 1

4 and |g2(H,−H)| = H − H2 as shown
in A. So |g2| � |g4| if f (H) := −2H2 + 2H − 1

4 � 0 . Now f ′(H) = −4H + 2 > 0

for H < 1
2 . But 1

2 −
√

2
4 � H � 1

2 on this boundary line, so f is increasing and

f (H) � f ( 1
2 −

√
2

4 ) = 0 . This shows that |g2| � |g4| .
If h = 1 − H , |g4(H, 1 − H)| = 1

4 (2(1 − H))2 = (1 − H)2 = 1 − 2H + H2 , and
|g2(H, 1−H)| = |(2−H)H| = 2H−H2 . So |g2| � |g4| if f (H) := −2H2 +4H−1 �
0 . But 1−

√
2

2 � H � 1
2 on this boundary line, and f ′(H) = −4H+4 > 0 for H < 1 .

Since f is increasing over (1 −
√

2
2 , 1

2 ) , f (H) � f (1 −
√

2
2 ) = 0 . This shows that

|g2| � |g4| .
If H = 1

2 , |g4( 1
2 , h)| = 1

4 (
1
2 + h)2 = 1

16 + 1
4h+ 1

4h2 , and |g2( 1
2 , h)| = (1+ h) 1

2 =
1
2 + 1

2h . So |g2| � |g4| if f (h) := − 1
4h2 + 1

4h + 7
16 � 0 . Now f ′(h) = − 1

2h + 1
4 > 0
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for h < 1
2 . Since − 1

2 � h � 1
2 on this boundary line, f is increasing. So f (h) �

f ( 1
2 ) = 1

2 > 0 . This shows that |g2| � |g4| .
Next observe that |g2| � |g4| in the region by showing that the function f (H, h) :=

|g2| − |g4| = |(1 + h)H| − 1
4 (1−H + h)2 = (1 + h)H− 1

4 (1−H + h)2 is nonnegative.
We already know that f � 0 on the boundary. Now ∂f

∂H (H, h) = 1+h+ 1
2 (1−H+h) =

3
2 + 3

2h − 1
2H � 3

2 − 3
4 − 1

4 since h � − 1
2 and H � 1

2 . So | ∂f
∂H (H, h)| � 1

2 > 0 .
Since f � 0 on the boundary and ∂f

∂H � 0 in the region, f � 0 in the region. That is,
|g2| � |g4| in this region.

The results of all cases where H, h < ∞ and h �= H − 1 are illustrated in Fig.
4, assuming [a, b] = [0, 1] . Recall that symmetry is used to determine the half-plane
h < −H , where g1 maps to g2 , g3 maps to itself, and g4 maps to itself.

Figure 4. Maximum of the gi

The maximum value for the case h = 0, H = ∞ and for the case h = ∞, H = 0
are as expected from the picture (Fig. 4):

1. H = ∞ , h = 0
Here, the boundary conditions from (2) are U(0) = 0, U′(1) = 0 .
The functions u1(x) := x and u2(x) := c , for any c �= 0 , both satisfy u′′ = 0 ,

and they satisfy the boundary conditions u1(0) = 0 , u′2(1) = 0 . Then the Green’s
function (for s � t ) is calculated to be

G(t, s) =
−u1(t)u2(s)

c(0)
=

−tc
−c

= t

Clearly, the maximum of |G(t, s)| = t over [0, 1]× [0, 1] is 1, when t = 1 and for any
0 � s � 1 . In particular, the maximum occurs when (t, s) = (1, 1) , which corresponds
to g2 .
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2. H = 0 , h = ∞
Here, the boundary conditions from (2) are U′(0) = 0, U(1) = 0 .
The functions u1(x) := c , for any c �= 0 , and u2(x) := x−1 , both satisfy u′′ = 0 ,

and u′1(0) = 0 , u2(1) = 0 . Then the Green’s function (for s � t ) is calculated to be

G(t, s) =
−u1(t)u2(s)

c(0)
=

−c(s − 1)
c

= 1 − s

Clearly, the maximum of |G(t, s)| = 1 − s over [0, 1] × [0, 1] is 1, when s = 0 and
for any 0 � t � 1 . In particular, the maximum occurs when (t, s) = (0, 0) , which
corresponds to g1 .

This completes all cases assuming the interval is [0, 1] . Notice how the values for
C(H̃, h̃) in the theorem are obtained from the maximum values of the Green’s functions
for the interval [0, 1] (where α = 1 − 0 = 1) by using (3):

C0(H, h) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣ 1
G(0, 0)

∣∣∣∣ =
∣∣∣∣H − h − 1

h(H − 1)

∣∣∣∣ , if |g1| is the maximum

∣∣∣∣ 1
G(1, 1)

∣∣∣∣ =
∣∣∣∣H − h − 1

H(1 + h)

∣∣∣∣ , if |g2| is the maximum

∣∣∣∣ 1
G(0, 1)

∣∣∣∣ =
∣∣∣∣H − h − 1

hH

∣∣∣∣ , if |g3| is the maximum

∣∣∣∣∣
1

G( 1−H−h
2 , 1−H−h

2 )

∣∣∣∣∣ =
∣∣∣∣4(H − h − 1)
(1 − H + h)2

∣∣∣∣ , if |g4| is the maximum

The regions described for each case in the theorem are illustrated in Fig. 4, for the
interval [0, 1] . As shown earlier, to extend this result from the interval [0, 1] to [a, b] ,
substitute αh̃ for h , αH̃ for H , and p(x)

α2 for P(s) , where α = 1
b−a and s = α(x−a) .

∫ 1

0
|P(s)| ds � C0(H, h) = C0(αH̃,αh̃) ⇐⇒

∫ b

a
|p(x)| dx � αC0(αH̃,αh̃) = C(H̃, h̃)

The theorem follows from this substitution.

4. An application

One application of this result involves a vibratingwire satisfying the wave equation
with elastic boundary conditions:

⎧⎨
⎩

uxx = ρ(x)utt

u(0, t) = hux(0, t)
u(1, t) = Hux(1, t)

where ρ(x) is the density of the wire, h > 0 , and H < 0 . Using separation of
variables, look for a solution of the form u(x, t) = w(x)v(t) . This gives the eigenvalue
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problem for w ,

− w′′(x) = λρ(x)w(x), w(0) = hw′(0), w(1) = Hw′(1) (8)

Now multiply (8) by w(x) and integrate both sides to get
∫ 1

0
−w′′w dx = λ

∫ 1

0
ρw2 dx.

Using integration by parts, this becomes
∫ 1

0
(w′)2 dx − w′w|10 = λ

∫ 1

0
ρw2 dx

Then ∫ 1

0
(w′)2 dx − H(w′(1))2 + h(w′(0))2 = λ

∫ 1

0
ρw2 dx (9)

The left-hand side of (9) is nonnegativebecause h > 0 and H < 0 . If the left-hand side
equals zero, then w′ must equal zero, which implies that w is constant. Then w ≡ 0
because w(0) = hw′(0) = 0 and w is constant. But w = 0 is not an eigenfunction, so
the assumption that the left-hand side of (9) equals zero is false. So the left-hand side
(and hence the right-hand side) of (9) must be strictly positive. The fact that ρ(x) > 0
(because it is the density) and the fact that λ

∫ 1
0 ρw2 dx > 0 imply that λ > 0 .

Let λ0 be the least eigenvalue of (8). Note that λ = 0 is an eigenvalue of
w′′ + λ0ρw = λw , so ‖λ0ρ(x)‖L1(0,1) > C(H, h) by the theorem. Then

λ0 � C(H, h)
‖ρ‖L1(0,1)

=
C(H, h)

M

where M = ‖ρ‖L1(0,1) is the total mass.
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