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ON A RESULT OF LEINDLER

R. N. MOHAPATRA AND F. L. SALZMAN

(communicated by L. Leindler)

Abstract. In this paper we give an alternative proof of a result of Leindler on Hardy type
inequalities. This method can also be used to obtain alternative and simpler proofs of other
results.

1. Introduction

In [2] Hardy and Littlewood proved the following:

THEOREM A [2]. If an � 0, n = 1, 2, ..., then we have the following:
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Theorem A was generalized by Leindler [4] where he obtained analogues of (1),
(2), (3), and (4). In a subsequent paper, Leindler [5] improved the inequalities and
showed that, in (1) and (2), the constant K = pp was best possible.

Before we state the theorems of Leindler, we introduce the following notations:
for given sequences {an} and {λn} , we denote Amn and Λmn by

Amn =
n∑

i=m

ai and Λmn =
n∑

i=m

λi (1 � m � n < ∞).
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THEOREM B [4]. Let an � 0 and λn � 0(n = 1, 2, . . . ) be given. Let ν1 < ν2 <
· · · < νn < . . . denotes indices for which λνn > 0, n = 1, 2, . . . . Let N be the number
of positive terms of the sequence {λn} , provided this number is finite, in the contrary
case set N = ∞ . Set ν0 = 0 , and if N < ∞ then νN+1 = ∞ . Then we have the
following inequalities
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The constants pp is best possible for (5) and (6).

In [5] Leindler showed that the inequalities (7) and (8) can be improved. Precisely,
he proved:

THEOREM C [5]. Under the assumptions of Theorem B the opposite inequalities of
(5) and (6) hold for 0 < p � 1 , and the constant pp is also best possible in this case.

Theorem B and Theorem C imply the following:

COROLLARY. If λn > 0 and an � 0 , then the following hold:
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If 0 < p < 1 the sign of the inequalities are reversed. All constants are best
possible.

The main goal of this paper is to provide an alternative proof of Theorem C. In
fact, we shall prove the following theorem which is the result of Leindler [4] and [5].

THEOREM 1. Under the conditions of Theorem B, inequalities (5) and (6) hold
when p � 1 . If 0 < p � 1 the sign of the inequalities in (5) and (6) are reversed.
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2. Proof of the Theorem

We need the following lemmas for the proof.

LEMMA 1. (see [1] Lemma 1, and [3] Lemma 5.1). If p > 1 and zn � 0,
n = 1, 2, . . . , then (
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If 0 < p � 1 , the sign of the inequality is reversed.

LEMMA 2 [7]. If p > 1 and zn � 0 , n = 1, 2, . . . , then for every natural number
m > n , (
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If 0 < p � 1 , the sign of the inequality is reversed.

Proof of Theorem 1. Let 0 < p � 1 . First we shall prove
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For p = 1 , both sides of (13) are equal as can be seen from changing the order of
summation. If 0 < p < 1 , we follow Leindler [5] and set the following notations:

αn := Aνn−1+1,νn , β0 = 0, βn :=
n∑
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αk, δn := λνn ,

and Rn := Λνn,∞ for every n in 1 � n � N . If N < ∞ , then let RN+1 := δN+1 = 0 .
For any positive integer m, m � N , we have
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Using Lemma 1 for 0 < p < 1 , we have
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Multiplying and dividing by δ
1
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k and using Hölder inequality for 0 < p < 1 ,
we get for 1
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We divide both sides by the second factor on the right side of (15) to get
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Substituting the expressions for δn , βn and αn , we see that the opposite of
inequality (5) holds.

Note that if the second factor on the right of (15) is zero, then the result obviously
holds.

To prove inequality (5) one can follow the same reasoning and use (11) and Hölder
inequality for p > 1 .

To prove the opposite of inequality (6), i.e.,
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Using the case 0 < p < 1 of Lemma 2 and following the method of proof given
above, we can prove the opposite of inequality (6). Inequality (6) is obtained in the
same manner when we use (12) and Hölder inequality for p > 1 , appropriately.

REMARK. The advantage of our method of proof is that it unifies the method of
proof for p > 1 and 0 < p < 1 , an important result of Leindler, and can be used to
prove similar inequalities.
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