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ON THE KY FAN INEQUALITY AND

RELATED INEQUALITIES I

EDWARD NEUMAN AND JÓZSEF SÁNDOR

(communicated by J. Pečarić)

Abstract. Refinements of the inequalities of Ky Fan [3], Wang and Wang [16], Sándor and Trif
[12], and Sándor [14] are obtained. Generalizations and new proofs of some of these inequalities
are also included.

1. Introduction and notation

Let x = (x1, x2, . . . , xn) be an n -tuple of positive numbers. The unweighted arith-
metic, geometric and harmonic means of x , denoted by An , Gn and Hn , respectively,
are defined as follows

An =
1
n

n∑
i=1

xi, Gn =
( n∏

i=1

xi

)1/n

, Hn =
n

n∑
i=1

1
xi

.

Assume that xi < 1 , 1 � i � n and define x′ := 1− x = (1− x1, 1− x2, . . . , 1− xn) .
Throughout the sequel the symbols A′

n , G′
n , and H′

n will stand for the unweighted
arithmetic, geometric and harmonic means of x′ .

A remarkable new counterpart of the inequality Gn � An has been published in
[3] (see page 5).

THEOREM A. If 0 < xi � 1/2 , for all i = 1, 2, . . . , n , then

Gn

G′
n

� An

A′
n

(1)

with equality only if all the xi are equal.

This result, commonly referred to as the Ky Fan inequality, has stimulated an
interest of many researchers. New proofs, improvements and generalizations of the
inequality (1) have been found. For more details the interested reader is referred to [1],
[9], [10], [12], and [13]. The most recent proof of (1) (see [16]) utilizes some results
that are obtained in [11].

W.-L. Wang and P.-F. Wang [15] have established a counterpart of the classical
inequality Hn � Gn . Their result reads as follows.
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THEOREM B. If 0 < xi � 1/2 , for all i = 1, 2, . . . , n , then

Hn

H′
n

� Gn

G′
n

. (2)

Weighted arithmetic, geometric and harmonic means of x with weights w =
(w1, w2, . . . , wn) , wi � 0 , 1 � i � n with w1 + w2 + · · · + wn = 1 , denoted by
A(x; w) , G(x; w) and H(x; w) are defined in the usual way

A(x; w) =
n∑

i=1

wixi, G(x; w) =
n∏

i=1

xwi
i , H(x; w) =

1
n∑

i=1
wixi

.

Other means used in this paper are the weighted identric and logarithmic means I(x; w)
and L(x; w) . Both means admit integral representations that are included below. Let

En−1 = {(u1, . . . , un−1) : ui � 0, i = 1, 2, . . . , n, u1 + · · · + un−1 � 1}
be the Euclidean simplex and let μ(u) , u ∈ En−1 be a probability measure on En−1 .
Define dμ(u) = μ(u)du1 . . . dun−1 . The weights wi are the natural weights, i.e.,

wi =
∫

En−1

uidμ(u), (3)

i = 1, 2, . . . , n , where un = 1− u1 − · · · − un−1 . The weighted identric mean I(x; w)
of x is defined as follows ([8])

I(x; w) = exp

[∫
En−1

ln(u · x)dμ(u)
]
, (4)

where u · x = u1x1 + · · ·+ unxn is the inner product of u and x . Recently Sándor and
Trif [12] have obtained a new refinement of the Ky Fan inequality.

THEOREM C. Let 0 < xi � 1/2 , for all i = 1, 2, . . . , n . Then

G(x; w)
G′(x; w)

� I(x; w)
I′(x; w)

� A(x; w)
A′(x; w)

, (5)

where G(x; w) and A(x; w) are the weighted geometric and arithmetic means, respec-
tively. Theweights w = (w1, . . . , wn) are the naturalweights of the probabilitymeasure
μ(u) .

Another interesting result connecting weighted harmonic and arithmetic means
was obtained by Sándor (see [10], [14]).

THEOREM D. If 0 < xi � 1/2 , for i = 1, 2, . . . , n , then

1
H′(x; w)

− 1
H(x; w)

� 1
A′(x; w)

− 1
A(x; w)

(6)
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with equality if and only if x1 = . . . = xn .

Alzer [2] has obtained a refinement of the inequality (6) for the unweighted means

1
H′

n
− 1

Hn
� 1

G′
n
− 1

Gn
� 1

A′
n
− 1

An
.

This paper is organized as follows. A generalization and a refinement of the Ky Fan
inequality are obtained in Section 2. A new proof of the Wang and Wang inequality (2)
is presented in Section 3. The main result of this section also provides a refinement of
the inequality (2). Two refinements of the inequality (5) are derived in Section 4. The
underlying probability measure is the Dirichlet measure. The last section of this paper
deals with a refinement of the inequality (6). We shall demonstrate that the quantity
1/L′(x; w) − 1/L(x; w) interpolates the inequality in question. Here

L(x; w) =
[ ∫

En−1

(u · x)−1dμ(u)
]−1

(7)

is the weighted logarithmic mean of x (see [8]).

2. A generalization and refinement of Ky Fan’s inequality

Before we state and prove the main result of this section, let us introduce more
notation. The unweighted power mean of order p (p ∈ R ) of x , denoted by Mp , is
defined as

Mp(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
n

n∑
i=1

xp
i

)1/p

, p �= 0

(
n∏

i=1
xi

)1/n

, p = 0.

The following result, which is due to K. Menon (see, e.g., [5], p. 284), will be used
in the proof of Theorem 1.

LEMMA. Let a > 0 , t ∈ R . If the numbers bi , 1 � i � n , satisfy the inequality
bi � a/t , then

n∑
i=1

1
(a + bi)t

� n[
a +

(
n∏

i=1
bi

)1/n
]t . (8)

THEOREM 1. Let 0 < t � 1 and let 0 < xi � t/(1 + t) , for i = 1, 2, . . . , n . Then
the following inequality is valid

Gn

Gn + G′
n

� Mt. (9)
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REMARK. Under the assumptions of Theorem 1, the following inequality

Gn

G′
n

� Gn

(Gn + G′
n)A′

n
� Mt

A′
n

� An

A′
n

(10)

holds true. The first inequality in (10) follows from the Ky Fan inequality (1) and the
third one is an obvious consequence of Mt � An ( t � 1 ).

Proof of Theorem 1. Let bi = 1/xi − 1 , 1 � i � n , and let a = 1 . Then
0 < xi < t/(1 + t) implies bi � a/t . Making use of (8) we obtain

1
n

n∑
i=1

xt
i �

(
Gn

Gn + G′
n

)t

.

Since t > 0 , the assertion (9) follows. �

3. A refinement of the inequality of Wang and Wang

For later use we introduce the following notation. Let x = (x1, . . . , xn) with xi >
0 , 1 � i � n . We define a vector a = (a1, . . . , an) where ai = x1 · · · xi−1xi+1 · · · xn ,
1 � i � n and put Sn = a1 + . . . + an . The unweighted arithmetic mean of a is
An(a) = Sn/n . Similarly, the unweighted identric and geometric means of a will be
denoted by In(a) and Gn(a) , respectively. Also, let

Jn =
In(a)
Gn(a)

Hn, (11)

where Hn is the unweighted harmonic mean of x .

PROPOSITION 1. Jn is a mean of the vector x . Moreover, it interpolates the
harmonic-geometric mean inequality, i.e.,

Hn � Jn � Gn. (12)

Proof. Opening statement is an immediate consequence of (12). The first inequal-
ity in (12) follows from the well-known result Gn(a) � In(a) . For the proof of the
second inequality in (12) we use the identity

Hn

Gn(a)
=

Gn

An(a)
(13)

and the inequality In(a) � An(a) . We shall now establish formula (13). We have

Hn =
n

n∑
i=1

1
xi

=
n(x1 · . . . · xn)

Sn
=

Gn
n

Sn/n
=

Gn
n

An(a)
.

It is easy to see that Gn(a) = Gn−1
n . Thus

Hn

Gn(a)
=

Gn
n

Gn−1
n An(a)

=
Gn

An(a)
. �

The main result of this section is contained in the following.
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THEOREM 2. Let 0 < xi � 1/2 , for i = 1, 2, . . . , n . Then

Hn

H′
n

� Jn

J′n
� Gn

G′
n

. (14)

Proof. It follows from (13) that

An(a) =
Gn(a)Gn

Hn

and also, after replacing x by x′ = 1 − x and a by a′ = 1 − a , that

A′
n(a) =

G′
n(a)G′

n

H′
n

.

Hence
An(a)
A′

n(a)
=

H′
n

Hn

Gn(a)
G′

n(a)
Gn

G′
n

. (15)

In order to prove the inequality (14) we need the following one

Gn(a)
G′

n(a)
� In(a)

I′n(a)
� An(a)

A′
n(a)

. (16)

This follows from (5) by using the Lebesgue measure μ(u) = (n − 1)! . It is well-
known that the weights w = (w1, . . . , wn) of the Lebesgue measure are all equal, i.e.,
wi = 1/n , 1 � i � n . Also, since 0 < xi � 1/2 , 0 < ai � (1/2)n−1 � 1/2 for
n � 2 . Application of (15) to the last term in (16) completes the proof. �

4. Refinements of the inequality (5)

The goal of this section is to obtain two refinements of the inequality (5). These
results are derived for the underlying probability measure being the Dirichlet measure.
For the reader’s convenience, we include below a definition of this measure. Also, a
concept of the Dirichlet average of a function is given.

Let b = (b1, . . . , bn) where bi > 0 for i = 1, . . . , n . The Dirichlet measure μ
on the Euclidean simplex En−1 is defined as follows

μ(u) =
1

B(b)

n∏
i=1

ubi−1
i ,

where B(b) is the multivariate beta function in variables bi , u = (u1, . . . , un) with
(u1, . . . , un−1) ∈ En−1 and un = 1 − b1 − . . . − bn−1 (see [4], 4.4-1). The weights
w = (w1, . . . , wn) of μ are wi = bi/c , 1 � i � n , where c = b1 + . . . + bn .

Let f be an integrable function on the convex hull of x = (x1, . . . , xn) . Dirichlet
average F(x;μ) of f is defined as

F(x;μ) =
∫

En−1

f (u · x)dμ(u) (17)
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(see [4], 5.2-1).
Let K be an interval containing x1, . . . , xn . If f : K → R is a convex function,

then

f

( n∑
i=1

wixi

)
� F(x;μ) �

n∑
i=1

wif (xi) (18)

with the inequalities reversed if f is concave on K .
Two refinements of this inequality have been obtained in [7] (Theorem 4.1 and

Corollary 4.2). Let λ > 0 . Define bλ = (b1, . . . , bn−1, bn + λ ) and denote the
associated Dirichlet measure by μλ . Further, let v = (v1, . . . , vn) be the weights of
μλ , i.e., vi = bi/(c + λ ) , 1 � i � n − 1 and vn = (bn + λ )/(c + λ ) . Also, let
α = c/(c + λ ) , β = 1−α and let y = (αx1 + βxn, . . . ,αxn + βxn) . We shall utilize
the following result ([7]).

LEMMA. Let f : K → R be a concave function. Then

n∑
i=1

vif (xi) � αF(x;μ) + β f (xn) � F(x;μλ ) � F(y;μ) � f

( n∑
i=1

vixi

)
(19)

with the inequalities reversed if f is a convex function on K .

In what follows we will write G(x; v) , I(x; v) and A(x; v) for the weighted
geometric, identric and arithmetic means, respectively of x with weights v .

THEOREM 3. Let 0 < xi � 1/2 for i = 1, . . . , n . Then

G(x; v)
G′(x; v)

�
[

I(x; w)
I′(x; w)

]α(
xn

1 − xn

)β

� I(x; v)
I′(x; v)

� I(y; w)
I′(y; w)

� A(x; v)
A′(x; v)

.

(20)

Proof. Let f (t) = ln t − ln(1 − t) , 0 < t � 1/2 . Clearly function f is concave
on the stated domain. Making use of (17) and (4) we see that the middle term in (19)
can be written as

F(x;μλ ) =
∫

En−1

ln(u · x)dμλ (u) −
∫

En−1

ln(1 − u · x)dμλ (u).

Since 1 − u · x = u · (1 − x) = u · x′ ,

F(x;μλ ) =
∫

En−1

ln(u · x)dμλ (u) −
∫

En−1

ln(u · x′)dμλ (u)

= ln I(x; v) − ln I′(x; v) = ln
I(x; v)
I′(x; v)

.

In a similar fashion one can rewrite the remaining terms in (19) to obtain the desired
inequality (20). �
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5. A refinement of the inequality (6)

The following result will be utilized when proving the main result of this section.

LEMMA ([6]). Let f : K → R be a convex function and let x = (x1, . . . , xn) with
xi ∈ K for i = 1, . . . , n . Further, let w = (w1, . . . , wn) are the natural weights of the
probability measure μ on En−1 . Then

f

( n∑
i=1

wixi

)
�

∫
En−1

f (u · x)dμ(u) �
n∑

i=1

wif (xi) (21)

with the inequalities reversed if f is a concave function.

This result provides a refinement of the classical Jensen’s inequality.
In what follows, L(x; w) will stand for the weighted logarithmic mean of x with

weights w (see (7)).
We have

THEOREM 4. Let 0 < xi � 1/2 for i = 1, . . . , n and let the weights w =
(w1, . . . , wn) be defined as in (3). Then

1
H′(x; w)

− 1
H(x; w)

� 1
L′(x; w)

− 1
L(x; w)

� 1
A′(x; w)

− 1
A(x; w)

. (22)

Proof. In order to prove (22) we define f (t) = 1/t − 1/(1 − t) , 0 < t � 1/2 .
Clearly function f is convex on the stated domain. Use of (21) together with (7) gives

1
A(x; w)

− 1
A′(x; w)

� 1
L(x; w)

− 1
L′(x; w)

� 1
H(x; w)

− 1
H′(x; w)

.

Hence the desired inequality follows. �
We close this section with the following.
Open Problem. Prove or disprove that under the assumptions of Theorem 4 the

following inequality

1
G′(x; w)

− 1
G(x; w)

� 1
L′(x; w)

− 1
L(x; w)

(23)

is valid.
Alzer ([1], Theorem 9.1) has established the following result

1
H′(x; w)

− 1
H(x; w)

� 1
G′(x; w)

− 1
G(x; w)

. (24)

If the inequality (23) holds true, then this together with (24) will provide a refinement
of the first inequality in (22).

Acknowledgment. The authors are indebted to an anonymous referee for a sugges-
tion to include inequality (23) as the open problem.
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