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ON THE KY FAN INEQUALITY AND
RELATED INEQUALITIES I

EDWARD NEUMAN AND JOZSEF SANDOR

(communicated by J. Pecari¢)

Abstract. Refinements of the inequalities of Ky Fan [3], Wang and Wang [16], Sdndor and Trif
[12], and Sdndor [14] are obtained. Generalizations and new proofs of some of these inequalities
are also included.

1. Introduction and notation

Let x = (x1,x2,...,%,;) bean n-tuple of positive numbers. The unweighted arith-
metic, geometric and harmonic means of x, denoted by A, , G, and H, , respectively,
are defined as follows

1 n n 1/n n
An: szia Gn: (Hxi) ) H, =
i=1 i=1

i=1

M=

1
Xi

Assumethat x; < 1, 1 <i<nanddefine X' :==1—x=(1l—x;,1—x2,...,1—x,).
Throughout the sequel the symbols A/, G/, and H) will stand for the unweighted
arithmetic, geometric and harmonic means of x’.

A remarkable new counterpart of the inequality G, < A, has been published in

[3] (see page 5).
THEOREM A. If 0 <x; < 1/2, forall i =1,2,...,n, then
G, A,
G " & v
with equality only if all the x; are equal.

This result, commonly referred to as the Ky Fan inequality, has stimulated an
interest of many researchers. New proofs, improvements and generalizations of the
inequality (1) have been found. For more details the interested reader is referred to [1],
[9], [10], [12], and [13]. The most recent proof of (1) (see [16]) utilizes some results
that are obtained in [11].

W.-L. Wang and P.-F. Wang [15] have established a counterpart of the classical
inequality H, < G, . Their result reads as follows.
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50 EDWARD NEUMAN AND JOZSEF SANDOR

THEOREM B. If 0 < x; < 1/2, forall i = 1,2,...,n, then
H, G,
H < G (2)

Weighted arithmetic, geometric and harmonic means of x with weights w =
(Wi, way o oywy), wi 20, 1 < i< n withw +w,+---+w, = 1, denoted by
A(x;w), G(x;w) and H(x;w) are defined in the usual way

1
- .
Z WiX;
i=1

Alx;w) = Zwix,-, G(x;w) = Hx}”, H(x;w) =
i=1 i=1

Other means used in this paper are the weighted identric and logarithmic means 7(x; w)
and L(x;w). Both means admit integral representations that are included below. Let

En,I:{(Ml,-.-7un71)iui>0, i:1a27~'~7na M1+"'+Mn,1<1}

be the Euclidean simplex and let u(u), u € E,—; be a probability measure on E,_; .
Define du(u) = w(u)du ... du,—; . The weights w; are the natural weights, i.e.,

wi = widp (), (3)
L.

i=1,2,...,n,where u, = 1 —u; — - -+ — u,_; . The weighted identric mean I(x;w)
of x is defined as follows ([8])

1) =ewp | [ G ()| 4)

where u - x = uyx; + - - - + uyx, is the inner product of # and x. Recently Sandor and
Trif [12] have obtained a new refinement of the Ky Fan inequality.

THEOREM C. Let 0 < x; < 1/2, forall i =1,2,...,n. Then

Glow)  I(gw)  A(xgw)
G'(x;w) S I'(x;w) S Al(x;w)’

(5)

where G(x;w) and A(x;w) are the weighted geometric and arithmetic means, respec-
tively. The weights w = (wy, ..., w,) are the natural weights of the probability measure

p(u).

Another interesting result connecting weighted harmonic and arithmetic means
was obtained by Sandor (see [10], [14]).

THEOREM D. If 0 <x; < 1/2,for i =1,2,...,n, then

1 1 1 1
H(x;w)  H(xw) S Alsw)  Alw) (6)
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with equality if and only if xy = ... = x,.
Alzer [2] has obtained a refinement of the inequality (6) for the unweighted means

1 1 1 1 1 1
W T SAHF A~ S
H, H, G, G, A, A,

This paper is organized as follows. A generalization and a refinement of the Ky Fan
inequality are obtained in Section 2. A new proof of the Wang and Wang inequality (2)
is presented in Section 3. The main result of this section also provides a refinement of
the inequality (2). Two refinements of the inequality (5) are derived in Section 4. The
underlying probability measure is the Dirichlet measure. The last section of this paper
deals with a refinement of the inequality (6). We shall demonstrate that the quantity

1/L' (x;w) — 1/L(x; w) interpolates the inequality in question. Here
—1

s = | [ RN )

is the weighted logarithmic mean of x (see [8]).

2. A generalization and refinement of Ky Fan’s inequality

Before we state and prove the main result of this section, let us introduce more
notation. The unweighted power mean of order p (p € R) of x, denoted by M, , is
defined as

n 1/p
(1;)8’) L p#0

n 1/n
< H xi) ) pP= 0.
i=1

The following result, which is due to K. Menon (see, e.g., [3], p. 284), will be used
in the proof of Theorem 1.

M, (x) =

LEMMA. Let a > 0, t € R. Ifthe numbers b;, 1 < i < n, satisfy the inequality
b; > a/t, then

- 1 n
Z (a+Db) > ®

= 1/n]""
i= a + ( H bz) ]
i=1

THEOREM 1. Let 0 <t < 1 andlet 0 < x; <t/(1+¢), for i=1,2,...,n. Then
the following inequality is valid

Gﬂ
Gra, M ®)
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REMARK. Under the assumptions of Theorem 1, the following inequality

G, G, M, A,
— < —< = (10)
G, (Gu+GpA, ~ A, A
holds true. The first inequality in (10) follows from the Ky Fan inequality (1) and the
third one is an obvious consequence of M; < A, (1< 1).

Proof of Theorem 1. Let by = 1/x; — 1, 1 < i < n,andlet @ = 1. Then
0 < x; <t/(1+1¢) implies b; > a/t. Making use of (8) we obtain

_Z (G +Gf>t'

Since ¢ > 0, the assertion (9) follows. [

3. A refinement of the inequality of Wang and Wang

For later use we introduce the following notation. Let x = (xi,...,x,) with x; >
0, 1 < i< n. We define a vector a = (ay,...,a,) where a; = X1« Xi—1Xi11" " Xn,
1<i<nandput S, =a; + ...+ a,. The unweighted arithmetic mean of a is
An(a) = S,/n. Similarly, the unweighted identric and geometric means of a will be
denoted by I,,(a) and G,(a), respectively. Also, let
I,(a)

Jn = Gn(a)Hm (11)

where H,, is the unweighted harmonic mean of x.

PROPOSITION 1. J, is a mean of the vector x. Moreover, it interpolates the
harmonic-geometric mean inequality, i.e.,

H, <J, <G, (12)

Proof. Opening statement is an immediate consequence of (12). The first inequal-
ity in (12) follows from the well-known result G,(a) < I,(a). For the proof of the
second inequality in (12) we use the identity

Hﬂ . Gn
Gu(a) — Au(a)
and the inequality I,(a) < An(a). We shall now establish formula (13). We have

(13)

n n(xp ... xy) G G
== S T S./n Asa)
1 n n n
It is easy to see that G,(a) = G"~!. Thus
H, GZ G,

Gold) ~ G An@)  Anl@) "

The main result of this section is contained in the following.
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THEOREM 2. Let 0 < x; < 1/2, for i =1,2,...,n. Then
H, J, Gy
<2 L

Proof. Tt follows from (13) that
Gn (a)Gn
An( ) - H
and also, after replacing x by X’ =1 — x and a by ¢’ =1 — a, that
G,(a)G,
Hence
An(a) _ H, Gu(a) Gu (15)
Ai/l(a) B Hﬂ G;‘l(a) Gi/l .
In order to prove the inequality (14) we need the following one
G,(a) < I,(a) < Ay(a) (16)

Gy(a) ~ Ii(a) ~ Aj(a)’

This follows from (5) by using the Lebesgue measure p(u) = (n — 1)!. It is well-
known that the weights w = (wy,...,w,) of the Lebesgue measure are all equal, i.e.,
w; = 1/n, 1 <i<n. Also,since 0 < x; < 1/2, 0 < a; < (1/2)"1 < 1/2 for
n > 2. Application of (15) to the last term in (16) completes the proof. [

4. Refinements of the inequality (5)

The goal of this section is to obtain two refinements of the inequality (5). These
results are derived for the underlying probability measure being the Dirichlet measure.
For the reader’s convenience, we include below a definition of this measure. Also, a
concept of the Dirichlet average of a function is given.

Let b = (by,...,b,) where b; > 0 for i = 1,...,n. The Dirichlet measure u
on the Euclidean simplex E,_; is defined as follows

1 n -
ulu) = ——= uil )

where B(b) is the multivariate beta function in variables b;, u = (uy,...,u,) with
(ury... uy—y) € Eney and u, = 1 — by — ... — by (see [4], 4.4-1). The weights
w=(wi,...,w,) of ware w;=>b;/c, | <i<n,where c=by+...+b,.

Let f be an integrable function on the convex hull of x = (xi,...,x,). Dirichlet

average F(x;u) of f is defined as

P = [ f e s)dnto) (17)



54 EDWARD NEUMAN AND JOZSEF SANDOR

(see [4],5.2-1).
Let K be an interval containing xi,...,x,. If f : K — R is a convex function,
then

f (ZM’M) <F(gp) < Zwif(xi) (18)
i=1 i=1
with the inequalities reversed if f is concave on K.

Two refinements of this inequality have been obtained in [7] (Theorem 4.1 and
Corollary 4.2). Let A > 0. Define b, = (by,...,by—1,b, + A) and denote the
associated Dirichlet measure by u, . Further, let v = (vq,...,v,) be the weights of
W, ie, vi=>bi/(c+A), ]l <i<n-—1and v, = (b, +A)/(c+A). Also, let
a=c/(c+A), B=1—caandlet y = (ax; + Bxy,. .., ax, + Bx,). We shall utilize
the following result ([7]).

LEMMA. Let f : K — R be a concave function. Then

n

S vif () < aF () + B () < F(xi ) < F(oipt) < f (Z ) (19)

i=1 i=1
with the inequalities reversed if f is a convex function on K.

In what follows we will write G(x;v), I(x;v) and A(x;v) for the weighted
geometric, identric and arithmetic means, respectively of x with weights v.

THEOREM 3. Let 0 < x; < 1/2 fori=1,...,n. Then

Gy _ [1ew) 1% %\’
G'(x;v) < {I’(x;w)] (1 —x,,)
I(x;v) I(y;w) o A(x;v)
S I(xv) C I(yw) o Al(gy)

(20)

<

Proof. Let f (1) =1Int —In(1 —¢), 0 <t < 1/2. Clearly function f is concave
on the stated domain. Making use of (17) and (4) we see that the middle term in (19)
can be written as

Flxs i) = /E In(u - x)dpy (i) — /E In(1 — - x)dys (1.

n—1 n—1

Since l —u-x=u-(l—x)=u-x,

F(x; 1) :/E In(u - x)du (u) —/E In(u - x")dp (u)

n—1 n—1
I(x;v)

=1InI(x;v) —InI'(x;v) =1In T(ev)

In a similar fashion one can rewrite the remaining terms in (19) to obtain the desired
inequality (20). O
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5. A refinement of the inequality (6)

The following result will be utilized when proving the main result of this section.

LEMMA ([6]). Let f : K — R be a convex function and let x = (xy,...,x,) with
xi €K for i=1,...,n. Further, let w= (w1,...,w,) are the natural weights of the
probability measure u on E,_1. Then

n

f(zw) < [ s <3 ) @

i=1
with the inequalities reversed if f is a concave function.

This result provides a refinement of the classical Jensen’s inequality.
In what follows, L(x;w) will stand for the weighted logarithmic mean of x with
weights w (see (7)).

We have
THEOREM 4. Let 0 < x; < 1/2 for i = 1,...,n and let the weights w =
(W1, ...,wy,) be defined as in (3). Then
1 1 1 1 1 1

H(x;w)  H(xw) S L'(xw)  L(xw) S Al(w)  Algw) (22)

Proof. In order to prove (22) we define f (1) = 1/t —1/(1 —1), 0 <t < 1/2.
Clearly function f is convex on the stated domain. Use of (21) together with (7) gives

1 1 1 1 1 1
- < - < - -
Alxsw)  A'(x;w) T Lxsw)  L'(gw) ~ How)  H(xw)

Hence the desired inequality follows. [

We close this section with the following.
Open Problem. Prove or disprove that under the assumptions of Theorem 4 the
following inequality

1 1 < 1 1 (23)
G'(x;w)  Glow) ~ L'(xw)  Lixgw)
is valid.
Alzer ([1], Theorem 9.1) has established the following result

1 1 1 1
H'(x;w)  H(xw) — G(xw)  Glgw)

(24)

If the inequality (23) holds true, then this together with (24) will provide a refinement
of the first inequality in (22).

Acknowledgment. The authors are indebted to an anonymous referee for a sugges-
tion to include inequality (23) as the open problem.
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