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A GENERAL EXISTENCE THEOREM FOR THE
SINGULAR EQUATION (¢,(y'))' +f(,y) = 0

HAISHEN LU AND DONAL O’REGAN

(communicated by R. P. Agarwal)

Abstract. Some theorems concerning the existence of positive solution for the singular equation

((pp(y’))/ +f(t,y) =0, y(0) = y(1) = 0, are established. The results are obtained using the
lower-upper solution approach.

1. Introduction

In this article we present existence results for the boundary value problem

{ (0,(¢") +f(t,y) =0,0< <1, (L1)
y(0) =y(1) = ¢, '
where @,(s) = |s|"” *s, p>1and ¢ > 0. Equations of the above form occur in the
study of the p— Laplace equation [2], non-Newtonial fluid theory [3], and the turbulent
flow of a gas in a porous medium [4].

Problem (1.1) has been studied by many authors ( see [4-11] and references
therein) usually under non-singular conditions. Recently, [5, 11], existence results were
given for the singular boundary value problem

(0,(¢) +aq()f (t,y) =0, 0 <t <1,
{ ?0) A, y(1)=By, (1.2)

where f :[0,1] x R — R is continuous, and
1
ge C(0,1), / q(s)ds < +o0. (1.3)
0
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In this paper, we give new general existence results for the problem (1.1). The function
f(2,y) canbe singular at both end points = 0, and ¢ = 1. In addition, we only require
q to satisfy

{ g€ C(0,1), with

fo% (pp*1 (L% q(r) dr) derf%l (p[j1 (f;q(r) dr) ds < +o0, (1.4)

where @, ! is the inverse function of Q.
It is obvious that condition (1.3) is a special case of condition (1.4). On the other
hand, if p = 2, condition (1.4) is equivalent to

1
geC(0,1), and /t(l—t)q(t)dt<+oo
0

2. Main Results

Consider the two-point boundary value problem

(0 () +f(t,y) =0,0<1<1,
{ W0) = (1) =, @1

where f : D — R is continuous function and D C (0,1) x R. By a solution
y of (2.1), we mean a function y € C([0,1],R) N C'((0,1),R) with @, () €
C'((0,1),R) and such that (z,y (1)) € D forall 7€ (0,1), (¢,(/)) +f(t,y) =0
forall 7 € (0,1),and y(0) = y(1) =

),R),and @,(a’) € C'((0,1),R).

DEFINITION 1. Let a € C([0,1],R)NC'((0, 1 1
f (t,a(r)) € D forall r € (0,1) and

o is called a lower solution for problem (2.1) i

{ (@p(o/ (1)) +f (1, a(t)) 20, 0<1<1,
(

0)<c a(l) <ec.

Let € C([0,1],R) N C'((0,1),R), and @,(B’) € C'((0,1),R). p is called an
upper solution for problem (2.1) if (¢,B(¢)) € D forall t € (0,1) and

{ (@, (B'(1)) +£(t,B(1) <0,0<r<1,
ﬁ(O) ¢ ﬁ(l) = c.

Also, if o, B € C([0,1],R) are such that a () < B(¢), forall z € [0,1], we
define the set Df := {(t,x) € (0, 1) xR:a(t) <x<P@)}.

LEMMA 2.1. Let f : (0,1) x R — R be continuous, q € C(0,1) and assume
the following conditions hold:

If 1) <Mq(t), (t,y) € (0,1) xR, (2.2)
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/O%(pp—l (/s%q(r) dr> ds+/:<p,71 (/jfﬂ@ dr) ds < +o0; 23)

2

and

here M > 0 is a constant. Then the BVP (2.1) has at least one solution for any ¢ € R.

In order to prove the existence of solutions to (2.1), we consider the boundary
value problem
{ Gy amsen=00<i<t 2.1y
¥(0) =y(1) =c, '
where n > 4 is a natural number, 7, (¢) is a continuous function such that 0 < n, (1) <
1 on [0,1] and
0, 0<r< i

1 2;1’1
m@=< 1, +<r<1—4,
1
0, t>1—5.

We need the following.

LEMMA 2.2. There exists a unique solution V € C([0,1],R) N C'((0,1),R) to
the problem

(@ (V)" +Mq (1) =0, 0 <1 <1,
{ V0) V(1) c. (24)

Proof. We prove existence (the proof of uniqueness is elementary). Set for ¢ €
(0,1)

x (1) ::/th»,;l (/Stq(r) dr> ds—/thop_l (/tsq(r) dr) ds, 0<t<1.

Clearly, x (¢) is continuous and nondecreasing in (0,1) and x(0+) < 0 < x(1—).
Thus, x (r) has zerosin (0,1). Let & be a zero of x(¢) in (0,1). Then

/Oé o, (/Séq(r) dr) ds_/; 0! (/;q(r) dr) ds. (2.5)

e+ ooy ([ Ma(r)ar) ds. 0< 1 <€,
o+ [ oy (JiMa () dr) ds, E<i< L.

Then, V is a well defined function on [0, 1]. Moreover,

Put

V() = (2.6)

(p;I (ijq(r)dr) ds, 0 <t<é,
,(ppfl (ngq(r) dr) ds, E <r<1.

Therefore, (¢,(V'))' + Mg (1) =0, 0<t<1and V(0)=V(l)=c. O

V(1) ==

An argument similar to that in Lemma 2.2 yields our next result.
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LEMMA 2.3. There exists a unique solution v € C([0, 1],R) N C*((0,1),R) to the
problem

(0 (V) —Mgq (1) =0,0<r<1,
{ v(<p0> = (1) e (2.7)

LEMMA 2.4. Let uy (t) be a solutionto (2.1),. Then
V() Sup () <V(),0<1< 1.
Proof. We shall prove only u, (t) < V (¢) on [0, 1] since the argument is essen-

tially the same for the case u, () > v (¢) on [0, 1].
To see this, suppose

u, (1) £ V(1) for 1€ (0,1).

Since u, (0) = V (0) ,u, (1) = V (1), then there exists #y € (0, 1) with u,(t9) > V(1)
and hence there would exist an interval (a,b) such that u,(z) > V(¢) in (a,b) and
uy(a) — V(a) = u,(b) — V(b) = 0. Then u, (1) — V() has a positive maximum at a
point B € (a,b). Note u/,(B) = V'(B). Let m = u, (B) — V (B) . Integrate both sides
of the equality (2.4) and (2.1), from s to B, a < s < B, to get

Vi(s) = g (mp(V’(B)) v | e dr) ,
and ;
() = ;" (mpw;(B)) <[ (r)f(ny(r))dr) |

Now integrate both side of the above equality from a to B, to obtain

ve v = [ o (v +u [ avyar) as

and

un(B) — un(a) = /aB o (fpp(ui,(B)) +/SB M (r)f(r,Y(r))dr) ds.

This leads to 0 < m = u,(B) — V(B) < 0, a contradiction. [J
LEMMA 2.5. For each fixed n > 4, (2.1), has a solution u, € C' ([0,1],R).

Proof. This is a consequence of Theorem 2.1 in [5] since

. () f (6, 9)| < Mn, (1) q (1),

with
N, (£)f (t,¥) continuous for (#,y) € [0,1] x R

and fol N (1) q (1) dt < +o00. O
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LEMMA 2.6. {u,}22, is equicontinuous on [0, 1].

Proof. Let € > 0 be given. From the continuity of v, V on [0, 1], it follows that

there exists a constant 8; € (0, ;) such that
c—e<v(t)<V(t) <c+e for t€]0,28],

and
c—e<v(it)<V(t)<c+e for t e[l —26,1].

Fix n € {4,5,...}. Now
lun (t1) — un (2)| < 2€, for 11,1, € [0,28;] or 11, 1, € [1 — 28, 1].

Next consider #;,#, € [8;,1 — §]. Itis clear that there is an n* such that nl* < 6.
Then, for all n > n*, we have

0 = (@ 1)) +na(0)f (t,un (1))
= (@, (1)) +f (t,un (1)), forall 1 € [a,b];

here a = &§;, b =1—3;. Thus u, is a solution of (2.1) forall ¢ € [a,b] and n > n*.
In addition

sup{|f (t,x)| 1t € [a,b],x € R} <sup{M q(¢) : t € [a,b]} < +o0.

Also notice

: b
u, (1) = uy, (a) +/ (ppf1 (Tn +/ I (s,un (5)) ds) dr, a <t <b,

where 7, is a solution of the equation

b b
/¢V<m+/f@w@DM>W_W@w@f

By the mean value theorem, there exists a &, € [a, b] with

b — Uy \a
9, (rﬁ/ﬁ f (s, un (5)) ds> drziu"(blzia"( ),

That is b
f= = [ ) s g (=),

From Lemma 2.4 we have v (¢) < u, (f) < V (¢). Therefore there is a constant C > 0

such that ,
u, (b) —u, (a
|7l <M/ q(t) + (%) <C
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Then for #,1, € [8;,1 — 8;] we have

/: o (rﬁ/rbf (s, un (5)) ds) 0

un(t1) — un(t2)] =

< Ly —nl;
here L = ( +Mfubq(s) ds
Put 52 £. Thenif 11,6, € [01,1 — 1], and [t — 1| < 6, we have

[ (1) —un(82)| < Lty — 1] < L&, = €.
Finally set 6 = min{d;, 6,}. Thenif #;,7, € [0,1] and |f; — ;| < & we have
|un(11) — un(82)| < 3&. (2.8)
This completes the proof. [

Lemma 2.4 and Lemma 2.6, and the Ascoli—Arzela theorem, guarantees that there
exists a uniformly convergent subsequence of {u,}2°,, denoted again by {u,}>°,,
which converges uniformly to # on [0, 1]. Itis clear that u (0) = u (1) = c.

Proof of Lemma 2.1. Now let T = [a,b] C (0, 1) be acompact interval. Itis clear
that there is an n* = n* (T') such that ' C [1,1 — L] forall n > n*, and as a result
(

1
0 = (@u, (1) +nu () f (t,un (1))
= (@, () +f(t,u, (1)), forall t€ [a,b].

Thus u, is a solution of (2.1) for all ¢ € [a,b] and n > n*. In addition
sup{lf (#,x)|: ¢ € [a,b],x € R} < sup{Mq (¢) : t € [a,b]} < +00.

Also notice

t b
un(t):un(a)+/ (pp_1 (Tn—i—/f(s,un(s)) ds) dr, a <t<b,

where 7, is a solution of the equation

b b
/ @;1 (Tn+/ £ (s,u, (s)) ds> dr = u, (b) — uy (a) .

By the mean value theorem, there exists a &, € [a, b] with

(pp_1 (Tn + bf (s,u (5)) ds) dr= 4\ " Unld) (b) = un (a).
én b —a

That is

b
f@m@»w+%(
&

un (b) — un (a)) .

b—a
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From Lemma 2.4 we have v () < u, (t) < V (). Therefore there is a constant Q > 0

such that
Il < M/ 0+ (W} <0.

Thus there exists a convergent subsequence of {7,}:°, ., denoted again by {7,}5°, -,

which converges to 7. In addition we know that there exists a convergent subsequence

of {u,}5°,«, denoted again by {u,}5°, ., which converges uniformly to u on [a, b].
Therefore,

: b
”(f):”(a)+/ (P,,_l <T+/f(s,u(s)) ds> dr, a <t <b,

where 7 is a solution of the equation

[%ﬁ(}+[3@m@»m>m=uwwww»

The above implies that u is a solution of (2.1) on the interval I = [a, b]. Since T is
arbitrary, we find that

ue C'((0,1),R), and (¢, ()" +f (t,u()) =0 for 1€ (0,1).

Finally since u € C' ((0,1),R) and u (0) = u (1) = ¢, we have that u is a solution
of (2.1). O

THEOREM 2.1. Suppose

(HI). f :(0,1) x R — R is continuous holds. In addition, assume o € C[0,1],
B € C[0,1] are lower and upper solution of problem (2.1), and suppose the
following conditions are satisfied:

(H2). a(r) <B(t), forall 0 <t <1,

(H3). a(0) <c<B(0), a(l) <c<B(1),
and

(H4). there exists a continuous function q € C(0, 1), with

f () <q(@), Y(t,y) € Dap,

/O%qopl (/S%q(r)dr> ds+[<pp1 ([q(r)dr) ds < +oo.

Then the BVP (2.1) has at least one solution y € C[0,1], @,(y') € C'(0,1), and
o) <y(@) <B@), 0<r< 1.
Proof. Let

and

F(6B(0)+a() {2255, v > B(),
g(t,y) = f@y), o) <y<p(@),
)

f(t>a(t)) (t %7 y< OC(I).
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Then g : (0,1) x R — R is continuous and |g(7,y)| < 2¢(z), for (7,y) € (0,1) x R.
Lemma 2.1 implies that there exists at least one y € C'[0, 1], ¢,(y') € C'(0,1), which

satisfies
(2 (3")) + (t,y)—o 0<r<1,
2.9
A 22
If we can prove that y satisfies o(¢) < y(¢) < B(#) for 7 € (0,1) then y is a solution
of problem (2.1).

We now prove that o(7) < y(¢) < B(r) for ¢ € [0, 1]. Notice

a(0) <y(0) < B(0) and o(1) < y(1) < B(1).
Suppose o () £ y(¢), for t € (0,1). Then exists # € (0,

1)
[in. (¥(1) = (1)) = y(t0) — a(to) < 0, and y'(to) = o' (to). (2.10)

, with

On the other hand, g(to, (%)) —f (t, &t(t0)) > 0, and by continuity there exists & > 0
with

g(t,y(®) —f(t,a(t)) >0 forall t € [t, 1+ &). (2.11)
Fix any 1 € [t9,10 + &) . From (2.9), (2.10), and (2.11) we have

o0 @) = (Pp(y’(to))—/ g(w(S))ds<<Pp(0<’(to))—/tf(s7 o(s)) ds

4]

t
< o) - [ (o) d=ae o).
fo
Thus, y'(f) — a’(t) < 0 for t € [1g,70 + &). This is a contradiction. Therefore,
o(t) < y(¢). Similiarly, y(r) < B(z). O
EXAMPLE 1. Consider the following boundary value problem:

(@, () + Af(t,y) =0, 0<1<1,
{ (0 Zx() =0, (2.12)

where A >0

Suppose the following conditions are satisfied:
(H5). f:(0,1) x Rt — R" is continuous,
(H6). there exists a continuous function g € C(0,1) with

/0%901,1 (/S%q(r) dr) ds+11(pp1 (ﬁsq(r) dr> ds < 400,

2 2

and for each given 1 > O there is a positive constant M, satisfying

[ (6,y) <Myq (1), ¥(z,) € (0,1) x [0,n].

Then, there exists a positive constant A* such that the BVP (2.12) has at least a
positive solution for 0 < A < A*.
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Proof. Tt follows from (H6) that for each given 1 > 0,

1 1 1 S
/zqoljl (/zan(r)dr> ds+/ qoljl (/ an(r)dr> ds < +o0.
0 K 1 %

2

The result follows from Theorem 2.1 if we can find a lower solution ¢ and an upper
solution B of (2.12) satisfying (H2) and (H3).
To see this we first consider

{ (@ (") +4q(t
¥(0) =y(1 ):

It is clear that its solution 3 can be written as
for o, (ff* q(r) dr) ds, 0
1 s *
fr 0, 1 (fé*q(r)dr) ds, &* <r<1,

where £* is a zero of the function

x(f) == /th»,;l (/Stq(r)dr> ds—/l o, (/tsq(r)dr> ds, 0<t<l1.

Let By = max,cjo,) B (¢) > 0. Then, since
(@B) +Af.B(1) = —q)+Af(t,B(1)
< —aW)+ 1B )
Bo

)=0, 0<r<1,
0.

B (1) :=

1
< 7q(t)+_ Boq(t):07 on (071)
Mg,

for 0 < A < Bo , so it follows that 8 is an upper solution of (2.12) if 0 < A < 7

On the other hand, ¢ = 0 is obviously a lower solution of (2.12) and satisfies
o(t) < B(z) forall 7 € [0,1]. From Theorem 2.1, we deduce that (2.12) has a positive
. . 0
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