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A GENERAL EXISTENCE THEOREM FOR THE

SINGULAR EQUATION (ϕp(y′))′ + f (t, y) = 0

HAISHEN LÜ AND DONAL O’REGAN

(communicated by R. P. Agarwal)

Abstract. Some theorems concerning the existence of positive solution for the singular equation

(ϕp(y
′
))

′
+ f (t, y) = 0 , y(0) = y(1) = 0 , are established. The results are obtained using the

lower-upper solution approach.

1. Introduction

In this article we present existence results for the boundary value problem{
(ϕp(y′))′ + f (t, y) = 0, 0 < t < 1,
y(0) = y(1) = c,

(1.1)

where ϕp(s) = |s|p−2 s , p > 1 and c � 0 . Equations of the above form occur in the
study of the p−Laplace equation [2], non-Newtonial fluid theory [3], and the turbulent
flow of a gas in a porous medium [4].

Problem (1.1) has been studied by many authors ( see [4–11] and references
therein) usually under non-singular conditions. Recently, [5, 11], existence results were
given for the singular boundary value problem{

(ϕp(y′))′ + q(t)f (t, y) = 0, 0 < t < 1,
y(0) = A, y(1) = B,

(1.2)

where f : [0, 1] × R → R is continuous, and

q ∈ C (0, 1) ,

∫ 1

0
q(s)ds < +∞. (1.3)
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In this paper, we give new general existence results for the problem (1.1) . The function
f (t, y) can be singular at both end points t = 0 , and t = 1 . In addition, we only require
q to satisfy{

q ∈ C (0, 1) , with∫ 1
2

0 ϕ−1
p

(∫ 1
2

s q (r) dr
)

ds +
∫ 1

1
2
ϕ−1

p

(∫ s
1
2
q (r) dr

)
ds < +∞,

(1.4)

where ϕ−1
p is the inverse function of ϕp .

It is obvious that condition (1.3) is a special case of condition (1.4) . On the other
hand, if p = 2 , condition (1.4) is equivalent to

q ∈ C (0, 1) , and
∫ 1

0
t (1 − t) q (t) dt < +∞

2. Main Results

Consider the two-point boundary value problem{
(ϕp(y′))′ + f (t, y) = 0, 0 < t < 1,
y(0) = y(1) = c,

(2.1)

where f : D → R is continuous function and D ⊂ (0, 1) × R . By a solution
y of (2.1) , we mean a function y ∈ C([0, 1], R) ∩ C1((0, 1), R) with ϕp (y′) ∈
C1 ((0, 1), R) and such that (t, y (t)) ∈ D for all t ∈ (0, 1) , (ϕp(y′))′ + f (t, y) = 0
for all t ∈ (0, 1) , and y(0) = y(1) = c .

DEFINITION 1. Let α ∈ C([0, 1], R)∩C1((0, 1), R) , and ϕp(α′) ∈ C1((0, 1), R) .
α is called a lower solution for problem (2.1) if (t,α(t)) ∈ D for all t ∈ (0, 1) and{

(ϕp(α′(t)))
′
+ f (t,α(t)) � 0, 0 < t < 1,

α(0) � c, α(1) � c.

Let β ∈ C([0, 1], R) ∩ C1((0, 1), R) , and ϕp(β ′) ∈ C1((0, 1), R) . β is called an
upper solution for problem (2.1) if (t, β(t)) ∈ D for all t ∈ (0, 1) and{

(ϕp(β ′(t)))
′
+ f (t, β(t)) � 0, 0 < t < 1,

β(0) � c, β(1) � c.

Also, if α , β ∈ C([0, 1], R) are such that α (t) � β (t) , for all t ∈ [0, 1] , we
define the set Dβ

α := {(t, x) ∈ (0, 1) × R : α (t) � x � β (t)} .

LEMMA 2.1. Let f : (0, 1) × R → R be continuous, q ∈ C (0, 1) and assume
the following conditions hold:

|f (t, y)| � M q (t) , (t, y) ∈ (0, 1)× R, (2.2)
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and ∫ 1
2

0
ϕ−1

p

(∫ 1
2

s
q (r) dr

)
ds +

∫ 1

1
2

ϕ−1
p

(∫ s

1
2

q (r) dr

)
ds < +∞; (2.3)

here M > 0 is a constant. Then the BVP (2.1) has at least one solution for any c ∈ R .

In order to prove the existence of solutions to (2.1) , we consider the boundary
value problem {

(ϕp(y′))′ + ηn (t) f (t, y) = 0, 0 < t < 1,
y(0) = y(1) = c,

(2.1)n

where n � 4 is a natural number, ηn (t) is a continuous function such that 0 � ηn (t) �
1 on [0, 1] and

ηn (t) =

⎧⎨
⎩

0, 0 < t < 1
2n ,

1, 1
n � t � 1 − 1

n ,
0, t > 1 − 1

2n .

We need the following.

LEMMA 2.2. There exists a unique solution V ∈ C([0, 1], R) ∩ C1((0, 1), R) to
the problem {

(ϕp(V ′))′ + Mq (t) = 0, 0 < t < 1,
V(0) = V(1) = c.

(2.4)

Proof. We prove existence (the proof of uniqueness is elementary). Set for t ∈
(0, 1)

x (t) :=
∫ t

0
ϕ−1

p

(∫ t

s
q (r) dr

)
ds −

∫ 1

t
ϕ−1

p

(∫ s

t
q (r) dr

)
ds, 0 < t < 1.

Clearly, x (t) is continuous and nondecreasing in (0, 1) and x (0+) < 0 < x (1−) .
Thus, x (t) has zeros in (0, 1) . Let ξ be a zero of x (t) in (0, 1) . Then

∫ ξ

0
ϕ−1

p

(∫ ξ

s
q (r) dr

)
ds =

∫ 1

ξ
ϕ−1

p

(∫ s

ξ
q (r) dr

)
ds. (2.5)

Put

V(t) :=

⎧⎨
⎩

c +
∫ t

0 ϕ
−1
p

(∫ ξ
s Mq(r) dr

)
ds, 0 � t � ξ ,

c +
∫ 1

t ϕ−1
p

(∫ s
ξ M q (r) dr

)
ds, ξ � t � 1.

(2.6)

Then, V is a well defined function on [0, 1] . Moreover,

V ′(t) :=

⎧⎨
⎩

ϕ−1
p

(∫ ξ
s M q(r)dr

)
ds, 0 < t � ξ ,

−ϕ−1
p

(∫ s
ξ M q (r) dr

)
ds, ξ � t < 1.

Therefore, (ϕp(V ′))′ + Mq (t) = 0, 0 < t < 1 and V(0) = V(1) = c . �
An argument similar to that in Lemma 2.2 yields our next result.
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LEMMA 2.3. There exists a unique solution v ∈ C([0, 1], R)∩C1((0, 1), R) to the
problem {

(ϕp(v′))′ − Mq (t) = 0, 0 < t < 1,
v(0) = v(1) = c.

(2.7)

LEMMA 2.4. Let un (t) be a solution to (2.1)n . Then

v (t) � un (t) � V (t) , 0 � t � 1.

Proof. We shall prove only un (t) � V (t) on [0, 1] since the argument is essen-
tially the same for the case un (t) � v (t) on [0, 1] .

To see this, suppose

un (t) �� V (t) for t ∈ (0, 1) .

Since un (0) = V (0) , un (1) = V (1) , then there exists t0 ∈ (0, 1) with un(t0) > V(t0)
and hence there would exist an interval (a, b) such that un(t) > V(t) in (a, b) and
un(a) − V(a) = un(b) − V(b) = 0 . Then un (t) − V(t) has a positive maximum at a
point B ∈ (a, b) . Note u′n(B) = V ′(B) . Let m = un (B) − V (B) . Integrate both sides
of the equality (2.4) and (2.1)n from s to B , a < s < B , to get

V ′(s) = ϕ−1
p

(
ϕp(V ′(B)) + M

∫ B

s
q(r) dr

)
,

and

u′n(s) = ϕ−1
p

(
ϕp(u′n(B)) +

∫ B

s
ηn (r) f (r, y(r)) dr

)
.

Now integrate both side of the above equality from a to B , to obtain

V(B) − V(a) =
∫ B

a
ϕ−1

p

(
ϕp(V ′(B)) + M

∫ B

s
q(r) dr

)
ds,

and

un(B) − un(a) =
∫ B

a
ϕ−1

p

(
ϕp(u′n(B)) +

∫ B

s
ηn (r) f (r, y(r)) dr

)
ds.

This leads to 0 < m = un(B) − V(B) � 0 , a contradiction. �
LEMMA 2.5. For each fixed n � 4 , (2.1)n has a solution un ∈ C1 ([0, 1] , R) .

Proof. This is a consequence of Theorem 2.1 in [5] since

|ηn (t) f (t, y)| � Mηn (t) q (t) ,

with
ηn (t) f (t, y) continuous for (t, y) ∈ [0, 1]× R

and
∫ 1

0 ηn (t) q (t) dt < +∞ . �
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LEMMA 2.6. {un}∞n=4 is equicontinuous on [0, 1] .

Proof. Let ε > 0 be given. From the continuity of v , V on [0, 1] , it follows that
there exists a constant δ1 ∈

(
0, 1

4

)
such that

c − ε < v(t) � V (t) < c + ε for t ∈ [0, 2δ1],

and
c − ε < v(t) � V (t) < c + ε for t ∈ [1 − 2δ1, 1].

Fix n ∈ {4, 5, . . .} . Now

|un (t1) − un (t2)| < 2ε, for t1, t2 ∈ [0, 2δ1] or t1, t2 ∈ [1 − 2δ1, 1].

Next consider t1, t2 ∈ [δ1, 1 − δ1] . It is clear that there is an n∗ such that 1
n∗ � δ1 .

Then, for all n > n∗ , we have

0 = (ϕp(u′n (t)))′ + ηn (t) f (t, un (t))
= (ϕp(u′n (t)))′ + f (t, un (t)), for all t ∈ [a, b] ;

here a = δ1 , b = 1− δ1 . Thus un is a solution of (2.1) for all t ∈ [a, b] and n � n∗ .
In addition

sup{|f (t, x)| : t ∈ [a, b] , x ∈ R} � sup{M q (t) : t ∈ [a, b]} < +∞.

Also notice

un (t) = un (a) +
∫ t

a
ϕ−1

p

(
τn +

∫ b

r
f (s, un (s)) ds

)
dr, a � t � b,

where τn is a solution of the equation

∫ b

a
ϕ−1

p

(
τn +

∫ b

r
f (s, un (s)) ds

)
dr = un (b) − un (a) .

By the mean value theorem, there exists a ξn ∈ [a, b] with

ϕ−1
p

(
τn +

∫ b

ξn

f (s, un (s)) ds

)
dr =

un (b) − un (a)
b − a

.

That is

τn = −
∫ b

ξn

f (s, un (s)) ds + ϕp

(
un (b) − un (a)

b − a

)
.

From Lemma 2.4 we have v (t) � un (t) � V (t) . Therefore there is a constant C > 0
such that

|τn| � M
∫ b

a
q (t) + ϕp

( |un (b) − un (a)|
b − a

)
� C.
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Then for t1, t2 ∈ [δ1, 1 − δ1] we have

|un(t1) − un(t2)| =

∣∣∣∣∣
∫ t1

t2

ϕ−1
p

(
τn +

∫ b

r
f (s, un (s)) ds

)
dr

∣∣∣∣∣
� L |t1 − t2| ;

here L = ϕ−1
p

(
C + M

∫ b
a q (s) ds

)
.

Put δ2 = ε
L . Then if t1, t2 ∈ [δ1, 1 − δ1] , and |t1 − t2| < δ2 we have

|un(t1) − un(t2)| � L |t1 − t2| < Lδ2 = ε.

Finally set δ = min{δ1, δ2} . Then if t1, t2 ∈ [0, 1] and |t1 − t2| < δ we have

|un(t1) − un(t2)| < 3 ε. (2.8)

This completes the proof. �
Lemma 2.4 and Lemma 2.6, and the Ascoli–Arzela theorem, guarantees that there

exists a uniformly convergent subsequence of {un}∞n=4 , denoted again by {un}∞n=4 ,
which converges uniformly to u on [0, 1] . It is clear that u (0) = u (1) = c .

Proof of Lemma 2.1. Now let Γ = [a, b] ⊂ (0, 1) be a compact interval. It is clear
that there is an n∗ = n∗ (Γ) such that Γ ⊂ [ 1

n , 1 − 1
n

]
, for all n > n∗ , and as a result

0 = (ϕp(u′n (t)))′ + ηn (t) f (t, un (t))
= (ϕp(u′n (t)))′ + f (t, un (t)), for all t ∈ [a, b] .

Thus un is a solution of (2.1) for all t ∈ [a, b] and n � n∗ . In addition

sup{|f (t, x)| : t ∈ [a, b] , x ∈ R} � sup{Mq (t) : t ∈ [a, b]} < +∞.

Also notice

un (t) = un (a) +
∫ t

a
ϕ−1

p

(
τn +

∫ b

r
f (s, un (s)) ds

)
dr, a � t � b,

where τn is a solution of the equation∫ b

a
ϕ−1

p

(
τn +

∫ b

r
f (s, un (s)) ds

)
dr = un (b) − un (a) .

By the mean value theorem, there exists a ξn ∈ [a, b] with

ϕ−1
p

(
τn +

∫ b

ξn

f (s, un (s)) ds

)
dr =

un (b) − un (a)
b − a

.

That is

τn = −
∫ b

ξn

f (s, un (s)) ds + ϕp

(
un (b) − un (a)

b − a

)
.
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From Lemma 2.4 we have v (t) � un (t) � V (t) . Therefore there is a constant Q > 0
such that

|τn| � M
∫ b

a
q (t) + ϕp

( |un (b) − un (a)|
b − a

)
� Q.

Thus there exists a convergent subsequence of {τn}∞n=n∗ , denoted again by {τn}∞n=n∗ ,
which converges to τ . In addition we know that there exists a convergent subsequence
of {un}∞n=n∗ , denoted again by {un}∞n=n∗ , which converges uniformly to u on [a, b] .

Therefore,

u (t) = u (a) +
∫ t

a
ϕ−1

p

(
τ +

∫ b

r
f (s, u (s)) ds

)
dr, a � t � b,

where τ is a solution of the equation∫ b

a
ϕ−1

p

(
τ +

∫ b

r
f (s, u (s)) ds

)
dr = u (b) − u (a) .

The above implies that u is a solution of (2.1) on the interval Γ = [a, b] . Since Γ is
arbitrary, we find that

u ∈ C1 ((0, 1) , R) , and
(
ϕp
(
u′
))′ + f (t, u (t)) = 0 for t ∈ (0, 1) .

Finally since u ∈ C1 ((0, 1) , R) and u (0) = u (1) = c , we have that u is a solution
of (2.1) . �

THEOREM 2.1. Suppose
(H1). f : (0, 1) × R → R is continuous holds. In addition, assume α ∈ C[0, 1] ,

β ∈ C[0, 1] are lower and upper solution of problem (2.1) , and suppose the
following conditions are satisfied:

(H2). α(t) � β(t), for all 0 � t � 1 ,
(H3). α(0) � c � β(0) , α(1) � c � β(1) ,

and
(H4). there exists a continuous function q ∈ C(0, 1) , with

|f (t, y)| � q (t) , ∀(t, y) ∈ Dαβ ,

and ∫ 1
2

0
ϕ−1

p

(∫ 1
2

s
q (r) dr

)
ds +

∫ 1

1
2

ϕ−1
p

(∫ s

1
2

q (r) dr

)
ds < +∞.

Then the BVP (2.1) has at least one solution y ∈ C[0, 1] , ϕp(y′) ∈ C1(0, 1) , and
α(t) � y(t) � β(t), 0 � t � 1 .

Proof. Let

g(t, y) =

⎧⎪⎨
⎪⎩

f (t, β (t)) + q(t) (β(t)−y)
(1+y−β(t)) , y > β(t),

f (t, y), α(t) � y � β(t),
f (t,α (t)) + q(t) (α(t)−y)

(1−y+α(t)) , y < α(t).
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Then g : (0, 1) × R → R is continuous and |g(t, y)| � 2q(t) , for (t, y) ∈ (0, 1) × R .
Lemma 2.1 implies that there exists at least one y ∈ C1[0, 1] , ϕp(y′) ∈ C1(0, 1) , which
satisfies {

(ϕp(y′))′ + g(t, y) = 0, 0 < t < 1,
y(0) = c, y(1) = c.

(2.9)

If we can prove that y satisfies α(t) � y(t) � β(t) for t ∈ (0, 1) then y is a solution
of problem (2.1) .

We now prove that α(t) � y(t) � β(t) for t ∈ [0, 1] . Notice

α(0) � y(0) � β(0) and α(1) � y(1) � β(1).

Suppose α (t) �� y (t) , for t ∈ (0, 1) . Then exists t0 ∈ (0, 1) , with

min
t∈[0,1]

(y(t) − α(t)) = y(t0) − α(t0) < 0, and y′(t0) = α′(t0). (2.10)

On the other hand, g(t0, y(t0))− f (t0,α(t0)) > 0 , and by continuity there exists ε0 > 0
with

g(t, y(t)) − f (t,α(t)) > 0 for all t ∈ [t0, t0 + ε0). (2.11)

Fix any t ∈ [t0, t0 + ε0) . From (2.9) , (2.10) , and (2.11) we have

ϕp(y′(t)) = ϕp(y′(t0)) −
∫ t

t0

g(s, y(s)) ds < ϕp(α′(t0)) −
∫ t

t0

f (s,α(s)) ds

� ϕp(α′(t0)) −
∫ t

t0

(ϕp(α′(s)))
′
ds = ϕp(α′(t)).

Thus, y′(t) − α′(t) < 0 for t ∈ [t0, t0 + ε0) . This is a contradiction. Therefore,
α(t) � y(t) . Similiarly, y(t) � β(t) . �

EXAMPLE 1. Consider the following boundary value problem:{
(ϕp(y′))′ + λ f (t, y) = 0, 0 < t < 1,
y(0) = y(1) = 0,

(2.12)

where λ � 0 .
Suppose the following conditions are satisfied:

(H5). f : (0, 1) × R+ → R+ is continuous,
(H6). there exists a continuous function q ∈ C(0, 1) with

∫ 1
2

0
ϕ−1

p

(∫ 1
2

s
q (r) dr

)
ds +

∫ 1

1
2

ϕ−1
p

(∫ s

1
2

q (r) dr

)
ds < +∞,

and for each given η > 0 there is a positive constant Mη satisfying

f (t, y) � Mηq (t) , ∀(t, y) ∈ (0, 1) × [0,η] .

Then, there exists a positive constant λ ∗ such that the BVP (2.12) has at least a
positive solution for 0 < λ < λ ∗ .
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Proof. It follows from (H6) that for each given η > 0 ,∫ 1
2

0
ϕ−1

p

(∫ 1
2

s
Mηq (r) dr

)
ds +

∫ 1

1
2

ϕ−1
p

(∫ s

1
2

Mηq (r) dr

)
ds < +∞.

The result follows from Theorem 2.1 if we can find a lower solution α and an upper
solution β of (2.12) satisfying (H2) and (H3) .

To see this we first consider{
(ϕp(y′))′ + q (t) = 0, 0 < t < 1,
y(0) = y(1) = 0.

It is clear that its solution β can be written as

β (t) :=

⎧⎨
⎩
∫ t

0 ϕ
−1
p

(∫ ξ∗
s q(r) dr

)
ds, 0 � t � ξ∗,∫ 1

t ϕ−1
p

(∫ s
ξ∗ q(r) dr

)
ds, ξ∗ � t � 1,

where ξ∗ is a zero of the function

x(t) :=
∫ t

0
ϕ−1

p

(∫ t

s
q(r) dr

)
ds −

∫ 1

t
ϕ−1

p

(∫ s

t
q(r) dr

)
ds, 0 < t < 1.

Let β0 = maxt∈[0,1] β (t) > 0 . Then, since

(ϕp(β ′))′ + λ f (t, β (t)) = − q (t) + λ f (t, β (t))

� − q (t) +
1

Mβ0

f (t, β (t))

� − q (t) +
1

Mβ0

Mβ0 q (t) = 0, on (0, 1)

for 0 < λ � 1
Mβ0

, so it follows that β is an upper solution of (2.12) if 0 < λ � 1
Mβ0

.

On the other hand, α ≡ 0 is obviously a lower solution of (2.12) and satisfies
α(t) � β(t) for all t ∈ [0, 1] . From Theorem 2.1, we deduce that (2.12) has a positive
solution y if 0 < λ � 1

Mβ0
. �
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