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AN APPLICATION OF ALMOST INCREASING SEQUENCES

HÜSEYIN BOR

(communicated by L. Leindler)

Abstract. In this paper using any almost increasing sequence a result of Mishra and Srivastava
[5] on |C, 1|k summability factors has been generalized for |C,α; δ |k summability factors under
weaker conditions.

1. Introduction. Let
∑

an be a given infinite series with the sequence of its
partial sums (sn) . We denote by tαn n-th Cesàro mean of order α , with α > −1 , of
the sequence (nan) , i.e.,

tαn =
1
Aα

n

n∑
v=1

Aα−1
n−v vav, (1)

where

Aα
n = O(nα), α > −1, Aα

0 = 1 and Aα
−n = 0 for n > 0. (2)

The series
∑

an is said to be |C,α|k summable, k � 1 and α > −1 , if (see [3])

∞∑
n=1

1
n
|tαn |k < ∞, (3)

and it is said to be summable |C,α; δ |k , k � 1 , α > −1 and δ � 0 , if (see [4])

∞∑
n=1

nδk−1|tαn |k < ∞. (4)

It is known that for k � 1 and 0 < α � 1 (see [7])

m∑
n=1

1
n
|tαn |k = O{

m∑
n=1

|sn|k
n(α−1)k+1

}. (5)

Mishra and Srivastava [5] have proved the following theorem for |C, 1|k summability
factors of infinite series.
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80 HÜSEYIN BOR

THEOREM A. Let (Xn) be a positive non-decreasing sequence and (βn) , (λn)
sequences such that

|Δλn| � βn (6)

βn → 0 as n → ∞ (7)
∞∑
n=1

n|Δβn|Xn < ∞ (8)

|λn|Xn = O(1) as n → ∞. (9)

If
m∑

n=1

1
n
|sn|k = O(Xm) as m → ∞, (10)

then the series
∑

anλn is |C, 1|k summable, k � 1 .

2. The aim of this paper is to generalize Theorem A under weaker conditions for
|C,α; δ |k summability. For this we need the concept of almost increasing sequence. A
positive sequence (bn) is said to be almost increasing if there exists a positive increasing
sequence (cn) and two positive constants A and B such that Acn � bn � Bcn (see
[1]). Obviously, every increasing sequence is almost increasing but the converse need
not be true as can be seen from the example bn = ne(−1)n . So we are weakening the
hypotheses of the theorem replacing the increasing sequence by an almost increasing
sequence.

Now, we shall prove the following theorem.

THEOREM. Let (Xn) be an almost increasing sequence and the sequences (βn)
and (λn) such that conditions (6)-(9) of Theorem A are satisfied. If the sequence (uαn ) ,
defined by (see [6])

uαn =
{ |tαn |, α = 1

max1�v�n |tαv |, 0 < α < 1
(11)

satisfies the condition

m∑
n=1

nδk−1(uαn )k = O(Xm) as m → ∞, (12)

then the series
∑

anλn is |C,α; δ |k summable, k � 1 and 0 � δ < α � 1 .

We need the following lemmas.

LEMMA 1 ([2]). If 0 < α � 1 and 1 � v � n , then

|
v∑

p=0

Aα−1
n−p ap| � max

1�m�v
|

m∑
p=0

Aα−1
m−pap|. (13)
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LEMMA 2. Under the conditions on (Xn) , (βn) and (λn) as in the statement of
the theorem, the following conditions hold, when (8) is satisfied:

nβnXn = O(1) as n → ∞. (14)
∞∑

n=1

βnXn < ∞ (15)

Proof. Let Acn � Xn � Bcn , where (cn) is an increasing sequence. In this case

nXnβn � nBcn|
∞∑
v=n

Δβv| � nBcn

∞∑
v=n

|Δβv|

� B
∞∑
v=n

vcv|Δβv| � B
A

∞∑
v=n

v|Δβv|Xv < ∞.

Hence nβnXn = O(1) as n → ∞ . Again

∞∑
n=1

Xnβn � B
∞∑

n=1

cnβn = B
∞∑

n=1

cn|
∞∑
v=n

Δβv|

� B
∞∑

n=1

cn

∞∑
v=n

|Δβv| = B
∞∑
v=1

|Δβv|
v∑

n=1

cn

� B
∞∑
v=1

vcv|Δβv| � B
A

∞∑
v=1

vXv|Δβv| < ∞.

Hence
∑∞

n=1 Xnβn < ∞.

3. Proof of the Theorem. Let (Tα
n ) be the n -th (C,α) mean, with 0 < α � 1 ,

of the sequence (nanλn) . Then, by (1), we have

Tα
n =

1
Aα

n

n∑
v=1

Aα−1
n−v vavλv. (16)

Applying Abel’s transformation, we get

Tα
n =

1
Aα

n

n−1∑
v=1

Δλv

v∑
p=1

Aα−1
n−p pap +

λn

Aα
n

n∑
v=1

Aα−1
n−v vav,

so that making use of Lemma 1, we have

|Tα
n | � 1

Aα
n

n−1∑
v=1

|Δλv||
v∑

p=1

Aα−1
n−p pap| + |λn|

Aα
n
|

n∑
v=1

Aα−1
n−v vav|

� 1
Aα

n

n−1∑
v=1

Aα
v uαv |Δλv| + |λn|uαn

= Tα
n,1 + Tα

n,2, say.
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Since

|Tα
n,1 + Tα

n,2|k � 2k(|Tα
n,1|k + |Tα

n,2|k),

to complete the proof of the theorem, it is enough to show that

∞∑
n=1

nδk−1|Tα
n,r|k < ∞ for r = 1, 2, by (3).

Now, when k>1 , applying Hölder’s inequality with indices k and k′ , where 1
k +

1
k′ =1 ,

we get

m+1∑
n=2

nδk−1|Tα
n,1|k �

m+1∑
n=2

nδk−1(Aα
n )−k{

n−1∑
v=1

Aα
v uαv βv}k

�
m+1∑
n=2

nδk−1(Aα
n )−k{

n−1∑
v=1

(Aα
v )k(uαv )kβv} × {

n−1∑
v=1

βv}k−1

= O(1)
m+1∑
n=2

nδk−αk−1{
n−1∑
v=1

vαk(uαv )kβv}

= O(1)
m∑

v=1

vαk(uαv )kβv

m+1∑
n=v+1

1
n1+αk−δk

= O(1)
m∑

v=1

vαk(uαv )kβv

∫ ∞

v

dx
x1+αk−δk

= O(1)
m∑

v=1

vδk(uαv )kβv = O(1)
m∑

v=1

vβvv
δk−1(uαv )k

= O(1)
m−1∑
v=1

Δ(vβv)
v∑

r=1

rδk−1(uαr )k + O(1)mβm

m∑
v=1

vδk−1(uαv )k

= O(1)
m−1∑
v=1

|Δ(vβv)|Xv + O(1)mβmXm

= O(1)
m−1∑
v=1

v|Δβv|Xv + O(1)
m−1∑
v=1

|βv+1|Xv + O(1)mβmXm

= O(1) as m → ∞,

by virtue of the hypotheses of the Theorem and Lemma 2.



AN APPLICATION OF ALMOST INCREASING SEQUENCES 83

Finally, since |λn| = O(1) , by (9), we have that
m∑

n=1

nδk−1|Tα
n,2|k =

m∑
n=1

|λn|k−1|λn|nδk−1(uαn )k

= O(1)
m∑

n=1

|λn|nδk−1(uαn )k

= O(1)
m−1∑
n=1

Δ|λn|
n∑

v=1

vδk−1(uαv )k + O(1)|λm|
m∑

n=1

nδk−1(uαn )k

= O(1)
m−1∑
n=1

|Δλn|Xn + O(1)|λm|Xm

= O(1)
m−1∑
n=1

βnXn + O(1)|λm|Xm = O(1) as m → ∞,

by virtue of the hypotheses of the Theorem and Lemma 2. Therefore, we get that
m∑

n=1

1
n
|Tα

n,r|k = O(1) as m → ∞, for r = 1, 2.

This completes the proof of the Theorem.

REMARK. It should be noted that if we take α = 1 and δ = 0 in this theorem,
then we get Theorem A under weaker conditions. In fact, in this case the condition (12)
reduces to the condition (10), by (5) and (11).
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