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SOME INEQUALITIES AND EMBEDDINGS FOR WEIGHTED

W0 SPACES ON DOMAINS WITH FRACTAL BOUNDARIES

R. C. BROWN

Abstract. If Ω is a finite measure domain we show that several Poincaré, Hardy-type, or
multiplicative inequalities as well as classical Sobolev embedding theorems on Wm,p

0 (Ω) may
be extended to versions with singular or degenerate weights involving powers of the distance to
the boundary function provided that ∂Ω is “fractal" in the sense that ∂Ω has interior Minkowski
dimension ˜MD(∂Ω) < n . For unbounded non-finite measure domains such extensions may also
often be made if ∂Ω satisfies a certain definition of “locally fractal".
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RE F ER EN C ES

[1] R. A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975.
[2] C. J. AMICK, Some remarks on Rellich’s theorem and the Poincaré inequality, J. London Math. Soc.
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