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(communicated by D. Bainov)

Abstract. In this paper new general estimations of integral inequalities of Volterra’s type as some
special estimations based on the Bessel function are given.

1. Introduction

In several fundamental papers from the theory of differential and integral equations
(the existence of the unique solution, stability, etc) the well-known Bellman-Gronwall
lemma [1] or its generalizations play an important role. To these generalizations volu-
minous references are dedicated, among which we draw a special attention to paper [2].
Considering some classes of multidimensional integral or partial differential equations,
the multidimensional integral inequalities appear.

Let us consider, for instance, an n -dimensional integral equation of Volterra type
of the first order∫ x1

0
· · ·

∫ xn

0
K(x1, . . . , xn; s1, . . . , sn)ϕ(s1, . . . , sn)ds1 . . . dsn = f (x1, . . . , xn), (1)

(0 � xi � bi; 1 � i � n)

or in the operator form
Vϕ = f . (1’)

Let
K(x1, . . . , xn; s1, . . . , sn) ∈ C(n)

Ωn
, (2)

f (x1, . . . , xn) ∈ C(n)
Πn

, (3)

where

Ωn = {(x, s) | 0 � si � xi � bi, 1 � i � n},
Πn = {x | 0 � xi � bi; 1 � i � n}
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and
x = (x1, . . . , xn), s = (s1, . . . , sn).

From (2) we obtain

max
(x,s)∈Ωn

∣∣∣∂mK(x1, . . . , xn; s1, . . . , sn)
∂xi1 . . . ∂xim

∣∣∣ = αi1 . . . im < ∞, (4)

(1 � i1 < · · · < im � n, 1 � m � n)

max
x∈Πn

∣∣∣∂nf (x1, . . . , xn)
∂x1 . . . ∂xn

∣∣∣ = F < ∞. (5)

Let us assume subsequently that

min
x∈Πn

|K(x1, . . . , xn; x1, . . . , xn)| = k �= 0. (6)

By differentiating (1) with respect to x1, . . . , xn , we pass to the estimation by modulus
and taking into account (4) – (6), we get the inequality

Ψ � F
k

+ k−1
( ∑

1�i1�n

αi1Vi1Ψ +
∑

1�i1<i2�n

αi1i2Vi1i2Ψ + . . .

+
∑

1�i1<···<im�n

αi1... imVi1... imΨ + · · · + α12...nV12...nΨ
)
, (7)

where

Vi1...imΨ =
∫ xi1

0
...

∫ xim

0
Ψ(x1, ..., xi1−1, s1, xi1+1, ..., xim−1, sm, xim+1, ..., xn)ds1...dsm,

Ψ(x1, . . . , xn) = |ϕ(x1, . . . , xn)|.

The first part of inequality (7) contains n -ordinary integrals, C2
n - double etc, and hence

the general number of summands is 2n . Let us assume that using (7), the estimation of
the following inequality will be of form

Ψ � KF, K < ∞. (8)

Therefore it would be
‖ϕ‖CΠn

� K‖f ‖
C(n)
Πn

, (9)

and from (9) the correctness of equations (1) and (1’) stems in expression (CΠn , V, C(n)
Πn

)
and the estimation of

‖V−1‖
C(n)
Πn

→CΠn
� K. (10)

Vendorff [1] got some two-dimensional analogies of the Bellman - Gronwall inequality,
but in [3] a general approach of the obtaining of the estimation of the solution of integral
inequalities of Volterra’s type operators is proposed.
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If we use the results from [3], we will get the estimation of (10)

‖V−1‖
C(n)
Πn

→CΠn
� k−1 · exp

[ n∑
m=1

∑
1�i1<···<im�n

(αi1 . . . imk−1bi1 . . . bim)1/2
]2

. (11)

We wish to stress, that for the existence of the correctness of equation (1), it is sufficient
to get in (10) each constant k < ∞ , then when investigating the error problem by
numerical methods for solving (10) it is desirable to have a maximal accurate estimation
of the inverse operator norm. Further, the problemappears naturally to get the estimation
of the solution of inequality of type (7). Therefore, this problem has an interest of
its own. The goal of the present paper is the occurrence and obtaining of similar
assessments.

2. New estimations of two-dimensional inequalities

Further, without loss of generality, for the sake of simplicity we assume the norming
condition k = 1. By changing of “� ” by “= ” in (7), we consider the equation

η = F +
∑

1�i1�n

αi1Vi1η +
∑

1�i1<i2�n

αi1i2Vi1i2η + · · · + α12...nV12...nη. (12)

The solution η of equation (12) appears as an assessment of the solution of inequality
(7), i.e. Ψ � η . The search of the solution of equality (12) is based on the following
simple idea.

Let the following equation be given

ξ = F + Mξ + Lξ , (13)

where

Mξ = α1

∫ x1

0
ξ(s, x2)ds, Lξ = α2

∫ x2

0
ξ(x1, s)ds

and let the functions ε̂i = MiF , (i = 1, 2, . . . ) be found earlier.
If

ξ =
∞∑
k=0

(M + L)kF =
∞∑
k=0

k∑
i=0

Ci
kL

iMk−iF =
∞∑
k=0

k∑
i=0

Ci
kL

iε̂k−i,

then the search of the solution (13) reduces on the calculation of the function

εk =
k∑

i=0

Ci
kL

iε̂k−i. (14)

In the given paragraph we will illustrate the idea for solving (12) in the case when
n = 2 .

Let

η(x1, x2) = F + α1

∫ x1

0
η(s, x2)ds + α2

∫ x2

0
η(x1, s)ds + α12

∫ x1

0

∫ x2

0
η(s1, s2)ds1ds2.

(15)
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Let us assume at the beginning that α2 = α12 = 0 and let us consider the simple
equation

ξ = F + Mξ .

Obviously

MiF = F
(α1x1)i

i!
and

ξ(x1, x2) = F
∞∑
k=0

(α1x1)k

i!
= Feα1x1 .

Hence it follows that one-dimensionalestimation of Bellman–Gronwall for the adequate
inequality appears as unimproved.

Let α2 �= 0 , i.e.

ξ(x1, x2) = F + α1

∫ x1

0
ξ(s, x2)ds + α2

∫ x2

0
ξ(x1, s)ds. (16)

By putting

ε̂k−i = F
(α1x1)k−i

(k − i)!
,

we find εk with respect to the equation (14)

εk = F
k∑

i=0

Ci
k
(α1x1)k−i(α2x2)i

(k − i)!i!
= F

∑
i1+i2=k

k!(α1x1)i1(α2x2)i2

(i1!)2(i2!)2
. (17)

Besides,

ξ(x1, x2) = F
∞∑
k=0

∑
i1+i2=k

k!(α1x1)i1(α2x2)i2

(i1!)2(i2!)2
. (18)

However, the form (18) appears as an estimation of the inequality

Ψ(x1, x2) � F + α1

∫ x1

0
Ψ(s, x2)ds + α2

∫ x2

0
Ψ(x1, s)ds. (19)

For solving (15), the last step remains. Let us assume that ε̂k is equal to the right-hand
side of (17) and

Lη = α12

∫ x1

0

∫ x2

0
η(s1, s2)ds1ds2.

Then

Liε̂k−i = F
∑

i1+i2=k−i

(k − i)!(α1x1)i1(α2x2)i2(α12x1x2)i

(i1!)2(i2!)2Ai
i1+iA

i
i2+i

,

where

At
p =

p!
(p − t)!

.
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From (14) it yields

εk = F
k∑

i=0

∑
i1+i2=k−i

Ci
k(x − i)!(α1x1)i1(α2x2)i2(α12x1x2)i

(i1!)2(i2!)2Ai
i1+iA

i
i2+i

= F
∑

i1+i2+i12=k

k!(α1x1)i1(α2x2)i2(α12x1x2)i

i1!i2!i12!(i1 + i12)!(i2 + i12)!

and apart from that, the solution of the equation (15) is presented in the following form

η(x1, x2) = F
∞∑
k=0

∑
i1+i2+i12=k

k!(α1x1)i1(α2x2)i2(α12x1x2)i12

i1!i2!i12!(i1 + i12)!(i2 + i12)!
. (20)

Thereby the estimation of the above solution is given by

Ψ(x1, x2) � F+α1

∫ x1

0
Ψ(s, x2)ds+α2

∫ x2

0
Ψ(x1, s)ds+α12

∫ x1

0

∫ x2

0
Ψ(s1, s2)ds1ds2.

(21)
Now, we will present another way of getting the estimation of inequalities (19) and
(21). As we have seen this method yields to the possibility to assume (18) and (20) in
a more clear form. Differentiating (16) with respect to x1 and x2 , we pass from the
integral equation (16) to its equivalent problem of Goursa

ξ ′′
x1x2

= α1ξ ′
x2

+ α2ξ ′
x1
, (22)

ξ(x1, 0) = Feα1x1 , (23)
ξ(0, x2) = Feα2x2 . (24)

The standard substitution

ξ(x1, x2) = eα1x1+α2x2ζ(x1, x2),

regarding the function ζ(x1, x2) yields to the equation

ζ ′′
x1x2

= α1α2ζ , (22’)

with boundary conditions

ζ(x1, 0) = F, (23’)
ζ(0, x2) = F. (24’)

The generally known solution of the equation (22’) has the form

ζ(x1, x2) =
∫ x1

0
f 1(s)J0(2i

√
α1α2x2(x1 − s))ds

+
∫ x2

0
f 2(s)J0(2i

√
α1α2x2(x1 − s))ds + [f 1(0) + f 2(0)] · J0(2i

√
α1α2x1x2),
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where J0(z) is the Bessel function of the zero order, i -imaginary unit, and f 1 and f 2

are arbitrary functions of C(1) class. With reference to (23’) and (24’) we find that for
solving equation (22’), the following function appears

ζ(x1, x2) = J0(2i
√
α1α1x2),

such that
ξ(x1, x2) = Feα1x1+α2x2J0(2i

√
α1α2x1x2). (25)

We get the second form of the estimation of inequality (19).
If α12 �= 0 , instead of (22’) we have

ζ ′′
x1x2

= (α1α2 + α12)ζ ,

further, analogously to the previous that for the solution of (15) the following function
occurs

η(x1, x2) = Feα1x1+α2x2J0(2i
√

(α1α2 + α12)x1x2), (26)

yielding, the second presentation of (20) for the estimation of inequality (21).
Let us compare the obtained estimations with those given in references. As far as

inequality (19) is concerned, the following is known:
a) the estimation of Vendorff [1]

Ψ(x1, x2) � Feα1x1+α2x2+α1α2x1x2 (27)

b) the estimation from [3]

Ψ(x1, x2) � Fe2(α1x1+α2x2). (28)

All estimations (25), (27) and (28) contain the multiplier Feα1x1+α2x2 , further it
remains to compare the functions

J0(2i
√
α1α2x1x2), eα1α2x1x2 , e2

√
α1α2x1x2 , and eα1x1+α2x2 .

We will denote them respectively by Ψ1 , Ψ2 , Ψ3 and Ψ4 . Obviously, Ψ2 � Ψ3 if
α1α2x1x2 � 4 , and Ψ2 > Ψ3 if α1α2x1x2 > 4 . From the known inequality between
the geometric and arithmetic means of α1 , α2 , x1 , x2 , we obtain Ψ3 � Ψ4.

Since

J0(z) =
∞∑
k=0

(−1)kz2

22k(k!)2
,

Ψ1 = J0(2i
√
α1α2x1x2) =

∞∑
k=0

(α1α2x1x2)k

(k!)2
,

and developing Ψ2 and Ψ3 into the Taylor series, it is easily seen that for each α1 ,
α2 , x1 , x2

Ψ1 � minΨi, (i = 2, 3, 4).

The minimality Ψ1 is a natural consequence of (25). Analogously, we can verify that
(26) decreases the estimations from [3] obtained for inequality (21).
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3. New estimations of three-dimensional
and n -dimensional inequalities

Let n = 3 in (12). Let us assume (12) into a developed form

η(x1, x2, x3)=F+α1

∫ x1

0
η(s, x2, x3)ds+α2

∫ x1

0
η(x1, s, x3)ds+α3

∫ x3

0
η(x1, x2, s)ds

+α12

∫ x1

0

∫ x2

0
η(s1, s2, x3)ds1ds2 + α13

∫ x1

0

∫ x3

0
η(s1, x2, s2)ds1ds2

+α23

∫ x2

0

∫ x3

0
η(x1, s1, s2)ds1ds2 + α123

∫ x1

0

∫ x2

0

∫ x3

0
η(s1, s2, s3)ds1ds2ds3. (29)

If all coefficients, except α1 , α2 and α12 , in (29) are equal to zero, the solution
of (29) overlaps with already found solution to equality (15), determined by formula
(20). Further, in accordance with the general idea, exposed in the previous section, the
solution of equation (29) reduces to four subproblems.

Let t be the number of subproblems. For (14) a series of calculations is determined
by means of the formula

ε
(t)
k

k∑
i=0

Ci
kL

i
t ε̂

(t−1)
k−1 , (t = 1, 2, 3, 4) (30)

ε̂
(t)
k = ε

(t)
k , (t = 1, 2, 3)

where

ε̂
(0)
k = F

∑
i1+i2+i12=k

k!(α1x1)i1(α2x2)i2(α12x1x2)i12

i1!i2!i12!(i1 + i12)!(i2 + i12)!
,

and Lt be the integral operator, completed accordingly, accepting a series into a sub-
problem t.

Let us take, for example, a natural order where the integral operators are written in
(29) and the technique of obtaining function εk , by formula (14), which is considered
in detail in the previous section by conclusion (20), we find the final formulas for ε

(t)
k ,

(t = 1, 2, 3, 4)

ε
(1)
k = F

∑
i1+i2+i3+i12=k

k!(α1x1)i1(α2x2)i2(α3x3)i3

i1!i2!i12!(i1 + i12)!(i2 + i12)!
(α12x1x2)i12 ,

ε
(2)
k = F

∑
i1+i2+i3+i12+i13=k

k!(α1x1)i1(α2x2)i2(α3x3)i3

i1!i2!i3!

× (α12x1x2)i12(α13x1x3)i3

i12!i13!(i1 + i12 + i13)!(i2 + i12)!(i3 + i13)!
,

ε
(3)
k = F

∑
i1+i2+i3+i12+i13+i23=k

k!(α1x1)i1(α2x2)i2

i1!i2!i3!
(31)

× (α3x3)i3(α12x1x2)i12(α13x1x3)i3(α23x2x3)i23

i12!i13!i23!(i1 + i12 + i13)!(i2 + i12 + i23)!(i3 + i13 + i23)!
,
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ε
(4)
k = F

∑
i1+i2+i3+i12+i13+i23+i123=k

k!(α1x1)i1(α2x2)i2

i1!i2!i3!

× (α3x3)i3(α12x1x2)i12(α13x1x3)i13(α23x2x3)i23(α123x1x2x3)i123

i12!i13!i23!i123!(i1 + i12 + i13 + i123)!(i2 + i12 + i23 + i123)!(i3 + i13 + i23 + i123)!
.

Thereby the solution of equation (29) was found in the form

η(x1, x2, x3) =
∞∑
k=0

ε
(4)
k , (32)

where ε
(4)
k is determined by formula (31).

From (31) and (32) it is obviously possible to get the solution to each arbitrary
equation of the form (29), occurring as an estimation of adequate integral inequalities.

At the and we can find the solution of equation (12) with respect to arbitrary n.
Then we consider 23 + 24 + · · ·+ 2n−1 of the subproblem in the form (30), and we get

η(x1, . . . , xn) = F
∞∑
k=0

∑
i1+···+i12...n=k

k!
i1! . . . in!

× (α1x1)i1 . . . (αnxn)in(α12x1x2)i12 . . . (αn−1,nxn−1xn)in−1,n . . . (α12...nx1x2 . . . xn)i12...n

i12! . . . in−1,n! . . . i12...n!β1!β2! . . .βn! (33)

where

β1 = i1 + i12 + · · · + i1n + i123 + · · · + i1,n−1,n + · · · + i12...n,

β2 = i2 + i12 + · · · + i2n + i123 + · · · + i2,n−1,n + · · · + i12...n,

...

βn = in + i1n + · · · + in−1,n + i12n + · · · + in−2,n−1,n + · · · + i12...n.

(34)

So, the problem of obtaining the estimation of the solution of inequality (7) is solved.
In the previous paragraph for the case n = 2 , another form is given for representing

the estimation, which, evidently, has a better form. However, even at n = 3 we have a
similar representation, with exception of some cases which do not have their place.

In the next paragraph we will consider these cases.

4. New estimations of special cases

Let all coefficients except α1 , α2 , α3 in (29) be equal to zero, i.e. let us consider
the equation
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ξ(x1, x2, x3) = F+α1

∫ x1

0
ξ(s, x2, x3)ds+α2

∫ x2

0
ξ(x1, s, x3)ds+α3

∫ x3

0
ξ(x1, x2, s)ds.

(35)
Then from (31) it follows

ξ(x1, x2, x3) = F
∞∑
k=0

∑
i1+i2+i3=k

k!(α1x1)i1(α2x2)i2(α3x3)i3

(i1!)2(i2!)2(i3!)2
. (36)

Again, as in two-dimensional cases we pass from (35) to a partial differential equation.
We differentiate equation (35) with respect to x1 , x2 , x3 and we get

ξ ′′′
x1x2x3

= α1ξ ′′
x2x3

+ α2ξ ′′
x1x3

+ α3ξ ′′
x1x2

. (37)

The limiting conditions taking into account (25) have the form

ξ(x1, x2, 0) = Feα1x1+α2x2J0(2i
√
α1α2x1x2),

ξ(x1, 0, x3) = Feα1x1+α3x3J0(2i
√
α1α3x1x3),

ξ(0, x2, x3) = Feα2x2+α3x3J0(2i
√
α2α3x2x3).

(38)

Obviously, problems (35), (37) and (38) are equivalent. Again we will apply the
substitution

ξ(x1, x2, x3) = eα1x1+α2x2+α3x3ζ(x1, x2, x3). (39)

Then whatever regards till η(x1, x2, x3) we have

ζ ′′′
x1x2x3

= 2α1α2α3ζ + α2α3ζ ′
x1

+ α1α3ζ ′
x2

+ α1α2ζ ′
x3
, (40)

ζ(x1, x2, 0) = FJ0(2i
√
α1α2x1x2),

ζ(x1, 0, x3) = FJ0(2i
√
α1α3x1x3),

ζ(0, x2, x3) = FJ0(2i
√
α2α3x2x3).

(41)

Problems (40) and (41) are equivalent with the integral of the equation

ζ(x1, x2, x3) = F + α1α2

∫ x1

0

∫ x2

0
ζ(·)ds1ds2 + α1α3

∫ x1

0

∫ x3

0
ζ(·)ds1ds2

+α2α3

∫ x2

0

∫ x3

0
ζ(·)ds1ds2 + 2α1α2α3

∫ x1

0

∫ x2

0

∫ x3

0
ζ(·)ds1ds2ds3, (42)

whose solution could be written in accordance with (31) and (32), and thereby the
second representation to (36) with condition (39) is obtained

ξ(x1, x2, x3) = Feα1x1+α2x2+α3x3

×
∞∑
k=0

∑
i1+i2+i3=k

k!(α1α2x1x2)i1(α1α3x1x3)i2(α2α3x2x3)i3(2α1α2α3x1x2x3)i4

i1!i2!i3!i4!(i1 + i2 + i4)!(i1 + i3 + i4)!(i2 + i3 + i4)!
. (43)
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If we separate the exponents from (36) we arrive at the occurrence of the series with
complex structure. Instead of (38) it is natural to assume that this series contains the
product of the Bessel functions.

We will calculate these problems in detail. That is why we will consider at the
beginning of (42) a simple equation

ζ̂(x1, x2, x3) = F + γ12

∫ x1

0

∫ x2

0
ζ̂(·)ds1ds2 + γ13

∫ x1

0

∫ x3

0
ζ̂(·)ds1ds2. (44)

Applying the general scheme we get

ζ̂(x1, x2, x3) = F
∞∑
k=0

∑
i1+i2=k

(γ12x1x2)i1(γ13x1x3)i2

(i1!)2(i2!)2
= FJ0(2i

√
γ12x1x2)J0(2i

√
γ13x1x3).

In general, for each n in the solution of the integral equation

ζ̂(x1, . . . , xk, . . . , xn) = F +
∑

1�j�n,j�=k

γjk
∫ xi

0

∫ xk

0
ζ̂(·)ds1ds2 (45)

the following function appears

ζ̂(x1, . . . , xn) = F
∏

1�j�n,j�=k

J0(2i
√
γjkxjxk), (46)

i.e. (46) is the estimation for inequality, obtained from (45) with the substitution " = "
by " � " . We stress, that each of the operators in (45) involves the integration with
respect to xk .

At present we will give another form to equation (44)

ζ̂(x1, x2, x3) = F + γ12

∫ x1

0

∫ x2

0
ζ̂(·)ds1ds2

+γ13

∫ x1

0

∫ x3

0
ζ̂(·)ds1ds2 + γ23

∫ x2

0

∫ x3

0
ζ̂(·)ds1ds2. (47)

We prove that the solution (47) majorities the product of three Bessel’s functions

ζ̂(x1, x2, x3) � FJ0(2i
√
γ12x1x2)J0(2i

√
γ13x1x3)J0(2i

√
γ23x2x3) = B(x1, x2, x3). (48)

The general scheme yields to

ζ̂(x1, x2, x3) = F
∞∑
k=0

∑
i1+i2+i3=k

k!(γ12x1x2)i1(γ13x1x3)i2(γ23x2x3)i3

i1!i2!i3!(i1 + i2)!(i1 + i3)!(i2 + i3)!
. (49)

On the other hand

B(x1, x2, x3) = F
∞∑
k=0

∑
i1+i2+i3=k

k!(γ12x1x2)i1(γ13x1x3)i2(γ23x2x3)i3

(i1!)2(i2!)2(i3!)2(i1 + i2 + i3)!
. (50)
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From (49) and (50), it is indispensable to confirm that

(i1 + i2)!(i1 + i3)!(i2 + i3)! � i1!i2!i3!(i1 + i2 + i3)!. (51)

Also it can be shown that (51) is equivalent to the inequality

Ci3
i1+i3C

i3
i2+i3 � Ci3

k , k = i1 + i2 + i3. (52)

Inequality (52) will be proven, if we show that

Cj
j+pC

j
k−p � Cj

k, (0 � p � k − j). (53)

Now we will give the proof of inequality (53).
Let us denote

f (p) = Cj
j+pC

j
k−p, (0 � p � k − j).

We will show that
ln f (p) � lnCj

k, (0 � p � k − j) (54)

and hence (53) will follow.
Since

Cj
j+p =

1
j!

j−1∏
i=0

(j + p − i), Cj
k−p =

1
j!

j−1∏
i=0

(k − p − i),

ln f (p) =
j−1∑
i=0

ln(j + p − i) +
j−1∑
i=0

ln(k − p − i) − 2 ln(j!),

it follows

(ln f (p))′′ = −
j−1∑
i=0

1
(j + p − i)2

−
j−1∑
i=0

1
(k − p − i)2

< 0,

i.e. the function ln f (p) is convex for 0 � p � k − j .
From

min
0�p�k−j

[ln f (p)] = min[ln f (0), ln f (k − j)] = lnCj
k,

which proves (54). Thereby the validity on (48) is proven. Now we can return to the
equation (42), which is different from (47) with the presence of the triple integral.

By means of techniques analogous to those applied above, we obtain that

ζ(x1, x2, x3) � FJ0(2i
√
α1α2x1x2)J0(2i

√
α1α3x1x3)

×J0(2i
√
α2α3x2x3)

∞∑
k=0

(2α1α2α3x1x2x3)k

(k!)3
. (55)

Let us denote the first part of (56) (without multiplier F) by B1(α1x1;α2x2;α3x3) .
From (39) for solving of the equation (35) ξ(x1, x2, x3) the estimation is obtained

ξ(x1, x2, x3) � Feα1x1+α2x2+α3x3B1(α1x1;α2x2;α3x3). (56)



154 ICE B. RISTESKI AND KOSTADIN G. TRENČEVSKI

If one of the coefficients αi , (i = 1, 2, 3) in (35) is equal to zero, then (56) yields to
the estimation obtained in section 1.

Using the property for addition of numbers, it is possible on the basis of the general
scheme to get the majored estimation, similar to (56) for each n -dimensional equation
of type (12).

We bring into the conclusion such an estimation for solving equation (29).
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