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COMPUTING THE FIXED–POINTS OF GENERAL

MIXED VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR

Abstract. In this paper, we suggest and analyze a class of predictor-corrector methods for comput-
ing the fixed-points of general mixed variational inequalities. The convergence of the proposed
methods only requires the partially relaxed strongly monotonicity of the operator, which is weaker
than co-coercivity. As special cases, we obtain a number of known and new results for solving
various classes of variational inequalities and related problems.
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[4] R. GLOWINSKI, J. L. LIONS AND R. TRÉMOLIÈRES, Numerical Analysis of Variational Inequalities,
North–Holland, Amsterdam, 1981.

[5] J. L. LIONS AND G. STAMPACCHIA, Variational inequalities, Comm. Pure Appl. Math. 20 (1967),
493–512.

[6] Z. NANIEWICZ AND P. D. PANAGIOTOPOULOS, Mathematical Theory of Hemivariational Inequalities and
Applications, Marcel Dekker, New York, 1995.

[7] M. ASLAM NOOR, A class of new iterative methods for general mixed variational inequalities, Math.
Computer Modelling, 31 (2000), 11–19.

[8] M. ASLAM NOOR, Algorithms for general monotone mixed variational inequalities, J. Math. Anal. Appl.
229 (1999), 330–343.

[9] M. ASLAM NOOR, General variational inequalities, Appl. Math. Letters 1 (1988), 119–121.
[10] M. ASLAM NOOR, Wiener–Hopf equations and variational inequalities, J. Optim. Theory Appl. 79

(1993), 197–206.
[11] M. ASLAM NOOR, An extraresolvent method for monotone mixed variational inequalities, Math.

Computer Modelling 29 (1999), 95-100.
[12] M. ASLAM NOOR, Some recent advances in variational inequalities, Part I, basic concepts, New Zealand

J. Math. 26 (1997), 53-80.
[13] M. ASLAM NOOR, Some recent advances in variational inequalities, Part II, other concepts, New

Zealand J. Math. 26 (1997), 229–255.
[14] M. ASLAM NOOR, Some algorithms for general monotone mixed variational inequalities, Math.

Computer Modelling 29 (7) (1999), 1–9.
[15] M. ASLAM NOOR, A new predictor–corrector method for noncoercive mixed variational inequalities,

Korean J. Comput. Appl. Math. 7 (2) (2000), 363–371.



[16] G. STAMPACCHIA, Formes bilineaires coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris,
258 (1964), 4413–4416.

[17] P. TSENG, A modified forward–backward splitting method for maximal monotone mappings, SIAM J.
Control Optim. 38 (2000), 431–446.

[18] D. L. ZHU AND P. MARCOTTE, An extended descent framework for variational inequalities, J. Optim.
Theory Appl. 80 (1994), 349–366.

c© � � , Zagreb
Paper MIA-05-16

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


