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COMPUTING THE FIXED-POINTS OF GENERAL
MIXED VARIATIONAL INEQUALITIES
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(communicated by Th. Rassias)

Abstract. Inthis paper, we suggest and analyze a class of predictor-corrector methods for comput-
ing the fixed-points of general mixed variational inequalities. The convergence of the proposed
methods only requires the partially relaxed strongly monotonicity of the operator, which is weaker
than co-coercivity. As special cases, we obtain a number of known and new results for solving
various classes of variational inequalities and related problems.

1. Introduction

In recent years, variational inequalities have been generalized and extended in
many different directions using novel and innovative technique to study a wide class
of problem in pure and applied sciences. An important and useful generalization of
variational inequalities is called the mixed variational inequality (or the variational
inequality of the second kind) involving the nonlinear term. Such type of variational
inequalities arise as a result of minization of the extremal mappings describing the
equilibrium problems in economics and engineering sciences. For the applications and
numerical methods, see [1-18] and the references therein. Due to the presence of the
nonlinear term, projection method and its variant forms, Wiener-Hopf equations, descent
methods cannot be extended and modified to suggest iterative methods for solving the
mixed variational inequalities.

If the nonlinear term involving the general mixed variational inequalities is a
proper, convex and lower-semicontinuous, then it has been shown that the general mixed
variational inequalities are equivalent to the fixed point and resolvent equations. These
alternative formulations have been used to develop a number of iterative type methods
for solving mixed variational inequalities. In this approach, one has to evaluate the
resolvent operator, which is itself a difficult problem. To overcome this drawback, the
auxiliary principle technique has been developed, the origin of which can be traced back
to Lions and Stampacchia [5]. In recent years, this technique has been used to suggest and
analyze various iterative methods for solving various classes of variational inequalities.
It can be shown that a several numerical methods including the projection, extragragient,

Mathematics subject classification (2000): 49J40, 90C33.

Key words and phrases: Variational inequalities, auxiliary principle, iterative methods, convergence,
fixed points.

© ey, Zagreb 155

Paper MIA-05-16



156 MUHAMMAD ASLAM NOOR

and Newton, can be obtained as special cases from this technique, see [4, 7-15, 17,18]
and references therein. In this paper, we again use the auxiliary principle to suggest a
class of predictor-corrector methods for solving general mixed variational inequalities.
The convergence of these methods requires only that the operator is partially relaxed
strongly monotone, which is weaker than co-coercive. Consequently, we improve the
convergence results of previously known methods, which can be obtained as special
cases from our results. Our results can be considered an extension of the results of Noor
[7] for solving general variational inequalities and complementarity problems.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by
< +,- > and ||.|| respectively. Let K be a nonempty closed convex set in H. Let
¢ : H— RU{+0c0} be a nondifferentiable nonlinear function.

For given nonlinear operators N(.,.) : Hx H — H and g : H — H, consider
the problem of finding u € H such that

(N(u,u),g(v) — g(u)) +@(g(v)) —@(g(u)) >0,  forall g(v) € Hn. (2.1)

The inequality of type (2.1) is called the general mixed variational inequality or the
general variational inequality of the second kind. If the function ¢ is proper, convex
and lower-semicontinuous, then problem (2.1) is equivalent to finding u € H such that

0€ N(u,u) + 0p(g(u)), (2.2)

where 0@ is the subdifferential, which is a maximal monotone operator. It can be
shown that a wide class of linear and nonlinear equilibrium problems arising in pure

and applied sciences can be studied via the general mixed variational inequalities (2.1)
and (2.2).

EXAMPLE 2.1. For simplicity and to convey an idea of applications of the general
mixed variational inequalities (2.1), we consider the problem of computing a fixed-point
of the extremal inclusion

u € argmin { F(u,v) + ¢(g(n)) : g(v) € H}, (2.3)

where the function F(u, v) is defined on the product space H x H ,. If F(u,v) is convex
with respect to v for every u € H, then it can be shown that the minimum u of the
extremal mapping defined by (2.3) can be characterized by a class of mixed variational
inequalities of the type

(Fuo(u,u),8(v) — g(u)) + o(g(v)) — ¢(g(u)), forall g(v) € H, (2.4)

where F,(u,v) is the differential of F(u,v) with respect to v. It has been shown in
[1] that the quadratic and inverse parametric linear programming equilibrium problems

arising in economics and engineering sciences can be reformulated in term of (2.3) and
(24).
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Special Cases

We remark that if g = I, the identity operator, then problem (2.1) is equivalent to
finding u € H such that

(N(@u,u),v—u) + o) —@(u) >0, forall ve H, (2.5)

which are called the mixed variational inequalities.
We note that if ¢ is the indicator function of a closed convex set K in H, that is,

B B 0, ifuek
o(u) = Ix(u) = { 400, otherwise,

then problem (2.1) is equivalent to finding u € H, g(u) € K such that
(N(w,u),g(v) — g) >0,  forall g(v) € K. (2.6)

The inequality of the type (2.6) is known as the general variational inequality. For
N(u,u) = Tu, Problem (2.6) was introduced and studied by Noor [9] in 1988. It turned
out that the odd-order and nonsymmetric free, unilateral, obstacle and equilibrium
problems can be studied by the general variational inequality, see [9, 10, 12, 13].

If K*={ueH:(u,v) >0,forall ve K} isapolar cone of a convex cone K
in H and g is onto K, then problem (2.6) is equivalent to finding u € H such that

gu) €K, TueK*,and (N(u,u),g(u)) =0, (2.7)

which is known as the general complementarity problem. We note that if g(u) =
u — m(u), where m is a point -to-point mapping, then problem(2.7) is called the
quasi(implicit) complementarity problem. For g = I, problem (2.7) is known as the
generalized complementarity problem. For the formulation and numerical methods of
complementarity problems, see [2, 3, 6, 12, 13].

For g = I, the identity operator, problem (2.6) collapses to: find u € K such that

(N(u,u),v —u) >0, forall ve K, (2.8)

which is called the standard variational inequality. For the recent state-of-the art, see
[1-18].

It is clear that problems (2.4)—(2.8) are special cases of the general mixed varia-
tional inequality (2.1). In brief, for a suitable and appropriate choice of the operators
N(.,.), g, ¢ and the space H, on can obtain a wide class of variational inequalities
and complementarity problems. This clearly shows that problem (2.1) is quite general
and unifying one. Furthermore, problem (2.1) has important applications in various
branches of pure and applied sciences.

We also need the following concepts.

LEMMA 2.3. Forall u,v € H, we have

2(u,v) = [lu+v[* = |lull® — [Iv]* (2.9)

Proof. Tt is trivial.
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DEFINITION 2.1. For all u,v,z € H, an operator N(.,.) : H x H — H is said to
be:

(i) g-partially relaxed strongly monotone, if there exists a constant o > 0
such that

(N(u,u) = N(v,v),8(z) — g(v)) > —allg(u) — g(2)|I*

(ii) g-co-coercive, if there exists a constant ¢ > 0 such that
(N(u,u) = N(v,v),g(u) = g(v)) = ulIN(u,u) = N(v,v)|]*.

We remark that if z = u, then g -partially relaxed strongly monotonicity is exactly
g -monotonicity of the operator N(.,.). For N(u,u) = Tu, Definition 2.1 reduces to the
standard definition of g-partially relaxed strongly monotonicity, and g -co-coercivity
of the operator, see Noor [7]. Using the technique of Noor [7], it can be shown that
g -co-coercivity implies g -partially relaxed strongly monotonicity. This shows that
partially relaxed strongly monotonicity is a weaker condition than co-coercivity.

3. Main Results

In this section, we suggest and analyze a new iterative method for solving the
problem (2.1) by using the auxiliary principle technique of Glowinski, Lions and
Tremolieres [4] as developed by Noor [9, 12, 13, 15].

For a given u € H such that g(u) € H, consider the problem of finding a unique
w € H such g(w) € H satisfying the auxiliary variational inequality

(PN (u,u) + g(w) — g(u), g(v) —g(w)) +p@(g(v)) — pp(g(u)) 2 0, forallveH,

(3.1)
where p > 0 is a constant.
We note that if w = u, then clearly w is a solution of the general mixed variational
inequality (2.1). This observation enables us to suggest the following iterative method
for solving the general mixed variational inequalities (2.1).

ALGORITHM 3.1. For a given uy € H, compute the approximate solution u,; by
the iterative scheme

(ON(Wn, wn) + g(uns1) — 8(un),8(v) — g(un+1)) + pp(g(v)) — pP((un+1)) = 0,
forallve H (3.2)
and
(BN (un, un) + g(wn) — 8(un),8(v) — g(wn)) + Bo(g(v)) — Bo(g(wa)) =0,
forallv € H, (3.3)

where p > 0 and 3 > 0 are constants.
Note that if g = I, the identity operator, then Algorithm 3.1 reduces to:
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ALGORITHM 3.2. For a given uy € H, compute u,; by the iterative scheme
(PN (Wuy Wn) + U1 — Wy, Vv — ttyi1) + pO(v) — p@(up1) =0, forall ve H,
and
(BN (tn, un) + Wn — g, v —wy) + Bo(v) — Bo(w,) >0, forallve H.

If @ is a proper, convex and lower-semicontinuous function, then Algorithm 3.1 col-
lapses to:

ALGORITHM 3.3. For a given uy € H, compute u,; by the iterative scheme
8lunt1) =Jolg(wn) — PN (Wn, wa)],
g(wy) =Jolg(un) — BN(up,uy)], n=0,1,2...

where J,, is the resolvent operator associated with the maximal monotone operator J¢ .

If the function ¢ is the indicator function of a closed convex set K in H , then Al-
gorithm 3.1 reduces to the following method for solving general variational inequalities
(2.6) and complementarity problems (2.7).

ALGORITHM 3.4. For a given uy € H such that g(up) € K, compute u,,; by the
iterative schemes

(PN (W, Wn) + g(n1) — 8(wn), 8(v) — g(uns1)) >0, forall g(v) € K

and

(BN (tn; un) + g(wn) — 8(un), 8(v) = g(wa)) >0, forall g(v) € K.

For a suitable choice of the operators N(., .), g and the space H , one can obtain various
new and known methods for solving variational inequalities.

For the convergence analysis of Algorithm 3.1, we need the following result, which
is proved by using the techniques of Noor [7].

LEMMA 3.1. Let u € H be the exact solution of (2.1) and u,, be the approximate
solution obtained from Algorithm 3.1. If the operator N(.,.) : Hx H — H is g-
partially relaxed strongly monotone operator with constant o. > 0, then

g (uns1) — g(@)| > < llg(un) — 8@ = (1 = 2pa)||g(ns1) — gw)|*.  (34)
Proof. Let it € H be solution of (2.1). Then
(pN(a,u)g(v) — g(@)) +po(g(v)) — pp(g(w)) >0, forallveH,  (3.5)
and
(BN (), g(v) — g(@)) + Bo(g(v)) — Bo(g(@)) >0, forallveH,  (3.6)

where p > 0 and 3 > 0 are constants.
Now taking v = u, 4, in (3.5) and v = in (3.2), we have

(PN (i, ), g (tns1) — g(#)) + pP(g(unt1)) — pp(g()) =0 (3.7)
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and

(PN (W, W) +8 (tn+1) — 8 (un), 8(1t) = 8 (tn41)) +pP(g(it)) — pp(g(un11)) = 0. (3.8)
Adding (3.7) and (3.8), we have
P{N(Wn, wy) — N(it, it), g (un+1) — g(it))

- apHg(unJrl) - g(wn)|‘27 (39)

where we have used the fact that N(.,.) is g-partially relaxed strongly monotone with
constant ¢« > 0.
Setting u = g(&t) — g(un+1) and v = g(upt1) — g(uy) in (2.9), we obtain

(g(unt1) — g(un), g(t) — g(un+1)) >
=

(gluni1) — glun), ¢(0) = 8Cun:1)) =548 = gn)|* ~ 1g(a) — (w1

~[lg(tns1) — gun)|*}- (3.10)
Combining (3.9) and (3.10), we have

18(1tas1) — 8@ < llg(un) — @I — (1 = 2ap)lIg(tns1) — gwa) > (3.11)

Taking v = in (3.3) and v = w, in (3.6), we have

(BN (i, i), g(Wa) — g(0)) + Bp(g(wn)) — Bo(g(i)) >0 (3.12)

and

<ﬁN(un7 un) + g(wn) - g(un)ug(’z) - g(wn)> + ﬁ(p(g(ﬁ)) - B(p(g(wn)) > 0. (313)
Adding (3.12) and (3.13) and rearranging the terms, we have

(&(wn) — &(un), () — g(Wn)) ZB(N(un,un) — N, 12), g(wn) — (&)
> — Ballg(ua) — g(wa)l, (3.14)
since N(.,.) is g-partially relaxed strongly monotone operator with constant o > 0.
Now taking v = g(wy,) — g(u,) and u = g(&r) — g(w,) in (2.9), (3.14) can be
written as
(@) — g(wn)|* <[lg(@) — gun)|* = (1 = 2Bor)]|g(un) — g(wa)lI®
<||g(@)) — g(u,)||>, for0 < B < 1/2a. (3.15)
Consider
17 =18 (tnr1) — g(un) + g(un) — g(wa)ll*
=18 (utns1) — (un)l* + g (un) — g(wa)|[®
+2(g(uns1) — 8(un), &(un) — g(w)) - (3.16)

Combining (3.11), (3.15) and (3.16), we obtain

|lg(ttns1) — g(wn)

18 (uns1) = g@)1* < llg(ua) — g@)[1* = (1 = 2pa)llg (1) — g(ua)ll,

the required result. [J
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THEOREM 3.1. Let g : H — H be invertible and 0 < p < ﬁ Let u,| be the
approximate solution obtained from Algorithm 3.1 and u € H be the exact solution of
(2.1), then lim,_, o u, = u.

Proof. Let it € H be a solution of (2.1). Since 0 < p < --. From (3.4) it

follows that the sequence {||g(it) — g(u,)||} is nonincreasing and consequently {u,}
is bounded. Furthermore, we have

oo

> (1= 20p)|[g(uni1) — glun)lI* < llg(uo) — g(@)]?,
n=0

which implies that
i [[g(uni1) — ()| = 0. (3.17)

Let & be the cluster point of {u,} and the subsequence {u,} of the sequence {u,}
convergeto it € H. Replacing w,, by uy, in (3.2) and (3.3), taking the limit n; — oo
and using (3.17), we have

(N(@,a),8(v) — g(@) +o(g(v)) — @(g(@)) >0, forallveH,

which implies that # solves the general mixed variational inequality (2.1) and

g (unet) — g@|* < llg(aea) — g(@)]*.

Thus it follows from the above inequality that the sequence {u, } has exactly one cluster
point & and
lim g(u,) = g(@).

n—o0o
Since g is invertible, so
lim (u,) = i,

n—oo

the required result. [J
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