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GENERAL AUXILIARY PROBLEM PRINCIPLE

AND SOLVABILITY OF A CLASS OF NONLINEAR

MIXED VARIATIONAL INEQUALITIES INVOLVING

PARTIALLY RELAXED MONOTONE MAPPINGS

THEMISTOCLES M. RASSIAS AND RAM U. VERMA

Abstract. The approximation–solvability of the following class of nonlinear variational inequality
(NVI) problems based on a new general auxiliary problem principle is presented: Find an element
x∗ ∈ K such that

〈 T(x∗), x − x∗〉 + f (x) − f (x∗) � 0 for all x ∈ K,

where T : K → H is a partially relaxed monotone mapping from a nonempty closed convex
subset K of a real Hilbert space H into H , and f : K → R is a continuous convex function
on K . The general auxiliary problem principle is described as follows: for given iterate xk ∈ K
and for a constant ρ > 0 , determine xk+1 such that (for k � 0 )

〈 ρT(xk) + ρL(xk+1) + h′(xk+1) − ρL(xk) − h′(xk), x − xk+1〉 + ρ[f (x) − f (xk+1)] � 0

for all x ∈ K , where L : K → H is any mapping on K , h : K → R is a function on K and h′
is the derivative of h .
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