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SOME NEW INEQUALITIES FOR MOTZKIN NUMBERS
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Abstract. We prove some inequalities which follow from the log-convexity of the sequence of
Motzkin numbers Mn and from the log-concavity of the sequence Mn

n! .

1. Introduction

The Motzkin numbers Mn were introduced for the first time in [5], as the number of
ways of selecting n points on a circle either singly or in pairs connected by non-crossing
chords. Since then, many other combinatorial families counted by the same numbers
have been found. In his recent book [6] Stanley lists some fifteen examples, relying
mostly on the survey article [3]. The most popular objects enumerated by the Motzkin
sequence are lattice paths from (0, 0) to (n, 0) with steps (1, 1), (1,−1) and (1, 0)
never falling below the x -axis. The n -th Motzkin number, Mn , is the number of such
paths with exactly n steps.

The property of log-convexity of the Motzkin sequence was first established al-
gebraically in [1]. A combinatorial proof appeared little bit later [2], and recently two
elementary proofs, based on simple “calculus” concepts were given ([4], [7]). In this
paper we prove some inequalities for the Motzkin numbers which are consequences of
their log-convexity.

For convenience of the reader, we list here the first few members of the Motzkin
sequence:

n 0 1 2 3 4 5 6 7 8 9
Mn 1 1 2 4 9 21 51 127 323 835

2. The sequence
Mn

n!
.

DEFINITION. A sequence (an)n�0 of positive numbers is logarithmically convex
(or log-convex for short) if a2

n � an−1an+1 , for all n � 1 . If the opposite inequality,
a2

n � an−1an+1 holds for all n � 1 , the sequence (an)n�0 is called log-concave.
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The property of log-convexity is equivalent with the condition that the sequence
xn = an

an−1
is non-decreasing for all n � 1 . Similarly, the log-concavity of the sequence

(an)n�0 is equivalent with non-increasing behavior of the sequence an
an−1

.

PROPOSITION 1. The sequence an = Mn
n! is log-concave, for all n � 0 .

Proof. The Motzkin numbers satisfy the following two-term recursion [4]:

Mn+1 =
2n + 3
n + 3

Mn +
3n

n + 3
Mn−1.

Dividing this relation by Mn and denoting Mn
Mn−1

by xn,we get a recursion for the

sequence (xn)n�1 :

xn+1 =
2n + 3
n + 3

+
3n

n + 3
1
xn

.

From the log-convexity of the sequence Mn we know that the sequence xn is non-
decreasing. It is easy to see that the log-concavity of the sequence Mn

n! is equivalent
with the condition

xn+1 � n + 1
n

xn,

for all n � 1 . But,

xn+1 =
2n + 3
n + 3

+
3n

n + 3
1
xn

� 2n + 3
n + 3

+
3n

n + 3
1

xn−1

=
n + 2
n + 3

n
n − 1

[
(2n + 3)(n − 1)

n(2n + 1)
2n + 1
n + 2

+
3(n − 1)
n + 2

1
xn−1

]
.

The term (2n+3)(n−1)
n(2n+1) is clearly less than one for all n � 1 , and the inequality

n + 2
n + 3

n
n − 1

� n + 1
n

is valid for all n � 3 . Hence we get

xn+1 � n + 1
n

xn,

for all n � 3 . The validity of inequality
(

Mn

n!

)2

� Mn−1

(n − 1)!
Mn+1

(n + 1)!

for 1 � n � 3 can be easily checked, and the claim follows. �

3. Consequences

The following two double inequalities follow now from log-convexity of Motzkin
numbers and Proposition 1.
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COROLLARY 2. M2
n � Mn−1Mn+1 �

(
1 + 1

n

)
M2

n , for all n � 1 .

COROLLARY 3. MnMm � Mm+n �
(m+n

n

)
MnMm, for all n � 1 .

Proof. A simple combinatorial proof of the left inequality follows from the fact
that concatenation of two Motzkin paths of lengths m and n, respectively, gives a valid
Motzkin path of length m + n .

To prove the right inequality, start from xn � n
n+1xn+1 . By using this inequality

repeatedly, we get

M1

M0
� 1

2
M2

M1
� 1

3
M3

M2
� ... � 1

m + n
Mm+n

Mm+n−1
,

for all n � 0 , m � 1 .
Hence, for any 0 � j � m − 1, we have

Mj+1

Mj
� j + 1

m + n
Mm+n

Mm+n−1
.

From this we get

M1

M0

M2

M1

M3

M2
...

Mm

Mm−1
�

(
1

n + 1
Mn+1

Mn

) (
2

n + 2
Mn+2

Mn+1

)
...

(
m

m + n
Mm+n

Mn

)
.

After the cancellations we get

Mm

M0
� n!m!

(m + n)!
Mm+n

Mn
,

and, taking into account the fact that M0 = 1, we finally get

Mm+n �
(

m + n
n

)
MnMm.

The case m = 0 is trivially valid for all n � 0 . �
REMARK. The Motzkin sequence is a member of the family of the so called

secondary structure numbers [8]. For some other members of this family, whose log-
convexity has been recently established [4], similar results can be proved.
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Svetošimunska c. 25

10000 Zagreb, CROATIA
e-mail: doslic@faust.irb.hr

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


