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ON THE MINIMUM NUMBER OF DISTINCT EIGENVALUES

FOR A SYMMETRIC MATRIX

WHOSE GRAPH IS A GIVEN TREE

ANTÓNIO LEAL-DUARTE AND CHARLES R. JOHNSON

(communicated by R. Mathias)

Abstract. It is shown that for any tree T the minimum number of distinct eigenvalues of an
Hermitian matrix whose graph is T (diagonal entries free) is at least the number of vertices in a
longest path of T . This is another step toward the general problem of characterizing the possible
multiplicities for a given graph. Related observations are made and the result facilitates a table
of multiplicities for trees on fewer than 8 vertices.

Let G be an undirected graph on n vertices throughout. If A = (aij) is an
n –by– n Hermitian matrix, the graph of A , G = G(A) , is determined entirely by the
off–diagonal entries of A , and G(A) has an edge between distinct vertices i and j if and
only if aij �= 0 . On the other hand, given G , H(G) = {A = A∗ : G(A) = G} , the set
of Hermitian matrices whose graph is G . We have been interested in the multiplicities
that occur among the distinct eigenvalues of matrices A ∈ H(G) , and have thus far
focused upon the case in which G is a tree. In this event, we have determined the
maximum possible multiplicity in graph theoretic terms [5]. Here we are interested in
the somewhat dual problem of the minimum number of distinct eigenvalues in a matrix
in H(G) in terms of the structure of the tree G . Armed with both results it is relatively
easy to determine all possible lists of multiplicities for trees with modest numbers of
vertices. In fact, for many trees any list allowed by both results is attained in H(G) .
We present a table and some examples at the end.

Let L(G) ≡ {p = (p1, . . . , pq) : p1 � · · · � pq , there is an A ∈ H(G) with
distinct eigenvalues λ1, . . . , λq , and λi has multiplicity pi} . Thus, each p ∈ L(G) is
a partition of n , and our general problem is to explicity describe L(G) in terms of G .
In [5] we characterized the maximum value of p1 among partitions in L(G) in a variety
of ways, including showing that it is the path covering number of the tree G (which
may be efficiently calculated). Here, we are interested in the minimum number of parts
q = q(G) in a partition in L(G) (the minimum number of distinct eigenvalues over
matrices in H(G) ) and we call this number the eigenwidth of G . If we also denote the
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number of distinct eigenvalues of a matrix A by q(A) , then q(G) = min
A∈H(G)

q(A) . We

shall relate q(G) to the diameter d(G) , defined as follows for an arbitrary undirected
graph G . Let l be the maximum, over pairs of vertices i and j of the minimumdistance
(measured in edges) in G between i and j . Then d(G) = l + 1 . For a tree T , d(T)
is also then the number of vertices in a longest path in T .

We relate d(G) and q(G) by first showing that q(A) � d(G(A)) when A is
an entry–wise nonnegative Hermitian matrix. A key fact to recall [4] is that for an
Hermitian matrix, q(A) is the degree of the minimal polynomial of A .

LEMMA 1. If A is an n –by– n , entry–wise nonnegative, Hermitian matrix, then
q(A) � d(G(A)) .

Proof. Let d = d(G(A)) . We actually show that I , A , A2 , . . . , Ad−1 must be
linearly independent, so that the degree of the minimal polynomial of A must be at
least d , and, thus, that A has at least d distinct eigenvalues. Suppose, wlog, that the
vertices of a path that attains d(G(A)) are numbered 1, 2, . . . , d . Then, for k = 2 ,
. . . , d , Ak−1 has a postive entry in the 1, k position, while Aj , j < k − 1 , does not.
Thus, Ak−1 cannot be a linear combination of lower powers, so that I , A , . . . , Ad−1

are linearly independent, as was to be shown. �

Arguments similar to the above have been used previously, e.g. [3,1], for the more
limited objective of showing sufficientluy many distinct eigenvalues in a particular
nonnegative matrix that is the adjacenct matrix of an undirected graph. Note that the
entry–wise nonnegativity of A is important to the argument.

EXAMPLE. For

A =

⎡
⎢⎣

1 1 1 0
1 2 1 1
1 1 2 −1
0 1 −1 3

⎤
⎥⎦

G(A) is

and d(G(A)) = 3 . But A2 = 4A − I , so that A has only the two distinct eigenvalues
2 ±√

3 , each with multiplicity 2.

Nonetheless, for trees the assumption of entry–wise nonnegativity is not important.

THEOREM 2. For each tree T , q(T) � d(T) .

Proof. Let A ∈ H(T) . Because T is a tree, there is a diagonal unitary similarity of
A (Â = U∗AU) that replaces the nonzero off–diagonal entries of A with their absolute
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values. Then q(Â) = q(A) . Now, choosing t > 0 sufficiently large, B = tI + A is
entry–wise nonnegative, lies in H(T) , and satisfies q(B) = q(Â) = q(A) . But, then
lemma 1 applies and verifies that q(A) � d(T) . Since A ∈ H(T) was arbitrary, the
assertion of the theorem also follows.

CONJECTURE. We suspect that for each tree T , there is an A ∈ H(T) with only
d(T) distinct eigenvalues, so that q(T) = d(T) would follow.

Note that the classical fact that an irreducible, Hermitian, triagonal matrix has
distinct eigenvalues is a special case of theorem 2. In this case T is a path, and we
have q(T) � d(T) = n , implying n different eigenvalues. See also [2] for some related
results for a cycle.

Using theorem 2 and the result in [5] to limit the number of cases to consider, we
have determined L(G) for each tree G = T on fewer that 8 vertices. We omit details
of the necessary constructions but list L(G) with a depiction of the tree for all trees of
3 to 7 vertices. For simplicity, we omit the omnipresent all l’s vector from the list of
partitions in L(G) when there are other partitions present (non–paths). Such lists can
be quite useful in making or dispensing with conjuctures. We also list with each graph
the path cover number p (minimum number of vertex disjoint paths needed to cover all
vertices) and the diameter q .

Figure 1. 3–Vertex Trees

Figure 2. 4–Vertex Trees

Figure 3. 5–Vertex Trees
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Figure 4. 6–Vertex Trees
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Figure 5. 7–Vertex Trees

Many observations may be made from the table; we note only a few. In all cases,
the conjectured converse to our theorem is valid; in fact p and q are always realized
together in a single element of L(G) . (The latter fails on a certain tree of 8 vertices.)
In all but one case (contrast the 7th and 8th seven vertex trees), L(G) is determined
by the pair p, q ; in the 8th (7–vertex) graph, a partition allowed by p and q does not
appear.

In spite of our example, it is possible to generalize theorem 2 to more general
graphs. The difficulty in the example is that there are mulitple shortest paths that
realize the longest distance (and thus the diameter), and, then it is possible to make
the products of the entries (of a matrix with such a graph) along tied paths opposite
in sign. The resulting possibility of cancellation renders invalid the proof of lemma 1
and its application to prove theorem 2. However, this may be repaired, and we close
by modifying the definition of diameter to give generalizations of lemma 1 and then
theorem 2.

A path product in either a numerical real symmetric matrix or a signed, undirected
graph SG is defined in the natural way as the product of matrix entries, or signs,
associated with the edges of the path. The unambiguous diameter of a symmetrically
signed graph is then defined by ud(SG) = 1 + max d(i, j) , in which d(i, j) is the
distance measured in edges from vertex i to vertex j in SG and the max is taken over
all pairs i , j such that every path from i to j of length d(i, j) has the same sign (as a
path product). For an ordinary undirected graph G , we also define the “untied diameter”
by ud(G) = 1 + max d(i, j) , in which the max is taken over pairs i, j such that there
is only one path of length d(i, j) from i to j in G . Note that there is no ambiguity
in using “ud” in both cases, because the function arguments are different. Also the
two notions are naturally related, as for any symmetric signing SG of the undirected
graph G , ud(SG) � ud(G) , because, when there is only one shortest path, it may be
assigned only one path product. Of course, the signed graph of a real symmetric matrix
A , SG(A) is the signing of G(A) in wich an edge gets the sing of the corresponding
entry.

Analogous to our first lemma and theorem we have

LEMMA 3. If A is an n –by– n real symmetric matrix, then q(A) � ud(SG(A)) .

and

THEOREM 4. For each undirected graph G , q(G) � ud(G) .
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The proofs are similar to those of lemma 1 and theorem 2. Because all minimum
length paths in a tree are unique, ud(G) = d(G) when G is a tree, and it follows that
theorem 2 is a special case of theorem 4. It is clear that lemma 1 is a special case of
lemma 3.
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