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1. Introduction

Generalized Young functions (Young functions of several variables) were intro-
duced and studied by S. Wang [26] and M. S. Skaff [20], [21]. The so called G -functions
were studied by N. S. Trudinger [25] who introduced the space LG(Ω) of such G -
functions of n variables (n ∈ Z+) . This type of construction is very important as
it enables us to describe the different integral behaviour of the derivatives in different
directions. In [25], an imbedding theorem was proved for the completion of C1

0(Ω) with
respect to the norm ‖Du‖G,Ω . A variant of this theorem is given in [11] for the space
W1LG(Ω) of weakly differentiable functions u of (n + 1) variables with the norm
‖(u, Du)‖G,Ω . In this paper we generalize this result to the traces on Ωk ( k � n − 1) ,
where Ωk is the k -dimensional hyperplane. This means that we prove some new
inequalities involving Orlicz-Sobolev norms. Moreover, we present an application of
these inequalities to variational problems.

The paper is organized as follows. In Section 2, we give some notations and
terminology which we shall be using in the sequel. In Section 3 we discuss some
imbedding properties of Orlicz-Sobolev spaces. Section 4 contains the continuous
imbedding and two compact imbeddings. Some applications are given in Section 4.
Finally, Section 5 is left for some concluding remarks.

2. Preliminaries

A Young function A : [0,∞) → [0,∞] is a function defined by

A(t) =
∫ t

0
a(x)dx

where a : [0,∞) → [0,∞] is an increasing, left continuous function which is neither
identically zero nor identically infinity on (0,∞).
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The Orlicz space LA(Ω), Ω ⊂ Rn, is defined as the set of all (equivalance classes
of) measurable functions f on Ω such that ‖f ‖A,Ω < ∞ , where ‖·‖A,Ω denotes the
Luxemburg norm on LA(Ω) given by

‖·‖A,Ω = inf

{
θ > 0 :

∫
Ω

A

( |f (x)|
θ

)
dx � 1

}
.

A G -function of n variables G : Rn → [0,∞] is a function satisfying the
following properties :

(i) G(0) = 0;

(ii) lim|x|→∞ G(x) = ∞,
[
x ∈ Rn : |x| =

(∑n
i=1 x2

i

)1/2
]
;

(iii) G is convex i.e.

G(λx + (1 − λ )y) � λG(x) + (1 − λ )G(y)

for all 0 � λ � 1, x, y ∈ Rn;
(iv) G is symmetric i.e. G(−x) = G(x), x ∈ Rn;
(v) the set G−1(∞) = {x ∈ Rn; G(x) = ∞} is separated from 0;
(vi) G is lower semi-continuous.

Clearly, G function of 1 variable is a Young function.

We shall be assuming, in addition, that (vii) G is monotonically increasing in each
variable separately. The vector valued Orlicz-space LG(Ω) is defined as follows :

Let G be a G -function and let Ω be a domain in Rn. Further, let u1, u2, ..., un be
real valued measurable functions defined on Ω and let u = (u1, u2, ..., un) be a vector
valued function. Then, u is said to belong to LG(Ω) if there exists a λ > 0 such that∫

Ω
G(λu(x)) < ∞.

The space LG(Ω) is equipped with a norm corresponding to the Luxemburg norm given
by

‖u‖G,Ω = inf

{
θ > 0 :

∫
Ω

G

( |u|
θ

)
dx � 1

}
.

It is noted that the space LG(Ω) so defined is a Banach space. Let us point out that
there should not be any ambiguity for the same notations LA(Ω) and LG(Ω) (also
‖·‖A,Ω and ‖·‖G,Ω) used, respectively, for Young function and G -function. Moreover,
we have used the symbols A, B, C for Young functions and G, H for G -functions. For
a G -function G, the complementary function G∗

+ is defined by

G∗
+(u) = sup

vi�0
i=1,2,...,n

(u.v − G(v)) ,
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where u.v =
∑n

i=1 uivi . For u ∈ LG(Ω) and v ∈ LG∗
+
(Ω), the following Hölder’s

inequality holds: ∫
Ω

u.vdx � 2 ‖u‖G,Ω ‖v‖G∗
+,Ω . (1)

Let G : Rn+1 → [0,∞] be a G -function. The anisotropic Orlicz-Sobolev space,
denoted by W1LG(Ω), is defined to be the space of weakly differentiable functions u
for which (u, Du) = (u, D1u, D2u, ..., Dnu) belongs to LG(Ω). A norm for the space
W1LG(Ω) is given by

‖u‖1,G,Ω = ‖(u, Du)‖G,Ω .

A domain Ω ⊂ Rn is said to be admissible if there exists a constant α (depending only
upon n ) such that

‖u‖ n
n−1 ,Ω � α ‖u‖1,1,Ω , u ∈ W1,1(Ω)

where ‖·‖ n
n−1 ,Ω and ‖·‖1,1,Ω denote, respectively, the norms in the Lebesgue space

L
n

n−1 (Ω) and in the Sobolev space W1,1(Ω). A domain Ω is said to have the cone
property if there exists a finite cone K such that each point x ∈ Ω is the vertex
of a finite cone Kx contained in Ω and congruent to K. Finally, we shall be using
the symbols ↪→ and ↪→↪→ for, respectively, continuous and compact imbeddings.
For further details regarding the concepts given in this section, one may refer to the
monographs [1] and [17].

3. On some anisotropic Orlicz-Sobolev spaces

Let Ω be a domain in Rn and let G be a G -function of n variables (equal to the
dimension of the space). For u ∈ C1

0(Ω), define the space H0(G,Ω) as the completion
of the space C1

0(Ω) with respect to the norm

‖u‖H0(G,Ω) = ‖Du‖G ,

where Du is treated as a vector valued function in LG(Ω). This gives the anisotropic
character of the function u ∈ H0(G,Ω). The space H0(G,Ω) was introduced by
Trudinger [25] where he proved the following famous imbedding theorem :

THEOREM A. Let Ω ⊂ Rn be a domain, f 1, f 2, ..., f n be continuousnon-negative
non-decreasing functions on [0,∞) and let Let G : Rn+1 → [0,∞] be a G -function
of n + 1 variables such that

G∗
+ (0, f 1(s), f 2(s), ...f n(s)) � s.

Also assume that
∫ 1

0
ds

m(s) < ∞, where

m(s) = s

(
n∏

i=1

f i(s)

) 1
n

.
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Then, the continuous imbedding

H0(G,Ω) ↪→ LA(Ω)

holds for any Young function A satisfying∫ t

0

ds
m(s)

� kA−1(t).

Let us mention that following Trudinger, people have worked with Orlicz-Sobolev
spaces of anisotropic nature e.g. one can see [13], [16] and very recently Cianchi [6]
derived an anisotropic Sobolev inequality which is more general than those discussed
above.

In the literature, a different kind of anisotropy has been considered which is in
terms of so called “mixed norms”. These mixed norms in Lebesgue spaces were first
considered in [5] and then many people followed e.g. see [14], [18] and [19]. In the
setting of Orlicz spaces, mixed norms were initiated by Firlej and Matuszewska [10]
(see also [9]). Our results have no concern with mixed norms but since this norm gives
rise an anisotropic space, a few lines have been mentioned.

In [11], the following theorem was proved which is a variant of the Trudinger’s
Theorem A :

THEOREM B. Let Ω be a bounded admissible domain in Rn, f be a continuous
non-negative function on [0,∞) and G be a G -function of (n + 1) variables on
[0,∞) such that

G∗
+ (0, f (s), f (s), ...f (s)) � s.

Further, let A be a Young function given by

A−1 (|t|) =
1
η

∫ |t|

0

ds
s1/nf (s)

ds

for some constant η > 0. Then, the continuous imbedding

W1LG(Ω) ↪→ LA(Ω)

holds.

In Theorems A and B (and also in all the results obtained by others mentioned
above in this section), the spaces are considered in which the functions are defined on
Ω. From the application point of view it seems also reasonable to deal with spaces
where the functions are defined on the boundary ∂Ω of Ω. Such boundary values (or
traces) can even be defined on the intersection of a k−dimensional hyperplane with Ω
(this intersection is denoted by Ωk). A good account of results concerning Lebesgue
spaces and Sobolev spaces with traces is given in [17].

Our aim, in this paper, is to estabilish the imbedding in Theorem B for traces on
Ωk. We also give compactness of this imbedding and also for the imbedding in Theorem
B.
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4. Imbedding properties of Orlicz-Sobolev spaces

We begin with the following theorem :

THEOREM 1. Let Ω be a bounded domain in Rn having the cone property and let
Ωk (1 � k � n) denotes the intersection of Ω with a k -dimensional hyperplane in
Rn . Let G : Rn+1 → [0,∞] be a G− function and suppose that f is a continuous,
non-negative function on [0,∞) such that

G∗
+ (0, f (s), f (s), ...f (s)) � s (2)

holds. Let A be a Young function such that

A−1 (|t|) =
1
η

∫ |t|

0

ds

s
1
n− 1

p +1f (s)
(3)

for some constant η > 0 and p ∈ [1, n), where p is such that

H(t1, t2, ..., tn+1) = G(t1/p
1 , t1/p

2 , ..., t1/p
n+1) (4)

is also a G -function. If either n − p < k � n or p = 1 and n − 1 � k � n, then the
imbedding

W1LG(Ω) ↪→ LAk/n(Ωk)

holds, where Ak/n(t) = [A(t)]k/n

REMARK. When Ω has the cone property Theorem 1 contains Theorem B which
can be obtained by taking p = 1 and k = n and using the fact that a domain having
cone property is admissible (see [8]).

For proving Theorem 1, we need the following:

LEMMA 1. [1, Lemma 5.19] Let Ω be a domain in Rn having the cone property
and let Ωk denote the intersection of Ω with some k -dimensional plane in Rn, where
1 � k � n (Ωn ≡ Ω) . If n � mp and n − mp < k � n, then the imbedding

Wm,p(Ω) ↪→ Lq(Ωk)

holds for p � q � kp/(n − mp) if n > mp, or for p � q < ∞ if n = mp. If p = 1,
n > m and n − m � k � n, then the above imbedding holds for 1 � q � k/(n − m).

Proof of Theorem 1. It can be verified that Ak/n is a Young function. We shall first
prove the assertion for a bounded function u ∈ W1LG(Ω).

If we take θ = ‖u‖Ak/n,Ωk , then

∫
Ωk

Ak/n

( |u(t)|
θ

)
dt = 1. (5)

Set

h(t) = [A(t)]
1
p− 1

n .
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Then, (5) and Lemma 1 give

1 =

(∫
Ωk

[
A

( |u(t)|
θ

)]k/n

dt

) n−p
k

=
∥∥∥∥h
( |u(t)|

θ

)∥∥∥∥
p

kp
k−p ,Ωk

� K1

[
n∑

i=1

∫
Ω

∣∣∣∣Dih

( |u(t)|
θ

)∣∣∣∣
p

dx +
∥∥∥∥h
( |u(t)|

θ

)∥∥∥∥
p

p,Ω

]

=
K1

θp

n∑
i=1

∫
Ω

∣∣∣∣h′
( |u|
θ

)
Diu

∣∣∣∣
p

dx + K1

∥∥∥∥h
( |u(t)|

θ

)∥∥∥∥
p

p,Ω
(6)

for some constant K1.
In view of the Hölder’s inequality (1), we have

n∑
i=1

∫
Ω

∣∣∣∣h′
( |u|
θ

)
Diu

∣∣∣∣
p

� 2

∥∥∥∥
(

0, h′
( |u|
θ

)
, ..., h′

( |u|
θ

))p∥∥∥∥
H∗

+ ,Ω

∥∥(u, D1u, ..., Dnu)p∥∥
H,Ω ,

(7)
where we use the symbol

(t1, t2, ..., tn)
p =

(
tp1, t

p
2, ..., t

p
n

)
.

Now, in view of (4), we note that∥∥(u, D1u, ..., Dnu)p∥∥
H

� ‖(u, D1u, ..., Dnu)‖p
G = ‖u‖p

1,G,Ω . (8)

Thus, from (6), (7) and (8), we obtain

1 � 2K1

θp

∥∥∥∥
(

0, h′
( |u|
θ

)
, ..., h′

( |u|
θ

))p∥∥∥∥
H∗

+ ,Ω
‖u‖p

1,G,Ω + K1

∥∥∥∥h
( |u(t)|

θ

)∥∥∥∥
p

p,Ω
(9)

Further, by the definition of h and (3), we have

h′(y) =
[
A

1
p− 1

n (y)
]′

= η
(

1
p
− 1

n

)
f (A).

Using this along with (4), we obtain from (9 )

1 � 2K1

θp
(
1
p
−1

n
)
∥∥∥∥0, f

[
A

( |u|
θ

)]
, ..., f

[
A

( |u|
θ

)]∥∥∥∥
p

G∗
+

‖u‖p
1,G,Ω+K1

∥∥∥∥h
( |u(t)|

θ

)∥∥∥∥
p

p,Ω
.

(10)
Now, recall that θ = ‖u‖Ak/n,Ωk . The aim is to show that there exists a constant K2 > 0
such that

θ � K2 ‖u‖1,G,Ω
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but in view of Theorem B, the last estimate holds for the special case k = n and p = 1
and thus without any loss of genarality, we may assume that

‖u‖An/n,Ωn = ‖u‖A,Ω � θ. (11)

From (2) and (11), we get∫
Ω

G∗
+

(
0, f

[
A

( |u|
θ

)]
, ..., f

[
A

( |u|
θ

)])
dx �

∫
Ω

A

( |u|
θ

)
dx � 1

and so ∥∥∥∥0, f

[
A

( |u|
θ

)]
, ..., f

[
A

( |u|
θ

)]∥∥∥∥
p

G∗
+

� 1.

Using this in (10), we obtain

1 � 2K1

θp
(
1
p
− 1

n
) ‖u‖p

1,G,Ω + K1

∥∥∥∥h
( |u(t)|

θ

)∥∥∥∥
p

p,Ω
. (12)

Setting φ(t) = A(t)
tp and ψ(t) =

(
h(t)
t

)p
, we observe that

φ(t)
ψ(t)

= Ap/n(t) → ∞ as t → ∞

and therefore for each ε > 0 , there exists a constant K3 (depending only upon ε ) such
that

ψ(t) � εφ(t) + K3

or
(h(t))p � εA(t) + K3t

p

which along with (11) gives∥∥∥∥h
( |u|
θ

)∥∥∥∥
p

p,Ω
� ε

∫
Ω

A

( |u|
θ

)
dx +

K3

θp

∫
Ω
|u|p dx

� ε +
K3

θp

∥∥|u|p∥∥
1,Ω . (13)

An application of Hölder’s inequality (1) and (4) yield∥∥|u|p∥∥
1,Ω � 2 ‖(1, 0, ..., 0)‖H∗

+ ,Ω

∥∥(|u| , |D1u| , ..., |Dnu|)p∥∥
H,Ω

� 2 ‖(|u| , |D1u| , ..., |Dnu|)‖p
G,Ω = 2 ‖u‖p

1,G,Ω .

Now, using the last estimate and (13) in (12), we get

1 � 2K1

θp
(
1
p
− 1

n
) ‖u‖p

1,G,Ω + εK1 +
2K1K3

θp
‖u‖p

1,G,Ω .

Choosing ε = 1
2K1

and using the definition of θ, we obtain

‖u‖p

Ak/n,Ωk � K2 ‖u‖p
1,G,Ω ,
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where K2 = 4K1

(
1
p − 1

n + K3

)
which depends only upon n. This establishes the

theorem for bounded u ∈ W1LG(Ω).
In the case of arbitrary function u ∈ W1LG(Ω), define

uβ(t) =
{

u(t) , |u(t)| � β
β · sgn u(t) , |u(t)| > β .

Then, uβ is bounded and by so called “Chain Rule” ([1], Lemma 8.31) belongs to
W1LG(Ω). Also,

∥∥uβ∥∥A,Ω increases with β but bounded by K2 ‖u‖1,G,Ω and therefore

limβ→∞
∥∥uβ∥∥A,Ω = θ exists. By Fatou’s lemma

∫
Ω

A

( |u|
θ

)
dt � lim

β→∞

∫
Ω

A

(∣∣uβ∣∣
θ

)
dt � 1

and consequently u ∈ LA(Ω). Thus , the theorem is proved for arbitrary u too.

Now,we proceed to establish the compactness of the imbeddings given in Theorems
B and 1. For that we need a notation and a lemma which we give below:

A notation: For two functions A and B, we shall write A ≺≺ B, if for every
λ > 0

lim
t→∞

A(t)
B(λ t)

= 0

and for this situation, we usually say that A increases essentially more slowly than B
near infinity.

LEMMA 2. ([1], Theorem 8.23.) Let Ω be a domain in Rn with finite volume. Let
A and B be Young functions such that B ≺≺ A. Then, any bounded subset S of LA(Ω)
which is precompact in L1(Ω) is also precompact in LB(Ω).

THEOREM 2. Assume that all the hypothesis in Theorem B hold. If B is a Young
function such that B ≺≺ A, then the compact imbedding

W1LG(Ω) ↪→↪→ LB(Ω)

holds.

Proof. Let u ∈ W1LG(Ω). By Hölder’s inequality (1), we have

‖u‖1,Ω � 2 ‖(1, 0, ..., 0)‖G∗
+,Ω ‖(u, D1u, ..., Dnu)‖G,Ω (14)

and
‖Du‖1,Ω � 2 ‖(0, 1, ..., 1)‖G∗

+,Ω ‖(u, D1u, ..., Dnu)‖G,Ω . (15)

Now, (14) and (15) give the imbedding

W1LG(Ω) ↪→ W1,1(Ω).
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Further, we have the trivial imbedding

W1,1(Ω) ↪→ L1(Ω)

which, by Rellich-KondrachovTheorem, is compact. Hence, if S is any bounded subset
in W1LG(Ω), it is bounded in LA(Ω) and precompact in LB(Ω) by Lemma 1. This
proves the result.

THEOREM 3. Let all the assumptions from Theorem 1 hold. If p > 1 and C is
any Young function such that C ≺≺ Ak/n, then we have the imbedding

W1LG(Ω) ↪→↪→ LC(Ω).

Proof. Since H(t1, t2, ..., tn) = G(t1/p
1 , t1/p

2 , ..., t1/p
n ) is a Young function, we can

apply Hölder’s inequality as in Theorem 2 to get the imbedding

W1LG(Ω) ↪→ W1,p(Ω),

Ω being bounded. Already, the imbedding

W1,p(Ω) ↪→ L1(Ωk)

is known to exists which is compact as well, again, by the Rellich-KondrachovTheorem.
By using the same argument as in Theorem 2 the result now follows.

5. Application to variational problems

Let all the hypotesis of Theorem 2 hold with the following additional assumption

G(u, x1, x2, ..., xn) = B(|u|) + G0(x1, x2, ..., xn),

where G0(x1, x2, ..., xn) = G(0, x1, x2, ..., xn). Moreover we assume that G and G∗

are continuous and satisfy the Δ2 condition (so that W1LG(Ω) is reflexive). Let
f : Ω× Rn → R be a Caratheodory function, i.e.{

f (x, ·) is continuous for a.e. x ∈ Ω
f (·, ξ) is Lebesgue measurable for each ξ ∈ Rn .

We assume that
1. f is convex in the second variable
2. There exist af ∈ L1(Ω) and a constant cf > 0 such that

f (x, ξ) � cf G(0, ξ1, ..., ξn) − af (x)

for a.e. x ∈ Ω and every ξ ∈ Rn .
Let g : Ω× R → R be a Caratheodory function and assume that

1. g is lower semicontinuous in the second variable
2. There exist ag ∈ L1(Ω) and a constant cg > 0 such that

g(x, u) � cgB(|u|) − ag(x).
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PROPOSITION 1. The functional F defined by F(u) =
∫
Ω f (x, Du(x))dx is lower

semicontinuous in the weak topology of W1LG(Ω), i.e. if uh ⇀ u weakly in W1LG(Ω)
then the following inequality holds

F(u) � lim inf
h→∞

F(uh).

Proof. We first prove that the functional F1(w) =
∫
Ω f (x, w(x))dx is lower

semicontinuous in LG0(Ω). Let wh converge to w in LG0(Ω) such that limh→∞ F1(wh)
exists. If we can prove that F1(w) � limh→∞ F1(wh) we are done. It is possible to
prove that there exists a subsequence (still denoted (wh) ) such that wh → w and that∫
Ω (G0(wh(x))) dx → ∫

Ω (G0(w(x))) dx. Indeed, by Fatou’s Lemma and the definition
of the norm in LG0(Ω) it follows that∫

Ω
G0(

u
‖u‖)dx � 1.

(choose a decreasing sequence (k) , k → ‖u‖). Thus, using Fatou’s Lemma again we
obtain that ∫

Ω
lim inf
h→∞

G0(
wh − w
θh

)dx � 1

where θh = ‖wh − w‖ . Hence by the lower semicontinuity of G0 it follows that

G0(lim inf
h→∞

wh − w
θh

) � lim inf
h→∞

G0(
wh − w
θh

) < ∞ a.e.,

and by property (ii) and (iv) of the G -function we obtain that

lim inf
h→∞

|wh − w|
θh

< ∞ a.e.

This shows that there exists a subsequence (still denoted (wh) ) such that wh → w a.e..
By the convexity we have

G0(wh(x)) = G0(θh

(
wh(x) − w(x)

θh

)
+ (1 − θh)

w(x)
1 − θh

)

� θhG0

(
wh(x) − w(x)

θh

)
+ (1 − θh) G0(

w(x)
1 − θh

),

i.e. ∫
Ω

G0(wh(x))dx � θh + (1 − θh)
∫
Ω

G0(
w(x)

1 − θh
)dx. (16)

Moreover, by assuming that θh < 1
2 and by letting m be such that ‖w‖ � 2m, the

Δ2 -condition yields that

G0(
w(x)

1 − θh
) � G0(2w(x)) � kG0(w(x))
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where ∫
Ω

G0(w)dx =
∫
Ω

G0(‖w‖
(

w
‖w‖

)
)dx

�
∫
Ω

G0(2m

(
w

‖w‖
)

)dx � km
∫
Ω

G0(
w

‖w‖ )dx � km < ∞.

Thus the Lebesgue Dominated convergence theorem gives that

lim
h→∞

∫
Ω

G0(
w(x)

1 − θh
)dx =

∫
Ω

G0(w(x))dx

and therefore, by (16), we have that

lim sup
h→∞

∫
Ω

G0(wh(x))dx �
∫
Ω

G0(w)dx.

Moreover, Fatou’s Lemma yields∫
Ω

G0(wh(x))dx � lim inf
h→∞

∫
Ω

G0(wh(x))dx,

so we obtain the convergence∫
Ω

(G0(wh(x))) dx →
∫
Ω

(G0(w(x))) dx.

Because f (x, ·) and G0 are continuous, it holds that

f (x, w(x)) − cf G0(w(x)) + af (x) = lim
h→∞

(f (x, wh(x)) − cf G0(wh(x)) + af (x)) a.e.

Thus, Fatou’s Lemma, applied on the sequence

f (x, wh(x)) − cf G0(wh(x)) + af (x) � 0,

gives that ∫
Ω

f (x, w(x))dx � lim
h→∞

∫
Ω

f (x, wh(x))dx

and it follows that F1(w) =
∫
Ω f (x, w(x))dx is lower semicontinuous in LG0(Ω). This

implies lower semicontinuity of the functional F(u) =
∫
Ω f (x, Du(x))dx in W1LG(Ω))

(only using the fact that uh → u in W1LG(Ω) implies that Duh → Du in LG0(Ω) ).
Hence, since F trivially is convex and since W1LG(Ω) is a locally convex Hausdorff
topological vector space it follows that F is lower semicontinuous in the weak topology
(this result is classical, see e.g. [7] p. 14).

PROPOSITION 2. The functional F2 defined by F2(u) =
∫
Ω g(x, u(x))dx is se-

quentially lower semicontinuous in the weak topology of W1LG(Ω) .
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Proof. If uh ⇀ u weakly in W1LG(Ω) then uh is norm bounded by the Banach
Steinhaus Theorem. Thus Theorem 2 yields that uh contains a subsequence (still
denoted uh) such that uh → u strongly in LB(Ω). Now the lower semicontinuity on
W1LG(Ω) follows by the fact that F2 is lower semicontinuous on LB(Ω) (which is
seen by using the functional F1 in the previous proof with f replaced by g and G0 by
B).

THEOREM 4. Assume that K is a sequentially weakly closed subset of W1LG(Ω).
Then there exists a solution to the minimum problem

min
u∈K

(∫
Ω

f (x, Du)dx +
∫
Ω

g(x, u(x))dx

)
(17)

Moreover, if in addition K is convex and g is strictly convex in the second variable,
then the solution is unique.

Proof. The minimum problem (17) can be written in the following equivalent
form:

min
u∈W1LG(Ω)

(F(u) + F2(u) + χK(u)) ,

where F and F2 are defined as in Proposition 1 and Proposition 2 above, respectively,
and where χK is the indicatior function on K (χK = 0 on K and ∞ elsewhere).
It is easy to see that χK is sequentially lower semicontinuous in the weak topology
of W1LG(Ω) (since K is a sequentially weakly closed) and, hence, by the previous
propositions, so is the sum F + F2 + χK (since the sum of lower semicontinuous
functions are lower semicontinuous) . By the properties of F and F2 we find that the
inequality

F + F2 + χK � k1Ψ− k2 (18)

holds for some positive constants k1 and k2 , where Ψ(u) =
∫
Ω G(u(x))dx. The

functional Ψ is sequentially coercive in the weak topology of W1LG(Ω) . In order to
see this we observe that Ψ(u) � ‖u‖ if ‖u‖ � 1 and that ‖u‖ < Ψ(u) if 1 < ‖u‖ .

Thus the set {u : Ψ(u) � t} is bounded in W1LG(Ω), and, hence, {u : Ψ(u) � t} is
sequencially compact in the weak topology of W1LG(Ω) since this space is reflexive.
Therefore we obtain that also F+F2 +χK is sequentially coercive in the weak topology
of W1LG(Ω) . The existence of aminimizer of (18) now follows from the “directmethod
in the Calculus of Variation” [which states that a sequentially coercive and sequentially
lower semicontinuous functional on a topological vector space has a minimum].

If K is convex and g is strictly convex in the second variable then the functional
Φ = F + F2 + χK is strictly convex and thus the minimum is unique. Indeed, assume
on the contrary that u1 and u2 are minimum points and u1 	= u2, then the strictly
convexity would imply the inequality

Φ
(

1
2
u1 +

1
2
u2

)
<

1
2
Φ (u1) +

1
2
Φ (u2) = Φ (u1) ,

which is impossible.
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6. Some final comments

In their famous paper [3] Alt and Luckhaus prove existence and uniqueness of
variational solutions to a class of doubly non-linear parabolic problems of the form

(b (u))′ − div (a (x, t, Du)) = f in Ω× ]0, T[ . (19)

Their proof is based on a new integration by parts formula and compactness arguments
like the Minty lemma formonotone operators. In [12] Kacur extends the result of Alt and
Luckhaus and proves existence and uniqueness for more general continuity and growth
conditions in Orlicz-Sobolev spaces. The equation (19) contains many equations which
are important in various applications. One example is the porous medium equation

u′ − Δum = f (20)

and its cousin, the p-parabolic equation

u′ − div |Du|p−2Du = f . (21)

The porous medium equation in fine structures is studied widely. For linear problems
Darcy law-type asymptotics is well understood. The porous medium equation and
the p-parabolic equation are subject to intensive studies. Theoretically the p-parabolic
equation can be seen as a natural generalization to the Lp setting of the usual heat- or
diffusion equation where one allows to play with the parameter p . It turns out that
different regimes for the value of p corresponds to different physical situations which
are described by (21). For example, the extreme case p = 1 together with u′ ≡ 0
corresponds to the equation describing mean curvature, and the case p = 2 corresponds
to usual linear heat distribution or linear diffusion

u′ − divDu = f . (22)

The case p = ∞ appears e.g. in the study of growing sandpiles, see e.g. Aronsson et.
al. [4]. By varying p one can also vary the physical properties in the problem of say a
fluid or a fine structured composite, porous or stratified medium. In many situations it
is very useful to consider a sequence of problems like e.g.

u′h − divAh(x, t)|Duh|p−2Duh = f . (23)

This can be the case in homogenization, numerical analysis or e.g. control problems. It
follows, by the general G-compactness results of Svanstedt [22], for nonlinear parabolic
operators that the porous medium equation and the p-parabolic equation homogenize.
For the p-parabolic equation there are also corrector results for the modeling error in
the strong Lp -topology for the gradients and numerical schemes based on augmented
Lagrangians available, see [23] and [24].

In the proof of convergence one make significant use of compact embedding
properties like the Rellich embedding theorem in usual Sobolev spaces and the weak
lower semicontinuity of the norm in Lp -spaces, 1 < p < ∞ . Togetherwith appropriate
structure conditions on the problem this guarantee existence and uniqueness of solution.
But it is also one of the cornerstones in the theory of variational and operator convergence
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associated to these problems. By using the new compact embedding result Theorem 2
and existence result Theorem4 one can nowbuild up a theory for variational convergence
analogous to the De Giorgi’s Gamma-convergence or an operator convergence like the
G-convergence for a large class of elliptic or parabolic operators now being defined on
anisotropic Orlicz-Sobolev spaces. There are many advantages of such a development.
Some work has already been done in this direction (see [15]).

The analysis in Orlicz-Sobolev spaces uses the properties like convexity and growth
(Δ2 -property) in such a way that one can vary parameters with more flexibility than
for usual Sobolev spaces. Therefore it is presumable that one should be able to study
G- and Gamma-convergence for problems like (19) above in an Orlicz-Sobolev setting.
In the periodic setting this means that one should be able to study the homogenization
problem for a large class of elliptic-parabolic problems of the type (19). This would
hopefully also give new important insights in simpler problems and special cases of
(19) via the new results in the new function spaces exploiting their features.
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