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THE JENSEN-GRUSS INEQUALITY

1. BUDIMIR AND J. PECARIC

(communicated by J. Sdndor)

Abstract. The Jensen-Griiss inequality is proved, that is a converse of Jensen’s inequality, related
to the well known Griiss inequality.

1. Introduction

Let f : X — R be a convex mapping defined on the linear space X and x; € X,
pi=0 (i=1,...,m) with P, :=>" p; > 0.
The following inequality is well known in the literature as Jensen’s inequality

f (Pim me) < PLmZPif(Xi)- (1.1)

Some conversions of Jensen inequality were recently obtained in [1] and [2]. For
example, the following result was obtained in [1]:

THEOREM A. Let f : R" — R be a differentiable convex mapping and x; € R",
i=1,...,m. Suppose that there exist vectors ¢, P € R" such that

O< x5 <D (the order is considered coordinatewise) (1.2)

and m,M € R" are such that

m < Vf(x) <M, forallx; € {1,...,m}. (1.3)
Than forall p; 20 (i = 1,...,m) with P, > 0, we have the inequality
1 1 < 1
0< P_Zpif(xi) -f P_Zpixi < ZHCD*‘P””M*’”Hv (1.4)
moiq =1
where || - || is the usual Euclidean norm in R".

It is clear that such results are related to the well known Griiss inequality [3, p. 93],
but they are valid for convex functions. Here we shall give some related results for
wider class of functions, that is for functions which shouldn’t be convex.
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206 1. BUDIMIR AND J. PECARIC
2. The Jensen-Griiss inequality in multidimensional case
THEOREM 1. Let f : U C R" — R be a differentiable mapping with continuous
partial derivatives, where U is open convex set and x; € U, i = 1,...,m. Suppose
that there exist vectors ¢, ® € R" such that
<5 <D (the order is considered coordinatewise) (2.1)
and m,M € R" such that

m < Vf(x) <M, forall x € convixy, ..., xp), (2.2)

where conv|xy,...,xy| us the convex hull. Than forall p; > 0 (i = 1,...,m) with
P, > 0, we have the inequality

% >oni )= (% gpix,)

Proof. Using the mean-value theorem in multidimensional case for points x,y €
convlxy, . .., x,| we conclude that there exists ¥ € (0, 1) such that

1
<le—ollM—ml. (23

F@) =f)=(Vf@@),x-y), (2.4)

where z=y+ %(x —y).
Using (2.4) for x = i S pixi, Yy =X, =12, (j=1,...,m), we may simply
write that

( ZPQ@) <Vf (z), Zplxl —xj> ,Vje{l,...,m}. (2.5)
m i1 m i1

Multiply (2.5) with p; > 0 and sum over j, in order to obtain

( ZP:L) p}f 'xJ) <Vf Zj P, Zplxl_ >

( ZP:M) _ijf(xj)zzpj <<Vf ZJ Zp1x1> Vf ZJ) xj>> .
j=1 =1 i=1

Therefore

Puf (PL ZPVQ) Zl’xf Xj)= <ZPJVf %), Zp,x,>2pj<Vf(Zj)7xj>-
" =1

J=1
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Dividing by P, > 0, we obtain

f (PL Zpixz) - szf x;)
=1 i=

< szvf Zz szxz> ! Zpi<vf(Zi),xi> . (26)
P i=1

A simple calculatlon shows that

1 m

LS ¥ —< Sk zp,-w<zi>>
i P i=1

P2 Z pipj (xi —x;, Vf (@) — Vf () - (2.7)
mi j=1
Taking the modules in both parts of (2.7) we obtain, by Schwartz’s inequality in
inner product spaces, i.e. |{a,b)| < ||a| - ||b]|, a,b € R", that

Pinmxi,Vf (z1)) —< Zp,xl, Zpﬁf 2 >‘
m i=1 m i—=1 m i=1

< 57 szp, =X, Vf (z1) = Vf (g)) |

ﬂ'l i

2P2 szpj\lxz X[l - IV (=) = ViF () |- (2.8)

moio]

Using the Cauchy-Buniakowsky-Schwartz inequality for double sums, we can state that

oo 3 pil =yl 19 () - 5 )

ml‘]l

1
2
1 m
<50z Somi—sl) (53 L owlvr @ - @) - @9

i, j=1 i, j=1

As a simple calculation shows that

1 m ) 1 m 5
37y 2 pell =l = 53 -

mi j=1

1 m 2
— N " pix;
Pﬂ'l ; o

and

m 2

1 Z Vf (i)

Ti=1

m

1
557 2 PillVf (@) = Vf (@) P = Zpr (a) | -

i j=1

b
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we can state, by (2.8) and (2.9), that

1 “ 1 m 1 m
P_m ;Pi (xi, Vf (z)) — <P_m ;pixh P_m ;inf(z,-)>|

1
2 2

2
1 m 1 m 1 m 1 m

o D pillillP= || 5= > _pa 5 2 pilVf @) P |5 > Vf (@)
"=l "=l "=l "=l

(2.10)

Now, let us observe that, as in [1], we have

1 m
P—ZPiniﬂz -
"oi=1

1 m
7>
" =1

<¢ Zp,x,7 Zpixi®>PLZpi<¢xi,xiCD> . (2.11)
P i=1 " i=1

As ¢ < x; lEl,...,m),then<q>—xi,xi—<I>>>Oforalli€{1,...7m} and
then

m

> pi{9—x,5—®) >0

and by (2.11), we obtain

_Zpl“le - Zplxl
n‘l i=1

It is known that if y,z € R", then

<¢_ _szxu Zp,xl— > 2 12)

4(z,y) <llz+y? (2.13)

with equality iff z = y. Now, if we apply (2.13) for the vectors

1 & 1 —
z:(P*P—m;Pixi, y:P—m;Pixi*Q
we deduce
1 1 )
<¢— P—mZp,xz, ;p,xl >< il

and then, by (2.11)—(2.12), we can derive that

2
1 & 1 & 1
5= pilll® = {| 5= Do pen|) < 70— @l (2.14)
"=l =1
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Similarly, one has
1 & '
5= > VI (@) < glM—m|. (2.15)

m
i=1

1 m
5 2 pillVf @) P -
=1

Finally, by (2.10), (2.14) and (2.15), one can write

I > pi (% Vf () — <P_ > pixi, P ZPin(Zi)>‘
" i=1 " =1 " =1
1
< zI® = olliM —ml, (2.16)
which, by (2.2), gives the desired inequality (2.1). O

THEOREM 2. Let f : U C R" — R be a differentiable mapping with continuous
partial derivatives, where U is an open convex set, and x; € U, i=1,...,m, p; 20
(i=1,...,m) and P, > 0. Suppose that the V -operator satisfies a condition of
r-H-Hoélder type, i.e.,

IVF (x) = Vf ) | < M|lx—y|", Vx,y € convlxy, ..., X, (2.17)
where M > 0 and r € (0,1) . Let

A= max |x—x.
1<i<j<m

Then we have the inequality

PL Zpif(xi) —-f (PL Pixi>
m 1

m -
i=1 i=

MAH! m

m

Proof. As in the proof of Theorem 1, we have (2.8), that is

1 m 1 m | m
P ;Pi (xi, Vf (1)) — <P_m ;psz 5 Zinf(zi)>‘

m
i=1

m

1
< 5pr > il = x5l - 1VF (z0) = Vf () (2.19)
m i j=1
Because zj,zj € conv(xy,...,x,] (2.17) implies that the last expression is

m
< gp7 2 Pl =l =5l

As zj,7; € convixi, ..., X,|, we can write

m

m
i = E Uu;ix;, Zj = E VJ')CJ'.
i=1 Jj=1
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Then

m

I — 5l = _Zl wny(or = )| < max [l — ] =
i, j=

Using (2.19) we can state the inequality
1 m m m
P—mZPi<xi,vf Zz - < Zpl-xh Zl’tvf <i >|
i=1 i= i=

M r
S opr Z pipjllxi — x5l|A

", j=Li
m m
> il — x| < Z pipj-
Mo i=liij Py i, j=LiiA
Since
m
> =g (Xon-Tom) - ( ),
1<i<j<im i, j=1
the inequality (2.18) is proved. [
THEOREM 3. Let f : U C R" — R be a differentiable mapping with continuous

partial derivatives, where U is an open convex set, x; € U, p; >0 (i=1,...,m) and
P, > 0. Suppose that the V -operator is Lipschitzian with the constant L > O, ie.,
IVf (x) = Vf ) I < Lllx =y, (2.20)
Sforall x,y € convlxy, ..., xu|. If
P<x<D X € conv(xy, ..., X, (2.21)

o, ® eR" (i=1,...,m) then we have the inequality

1 m
P izl:lhf (P_m ;mm)

Proof. As in the proof of Theorem 1

Pim Zpif(xi) —f (% ZP:‘M‘) ’
i=1

L
<Zlo gl (222)

1]
ol—

1 1 <
<\ 5 > i~ 557 2 Pl VIf (@) = Vf (&) P

mi =1 m i =1

(where z;,z; are as in Theorem 1)

(S
ol

m

< P2 Zl’zl’] i — 1 37 > piilllz — 5|

mi =1 m i =1
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(using the equalities
2

1 m 1 m

2

> il =5l = 5= > pilll -
" =1

2P,

1
P_m ; PiXi

i =1

and

1 m 1 m 1 m
2 2
N sl = =S 1 —
ZP}%;WJH, il Pm;pzn 1 ‘PZ
2\ 2

2 2
= P—ZPiniH - P_Zpixi x L P—Zpi llzil|” —
moi—1 moi=1 M oi=1

1
E Z PiZi
< (we have the following Griiss type inequality

i=1
1 m
7Y
" =1

7xm]7 SO ¢ < Zi < CI))

2

m

1 2
== > pillxl® ~
Pm i—1
and using the fact that z; € conv[xy,. ..

1 N/l N\ L ,
<r(flo-ol) (Flo-o?) =Flo- o O

1
< =@ — ol
4H o[1°,

REMARK. Some results, related to Theorems 2 and 3, for convex functions were

obtained in [2].

3. The Jensen-Griiss inequality in one dimensional case

THEOREM 4. Let f : I C R — R be a differentiable mapping with continuous

first derivative and I = (a,b) . Let x; € I (i=1,...,m) and suppose that there exist
m,M € R such that
m<f'(x) <M, forallxel. (3.1)
Then forall p; 20 (i =1,...,m) with P,, > 0 we have the inequality
1 ¢ 1 ¢
P Zpif(xi) —f P Zpixi
"=l "=l
S (Pm _ zp,-)
ics ics
< . (b a)(M — m), (32)
5
2

where S is the subset of {1, ... ,m} which minimizes the expression |Ziesl’i



212 1. BUDIMIR AND J. PECARIC

Proof. Using the mean-value theorem for points x,y € I we can write that there
exist z, x < z < y such that

f@) =f) =F"@)x-y). (3-3)

Using (3.3) for x = 5- 77" pix;, y = x; we conclude that there exists z; (x < zj < x;)

such that . .
( Zp,x,) = ( Zp,x, — ) (3.4)

forall j € {1,...,m}. If we multiply (3.4) by p; > 0 and sum over j, we obtain

( ZP,x,) —pif () =pif'(z) ( mZp,x,— >

This implies

P.f (PL Zp,-x,-) - ijf(xj) ijf zj) (Zp,-x,-) - ijxjf/(zj).
m iz j=1 i=1 J=1

Dividing by P,, > 0, we obtain

i—1 m =1
1 m 1 m m

=5 2 il (@) D _pwi— Zp,xf %) (3.5)
=1 m =1

We note that the following results was proved in [4]:

THEOREM B. If m; < a; < My, my < b; < My, i=1,...,m and S is the subset
of {1,...,m} which minimtzes the expression
1
ieS 2
then

e (55) )

€S ieS

Pm Zpiaibi* (Zl’i%‘) (Z[)z z)
i=1 i=1

If we choose a; = x;, b; = f'(z;), then we may state that

Zpi (Pm - sz)
icS icS
X P,%1

(M —m)(b— a)

m
Z pif (x ( > p,x1>
n] i—1 n] i—1
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and the result follows. [

213

THEOREM 5. Let f : I C R — R be a differentiable mapping with continuous first
derivative and I = (a,b) . Let x; €1, p; >0 (i=1,...,m) and P, > 0. Suppose

that f' is Lipschitzian with the constant L > 0, i.e.,

') = I < Llx—yl, (36)
forall x,y € I. Then we have the inequality
ics ics
P szf (xi)—f (P— Zp,-x,-) < LS - € (b—a), (37
m i—1 m i=1 m
where S is the subset of {1,...,m} which minimizes the expression | ,cspi — 2.

Proof. As in (3.5) we have the equality

=1 =1
1 m 1 m m
= P_Zp;f(zj)P_ Zpixz P ijx}f (z)
m j:I m i=1 m j:I
1
DO R R ORI
mLi<j<m

Using the Cauchy-Buniakowsky-Schwartz inequality, we can state that the last expres-

sion is less than

=
ol—

1 2 1 2
P2 Z pipj |xi — x| 7 Z pipiIf' (@) — ' (%)l
mgi<j<m mi<j<m

Using Theorem B and (3.6) we have that this is

< (1% > pilPu=Y_ pi)(b— a)2> x L (Z pi(Pn =Y pi)(b—a)’

m ies ieS ieS ieS
Zpi (Pm - sz)
_ g i€S ieS 2
=L ) (b—a)

which proves the Theorem. [

)

(S
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COROLLARY 1. With the assumptions of Theorem 5 and assuming bounded second
derivative of f , we have the inequality

o (pa- Sp

1 m 1 m Py Py
o > “pif (xi) —f P > pixi || < L= 7 - (b—a)’, (38)
"=l "=l m
where L = ||f"|| and || - || is the sup norm.

Proof. Using the mean-value theorem, we conclude that there exist points w;; in
the open interval joining z; to z;, such that

') = f (@) = I (wii) (2 — )]
< ilél;b‘”(X)l lzi =zl = If "Il lai — il -

As in proof of Theorem 5 we may conclude that

2 2
1 2 1 2
S| = > oppili—x] x i > pnilf' @) ()l
mALi<j<m mLi<j<m
! )
1 2 1 2
< Do poili—x | x5 Y. pilu—3l
Pm o Pm s
1<i<j<m 1<i<j<m
yielding the desired inequality. [
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