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ON THE INEQUALITY FOR THE

ARITHMETIC AND GEOMETRIC MEANS

CONSTANTINE GEORGAKIS

(communicated by J. Marshall Ash)

In this note we give an elementary proof by induction for the classical inequality

Gn = n
√

a1a2 . . . an � a1 + a2 + · · · + an

n
= An, for n � 2, (1)

between theGeometricmean Gn and the Arithmeticmean An of n positive real numbers
a1 , a2 , . . . , an , where exact equality is possible if and only if a1 = a2 = · · · = an .

The proof is based on the following special case of (1), which is equivalent to a
simple identity and serves as the focal point of the exposition in this paper.

m
√

pm−1q � (m − 1) p + q
m

, f or p > 0, q > 0, m � 2, (2)

where exact equality is possible if and only if p = q .
This approach to (1) is different from those found in the literature in the references

that are based on calculus or convexity. The novelty of this approach is that it handles
the delicate part of the transition from n to n + 1 in the inductive argument for
(1) , as well as the equally important extremal case of equality, that is not treated
adequately in the literature, directly via the inequality in (2). This makes the proof
of (1) accessible to any class of students who are acquainted with the principle of
mathematical induction. We conclude with a discussion of examples which confirm
the versatility of the inequality in (2) as a tool for assessing the convergence of some
well-known numerical algorithms.

We may rewrite (2), after dividing both sides by p, setting x = q/p and rear-
ranging the terms, in the following equivalent form:

x − 1 � m
(

m√x − 1
)
, f or x � 0, m � 2, (3)

where exact equality occurs if and only if x = 1. Consider the identity

x − 1 =
(

m√x − 1
) [

1 + m√x +
(

m√x
)2

+ · · · + (
m√x

)m−1
]

=
(

m√x − 1
)
f (x), (4)
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where f (x) � m for x � 1 , f (x) � m for 0 � x � 1, and f (x) = m if and only if
x = 1 . Then x − 1 � m

(
m√x − 1

)
for x � 1, 1 − x � m

(
1 − m√x

)
for 0 � x � 1,

and x − 1 = m
(

m√x − 1
)

if and only if x = 1, proving (3).

Proof of (1) by induction. Clearly, (1) is true for n = 2 , since (a1 + a2)
2 � 4a1a2 .

Next, suppose Gn � An for some positive integer n. Then, from (2) for p = Gn,
q = an+1, m = n + 1, we obtain

Gn+1 = n+1
√

(Gn)nan+1 � nGn + an+1

n + 1
� nAn + an+1

n + 1
= An+1. (5)

Hence, if (1) holds for some positive integer n then it also holds for n + 1, proving
that the assertion of inequality in (1) is true for all positive integers n � 2 .

Clearly, the equality: a1 = a2 = · · · = an is a sufficient condition for exact
equality in (1). It remains to show that it is also a necessary condition. That is

Gn = An =⇒ a1 = a2 = · · · = an, f or n � 2. (6)

For n = 2, (6) is true, because (a1 + a2)
2 = 4a1a2 implies a1 = a2 . Next, suppose

(6) is true for some positive integer n, and Gn+1 = An+1. Then the term on the far left
side is equal to the term on the far right side in (5) , implying exact equality throughout
in (5) , that is

Gn+1 = n+1
√

(Gn)nan+1 =
nGn + an+1

n + 1
=

nAn + an+1

n + 1
= An+1 (7)

Therefore, Gn = An,which implies that a1 = a2 = · · · = an = Gn by assumption. On
the other hand, from the exact equality,

n+1
√

(Gn)nan+1 =
nGn + an+1

n + 1
,

in (7) and (2), for p = Gn, q = an+1, m = n + 1, it follows that Gn =
an+1, concluding that a1 = a2 = · · · = an = an+1. This shows that, if (6) is
true for some positive integer n, then it is also true with n+1 in place of n, and proves
assertion (6) by induction. This completes the proof of (1) .

The assertion in (1) requires equality of all the terms in the inequality as a
necessary and sufficient condition for the possibility of exact equality. Consequently,
the product of a finite set of positive real numbers with a fixed sum is maximum when
they are equal, and the sum of a finite set of positive real numbers with a fixed product
is minimum when they are equal. This is a well known principle of optimization in
multivariate calculus, where it is derived using Lagrangian multipliers.

Many inequalities in modern analysis for sequences or integrals have their origin
or can be traced to the inequality between the arithmetic mean and the geometric mean
of a finite set of positive real numbers. They have received an extensive treatment in the
classic treatise “Inequalities” by Hardy, Littlewood, and Polya [5], in Beckenbach and
Bellman [3], and elsewhere. Inequalities play an important role as tools for the study
of convergence of analytical or numerical algorithms. We discuss three such examples
that relate to the inequalities in (2) and (1) .
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EXAMPLE 1. Heron’s Recursive Algorithm for Roots. Let a > 0 be a positive
real number, m � 2 be a positive integer and consider the iteration defined by

xn =
1
m

(
(m − 1)xn−1 +

a
(xn−1)m−1

)
, for n � 1, (8)

where x0 an initial value larger or smaller than m
√

a. For m = 2, the iteration is the
square root algorithm which is attributed to Heron of Alexandria (60 A. D.). The
algorithm is a special case of the Newton-Raphson iteration for the solution of the
equation xm − a = 0. It has the following properties:

(i) the sequence xn is decreasing for n � 1 and convergent to m
√

a;
(ii) the sequence a

(xn)m−1 is increasing for n � 1 and convergent to the m
√

a.

These follow easily from (2). The expression in (8) that defines xn , for n � 1,
is simply the right hand side of (2), where

p = xn−1, q =
a

(xn−1)m−1
, m = m.

Hence, xn > m
√

a for n � 1 . On the other hand, for n � 2 , we may rewrite (8) in
the form

xn−1 − xn =
1
m

(
(xn−1)m − a
(xn−1)m−1

)
> 0,

since xn > m√a. Thus xn is a decreasing sequence that is bounded from below by
m
√

a. Hence, xn is a convergent sequence, whose limit say is x. On taking limits of
both sides in (8) and solving the resulting equation for x,we conclude that xm = a,
proving the first assertion concerning the monotone convergence of the iteration xn to
the m th root of a. The second assertion follows from the observation that the sequence
(xn)m−1 is decreasing and convergent to a

m√a
by the first assertion.

EXAMPLE 2. The following properties of monotone convergence of the sequence
(1 + x

n )
n to the exponential function ex are a direct consequence of (2) :

(i) (1 + x
n )

n is an increasing sequence for n > −x and −∞ < x < +∞;
(ii) (1 + x

n )
n+1 is a decreasing sequence for n > −x and −∞ < x � 1 .

From (2) , for p = 1 + x
n , q = 1, m = n + 1 , n + x > 0, we get

n+1

√(
1 +

x
n

)n
<

n
(
1 + x

n

)
+ 1

n + 1
= 1 +

x
n + 1

,

proving (i) . On the other hand, for p = 1/(1 + x
n ), q = 1, m = n + 2, n + x > 0,

we get

n+2

√(
1

1 + x
n

)n+1

<
(n + 1)

(
1

1+ x
n

)
+ 1

n + 2
� 1

1 + x
n+1

,

provided (n + x + 1)
(
n2 + 2n + x

)
� (n + 1) (n + 2) (n + x) or, equivalently, −∞ <

x � 1 , proving (ii) .
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EXAMPLE 3. From (3) , (4) and (1), we obtain the inequalities

ln x � x − 1√
x

� x − 1, f or x > 1, (9)

x − 1√
x

� ln x � x − 1, f or 0 < x < 1. (10)

If we let m → ∞ in (3) we get ln x � x− 1 for x > 0. Consider the expression f (x)
defined in (4). Then, using (1) with n = m, aj = ( m

√
x)j−1, for j = 1, 2, . . . , m, we

get
f (x)
m

� m
√

( m√x)1+2+···+(m−1) = x
m−1
2m .

But, m( m√x − 1) = (x − 1)/( f (x)
m ) by (4). Hence, m( m√x − 1) � (x − 1)/x

m−1
2m , for

x > 1 , and on taking limits as m → ∞ this yields the inequality ln x � x−1√
x

in (9) for

x > 1 On the other hand , when 0 < x < 1 if we replace x by 1/x in the preceding
inequality we obtain the inequality x−1√

x
� ln x in (9) for 0 < x < 1 . As x varies

from 1 to 2 the accuracy of the numerical approximation of ln x by x−1√
x

varies from
almost four decimal places to almost one decimal place, and exceeds that of the usual
approximation of ln x by x − 1 for x > 1 . We also note that from (9) it follows that
ln x <

√
x for x > 1 .
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