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HADAMARD’S INEQUALITY FOR A TRIANGLE,

A REGULAR POLYGON AND A CIRCLE

A. MCD. MERCER

(communicated by M. S. Klamkin)

Abstract. Analogues of Hadamard’s integral inequalities are found in two dimensions for the
regions stated in the title.

1. Introduction

If the function f is convex in the interval [a, b] then Hadamard’s classical inequal-
ities read:

f
(a + b

2

)
� 1

b − a

∫ b

a
f (x)dx � f (a) + f (b)

2
(1)

We shall refer to the right and left inequalities here as (1R) and (1L) and similarly
for other equations. The inequalities mentioned in the title of this article refer to the
analogues of these, in the various cases. In all that follows we shall assume that the
function f , now a function of two variables, is continuous and convex over the region
being considered at the time so that:

f (
∑

λkxk) �
∑

λkf (xk) when λk ∈ [0, 1] and
∑

λk = 1

2. The analogue of (1) for a triangle

Let A1 be a triangular region in the plane and let A1 also denote its area. It will
be clear from the context which is which. We take the position vectors of the vertices
of A1 as a, b, c taken anticlockwise. Next let Ak+1 denote the region (and its area)
obtained by joining the mid points of the sides of Ak (k = 1, 2, . . . ) . It is a simple

matter to see that this sequence of regions converges to the point
1
3
[a + b + c] . Then

with these notations and f convex over A1 we have the following analogue of (1).
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THEOREM 1. Writing

Ik =
1
Ak

∫∫
Ak

f (x)dxdy

then

f
(1

3
[a + b + c]

)
� · · · � I3 � I2 � I1 � 1

3
[f (a) + f (b) + f (c)]. (2)

Proof. First we prove the last inequality above. When λ , μ , ν each lie in [0, 1]
and λ + μ + ν = 1 then any x ∈ A1 can be written as x = λa + μb + νc . Let us take
λ and μ as independent variables, (so that ν = 1 − λ − μ ) and apply the change of
variable

(x, y) → (λ ,μ)

to the integral in I1 . It is easy to see that the Jacobean of this transformation is given by

∂(x, y)
∂(λ ,μ)

=
∣∣∣a1 − b1 b1 − c1

a2 − b2 b2 − c2

∣∣∣
so that ∣∣∣ ∂(x, y)

∂(λ ,μ)

∣∣∣ = 2A1.

So, using the convexity of f and obtaining the λ , μ limits of the integral by
consideration of the plane λ + μ + ν = 1 in the (λ ,μ, ν) space, we have:

∫∫
A1

f (x)dxdy = 2A1

∫ 1

0

∫ 1−μ

0
f (λa + μb + νc)dλdμ

� 2A1

∫ 1

0

∫ 1−μ

0
[λ f (a) + μf (b) + νf (c)]dλdμ

=
A1

3
[f (a) + f (b) + f (c)]. (3)

This concludes the proof of the last inequality in (2).
Next we consider the inequality I2 � I1 . Denote by p, q, r the vertices of A2 so

that

p =
b + c

2
, q =

c + a
2

, r =
a + b

2
. (4)

Analogously to (3) we have

1
A2

∫∫
A2

f (x)dxdy = 2
∫ 1

0

∫ 1−μ

0
f (λp + μq + νr)dλdμ.

Using (4) and the convexity of f this does not exceed
∫ 1

0

∫ 1−μ

0
f (λb + μc + νa)dλdμ +

∫ 1

0

∫ 1−μ

0
f (λc + μa + νb)dλdμ. (5)

Each of these integrals equals

1
2A1

∫∫
A1

f (x)dxdy
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and this concludes the proof that I2 � I1 . The proof that Ik+1 � Ik (k = 2, 3 . . . )
proceeds in exactly the same way.

Finally, since the sequence of regions Ak converges to the point
1
3
[a + b + c] the

first inequality in (2) follows from the mean value theorem for double integrals.

NOTE. If, instead of forming the sequence of regions Ak by bisecting the sides of
the previous member, we divide the sides of the previous member in the ratio t : 1 − t
with 0 < t < 1 (following cyclic order) the result (2) continues to hold with these new
regions. The proof of this is almost identical to the above, differing only at (5) because
in that case we have, for example,

p = (1 − t)b + tc etc.

3. The analogues of (1) for a regular polygon and a circle

THEOREM 2. If pk (k = 1, 2, . . .n) are the vertices of a regular polygonal region
P (whose area is also denoted by P ) then

f
(1

n

∑
pk

)
� 1

P

∫∫
P
f (x)dxdy � 1

n

∑
f (pk). (6)

THEOREM 3. If D is a closed circular disc of radius r , boundary C and centre c
then:

f (c) � 1
πr2

∫∫
D

f (x)dxdy � 1
2πr

∫
C

f (x)ds. (7)

NOTE. The result (7) is not new (see [1]) but the present proof, which is an
immediate consequence of (6), is quite different from the earlier one.

We now proceed to the proofs of these two theorems.

Proof of (6R). If Pk (k = 1, 2, . . . n) , are the vertices whose position vectors are
pk let us draw the diagonals P1Pk (k = 3, 4, . . . , n − 1) . The areas of the triangles
P1PkPk+1 so formed will be denoted by �k (k = 2, 3 . . . , n−1) . For this construction
let us call P1 “the preferred vertex”.

When we apply the last inequality in (2) to each of the triangles �k and sum over
them all we get the result:

∫∫
p
f (x)dxdy �

n−1∑
2

�k

3
[f (p1) + f (pk) + f (pk+1)]

=
P
3

f (p1) +
�2

3
(p2) +

n−1∑
3

[�k

3
+

�k−1

3

]
f (pk) +

�n−1

3
f (pn).
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This is a Hadamard–type inequality using the preferred vertex P1 . We now repeat
this process taking, in turn, the vertices P2 , P3 , . . . , Pn as preferred vertices. Adding
all of these we get:

n
∫∫

p
f (x)dxdy � P

n∑
1

f (pk) (8)

and this is the required result. It should be noted that although the last inequality in
(2) holds for any triangle the polygon result (6R) has been proved only for a regular
polygon. This is because it is essential to the proof that the subregions corresponding
to each preferred vertex Pk be congruent.

Proof of (7R). To obtain this result one inscribes a regular polygon of n sides in
the circle C . Following a familiar process the result (7R) follows from (8) on taking
the limit as n → ∞ . We leave the details to the reader.

NOTE. For the proofs of (6L) and (7L) there is clearly no loss of generality in
supposing that the centers of the polygonal and circular regions have the origin 0 as
their centre.

It is now convenient to prove the following lemma.

LEMMA. Let Ω be a closed convex region in the plane whose boundary is Γ and
suppose that Γ is centrally symmetric. That is, if its polar coordinate equation is
r = Ψ(θ) then Ψ(θ + π) = Ψ(θ) for all θ . If we denote the area of Ω also by Ω
then:

f (0) � 1
Ω

∫∫
Ω

f (x)dxdy.

Proof of the Lemma. By convexity we have

2f (0) � f (ρ, θ) + f (ρ, θ + π) for 0 � ρ � Ψ(θ).

Carrying out the integration indicated by
∫ 2π

0

∫ Ψ(θ)

0
. . .ρdρdθ

and noting, by the periodicity of f with respect to θ , that the two integrals which
appear on the right are the same, we get the required result.

Proof of (6L) (n even) and (7L). As mentioned above there no loss of generality if
we take the centre of each of these regions to be the origin. The two results now follow
at once from the Lemma.

Of course when n is odd the Lemma is not applicable and for this case a separate
proof is needed.

Proof of (6L) (n odd). Let n = 2k + 1 and let the centre of the polygon be the
origin. If r = Ψ(θ) is the polar equation of the polygon then Ψ will be periodic with

period
2π
n

. In particular we wil have

Ψ(θ) = Ψ
(
θ +

2kπ
n

)
= Ψ

(
θ − 2kπ

n

)
: for all θ.
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Now the triangle with vertices

(�,Ψ(θ)),
(
�,Ψ

(
θ +

2kπ
n

))
,

(
�,Ψ

(
θ − 2kπ

n

))

(u, v, w say) has the origin 0 in its interior so that

0 = λu + μv + νw

for some (λ ,μ, ν) ∈ [0, 1] and λ + μ + ν = 1 .
A simple calculation shows that

λ : μ : ν = sin
(2π

n

)
: sin

(2kπ
n

)
: sin

(2kπ
n

)

so that λ , μ , ν are seen to be independent of θ .
Hence by convexity:

f (0) � λ f (�,Ψ(θ)) + μf
(
�,Ψ

(
θ +

2kπ
n

))
+ νf

(
�,Ψ

(
θ − 2kπ

n

))
.

Carrying out the integration indicated by
∫ 2π

0

∫ Ψ(θ)

0
. . .ρdρdθ

and using periodicity we get the result

Pf (0) �
∫∫

P
f (x)dxdy

which concludes the proof of (6L) for the case of n odd.
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