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A NOTE ON TWO THEOREMS OF LEINDLER

JÓZSEF NÉMETH

(communicated by L. Leindler)

Abstract. The theorem proved here is the generalization of two theorems of Leindler regarding
embedding relations among classes of Fourier coefficients. The generalization is based on
replacing the power functions by more general ones introduced by Mateljevič and Pavlovič.

1. Introduction

Several authors have studied the problems of L1 convergenceof Fourier series. See
for example: [1]-[4], [9]-[16]. In connection with this topic many classes of coefficients
have been defined. Some of them are listed as follows:

1. A null-sequence a := {an} belongs to S if there exists a monotonically
decreasing sequence {An} such that

∑∞
n=1 An < ∞ and |Δ an| � An for all n .

(Telyakovskiı̆ [13]).
2. A null-sequence a := {an} belongs to the class Fp if for some p > 1

∞∑
n=1

n−1/p

( ∞∑
k=n

|Δ ak|p
)1/p

< ∞. (1.1)

(Fomin [2]).
3. A null-sequence a := {an} belongs to the class Sp if there exists a monotoni-

cally decreasing sequence {An} such that
∑∞

n=1 An < ∞ and

1
n

n∑
k=1

|Δ ak|p
Ap

k

= O(1). (1.2)

(Č. V. Stanojević and V. B. Stanojević [12]).
4. A null sequence a := {an} belongs to the class F∗

p if for some p > 1

∞∑
m=1

2m(1− 1
p)

⎧⎨
⎩

2m+1∑
n=2m+1

|Δ an|p
⎫⎬
⎭

1/p

< ∞. (1.3)
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(Fomin [2], Leindler [6]).
5. By δ -quasi-monotone sequence we mean a null-sequence a := {an} such that

an > 0 and Δ an � −δn , where {δn} is a sequence of positive numbers.
A null-sequence a := {an} belongs to the class Sp(δ) if there exists a δ -quasi-
monotone sequence {An} satisfying

∑∞
n=1 An < ∞ and

∑∞
n=1 n δn < ∞ and

1
n

n∑
k=1

|Δ ak|p
Ap

k

= O(1). (1.4)

(Tomovski [14]).
6. A null-sequence a := {an} belongs to the class Sp(A) if there exists a null-

sequence {An} such that
∑∞

n=1 n|ΔAn| < ∞ and

1
n

n∑
k=1

|Δ ak|p
Ap

k

= O(1). (1.5)

(Leindler [6]).

Many authors have investigated the embedding relations among the classes above
mentioned. See for example [2], [5], [6], [11], [15], [16]. The strongest and in certain
sense the closing results in this topic are due to L. Leindler [5], [6]. Namely in [5] he
proved that if p > 1 then

Fp ⊆ Sp ⊆ F∗
p ⊆ Fp, (1.6)

furthermore he showed in [6] that if p > 1 then

Sp ⊆ Sp(δ) ⊆ Sp(A) ⊆ F∗
p . (1.7)

Collecting the results (1.6) and (1.7) it can be obtained the following surprising state-
ment: if p > 1 then

Fp ≡ Sp ≡ F∗
p ≡ Sp(δ) ≡ Sp(A).

In the theory of functions, in particular in problems connecting with power series
and embedding theorems several authors have used functions more general than the
power functions. First of all the works of H. P. Mulholland [8] and M. Mateljevič and
M. Pavlovič [7] should be mentioned in this respect. The following definition is due to
Mateljevič and Pavlovič.

Δ(q, p) (q � p > 0) denotes the family of the nonnegative real functions ϕ(x)
defined on [0,∞) with the following properties: ϕ(0) = 0 , and there exist q � p > 0
such that ϕ(t)

tq is nonincreasing and ϕ(t)
tp is nondecreasing on (0,∞) .

Δ will denote the set of the functions ϕ(x) belonging to Δ(q, p) for some q �
p > 0 .

We need some subclasses of Δ .
Δ(1) and Δ(2) denote the families of functions ϕ(x) belonging to Δ(q, p) for some

q � p � 1 and q � p > 1 , respectively.
The aim of the present paper is to generalize the classes of sequences mentioned

above and to prove embedding theorems similar to those of Leindler [5], [6] using ϕ ∈ Δ
instead of xp .
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Since the relation (1.6) is not true for p = 1 (see for example an = 1
log n ) the

following question occurs: does the embedding relation (1.6) hold for functions like
x logα(1 + x) (α > 0) instead of xp (p > 1) ? In addition to the generalization of (1.6)
we want to answer this question, too. Therefore we need one more new function-class,
wider than Δ(2) and narrower than Δ(1) which contains the functions like x logα(1+x) ,
too. The definition reads as follows:

Δ(3) is the collection of functions ϕ(x) belonging to Δ(q, 1) for some q > 1 such
that for all 0 < A there exists 1 < p(A) = p satisfying that ϕ(x)

xp is nondecreasing on
(0, A) .

From the above definitions directly follows that

Δ(2) ⊂ Δ(3) ⊂ Δ(1) ⊂ Δ. (1.8)

Before formulating our result we give the definitions of the new modified classes
of sequences building on the functions ϕ ∈ Δ .

Fϕ can be got by changing (1.1) to

∞∑
n=1

ϕ
(∑∞

k=n ϕ(|Δ ak|)
n

)
< ∞, (1.9)

where ϕ denotes the inverse of ϕ .
Sϕ can be got from Sp if we only change (1.2) to

1
n

n∑
k=1

ϕ(|Δ ak|)
ϕ(Ak)

= O(1). (1.10)

F∗
ϕ is defined by replacing (1.3) by

∞∑
m=1

2mϕ

(∑2m+1

n=2m+1 ϕ(|Δ an|)
2m

)
< ∞. (1.11)

Sϕ(δ) can be defined just by changing (1.4) to

1
n

n∑
k=1

ϕ(|Δ ak|)
ϕ(Ak)

= O(1). (1.12)

Sϕ(A) is defined merely by replacing (1.5) by

1
n

n∑
k=1

ϕ(|Δ ak|)
ϕ(Ak)

= O(1). (1.13)

After giving the definitions of the above classes we can formulate our result which
is the generalization of Leindler’s theorems proved in [5] and [6] furthermore it contains
the case ϕ(x) = x logα(1 + x) (α > 0) , too.
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2. Result

THEOREM. If ϕ ∈ Δ(3) then the following embedding relations

Fϕ ⊆ Sϕ ⊆ Sϕ(δ) ⊆ Sϕ(A) ⊆ F∗
ϕ ⊆ Fϕ

hold.

COROLLARY. If ϕ ∈ Δ(3) then the following identity holds:

Fϕ ≡ Sϕ ≡ Sϕ(δ) ≡ Sϕ(A) ≡ F∗
ϕ .

REMARK. It can be proved that there exists a function ϕ̃(x) �∈ Δ(3) such that
ϕ̃(x) ∈ Δ(1), limx→0+

ϕ̃(x)
x = 0 , for all p > 1 : limx→0+

xp

ϕ̃(x) = 0 and F∗̃
ϕ �⊆ Fϕ̃ . See

for example

ϕ̃(x) =

{
x

| ln x| , if 0 < x < 1
e ,

ex2, if 1
e � x,

and a := 1
log n serves the sequence for which a ∈ F∗̃

ϕ and a �∈ Fϕ̃ .

3. Lemmas

LEMMA 1. If ϕ ∈ Δ(q, p) (q � p > 0) and 0 � Θ � 1, 1 � η then

Θqϕ(t) � ϕ(Θ t) � Θpϕ(t) (3.1)

and
ηpϕ(t) � ϕ(ηt) � ηqϕ(t) for t � 0. (3.2)

If ϕ ∈ Δ(3) then the right side of (3.1) holds for all intervall (0, A) where
ϕ(t)
tp is nondecreasing.

The result (3.1) is a part of Lemma 1 in [7] and (3.2) is an obvious consequence
of (3.1). The last statement follows immediately from the definition of Δ(3) .

LEMMA 2. If ϕ ∈ Δ(1) then

ϕ

( ∞∑
i=1

ai

)
�

∞∑
i=1

ϕ(ai)

where ϕ is the inverse of ϕ and ai � 0 for all i .

Proof. Since according to the definition and Lemma 1 the function ϕ is strictly
monotonic and continuous, ϕ exists.

It is enough to prove that for all positive a and b

ϕ(a + b) � ϕ(a) + ϕ(b) holds. (3.3)
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Taking x = ϕ(a) and y = ϕ(b) (3.3) is equivalent to

ϕ(x) + ϕ(y) � ϕ(x + y). (3.4)

Let us suppose that y � x . Since ϕ(t)
t is nondecreasing we have

ϕ(x + y) =
ϕ(x + y)

x + y
(x + y) � ϕ(x)

x
(x + y) = ϕ(x) + ϕ(x)

y
x

� ϕ(x) + ϕ(y)

which gives (3.4) and this completes the proof of Lemma 2.

LEMMA 3. If ϕ ∈ Δ(3) and {bi} is a bounded sequence of positive numbers then
for any i

i∑
m=0

2mϕ
(

bi

2m

)
� K · 2iϕ

(
bi

2i

)
, (3.5)

where K is independent of {bi} and i .

[In (3.5) and later in the sequel K denotes a positive constant, not necessarily the same
on any two occurrences].

Proof. Let A > 0 such that ϕ(A
2 ) > B where bi � B for all i , and p > 1

satisfying that ϕ(t)
tp is nondecreasing on (0, A) . First we show that for all x ∈ (0; A

2

)
2ϕ(x) � ϕ(21/px) (3.6)

holds. Indeed, using Lemma 1 for Θ = 2−1/p

ϕ(x) = ϕ
(

1
21/p

· 21/px

)
�
(
2−

1
p

)p
ϕ(21/px) =

1
2
ϕ(21/px)

which gives (3.6).
From (3.6) we get

21/px � ϕ(2ϕ(x)) (3.7)
and taking t = ϕ(x) we have

21/pϕ(t) � ϕ(2t) (3.8)
if t ∈ (0,ϕ(A

2 )) .
Using (3.8) we obtain that for arbitrary i

2m+1ϕ
(

bi
2m+1

)
2mϕ

(
bi
2m

) � 21− 1
p > 1, (3.9)

which immediately gives (3.5).

LEMMA 4. Let {cn} be a δ -quasi-monotone sequence with
∞∑

n=1

n δn < ∞.

If
∑∞

n=1 cn converges, then
∑∞

n=1(n + 1)|Δ cn| < ∞ .

This result can be found in [10].
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LEMMA 5. If Rn is a nonnegative monotonically decreasing sequence such that

∞∑
n=1

Rn < ∞ (3.10)

then there exists a monotone decreasing sequence {An} such that for any n � 1

Rn � An, (3.11)

An � K A2n, (3.12)
∞∑
k=1

Ak < ∞. (3.13)

This statement can be found in the proof of Theorem of L. Leindler in [5].

4. Proofs

The kernel of the proofs in our statements is the same as in those of Leindler, we
had to modify the method only in the points which need changes because of replacing
the functions xp by ϕ(x) .

First we prove the embedding relation

Fϕ ⊆ Sϕ .

If a ∈ Fϕ then setting

Rn := ϕ
(∑∞

k=n ϕ|Δ ak|
n

)
,

by (1.9) we get
∞∑

n=1

Rn < ∞ (4.1)

and since Rn ↓ therefore the sequence {Rn} satisfies the conditions Lemma 5, and so
there exists {An} with (3.11)–(3.13).

Using these inequalities we get that if 2i � n < 2i+1

n∑
k=1

ϕ(|Δ ak|)
ϕ(Ak)

=
n∑

k=1

kϕ(Rk) − (k + 1)ϕ(Rk+1)
ϕ(Ak)

�
i∑

m=0

2m+1−1∑
k=2m

[kϕ(Rk) − (k + 1)Rk+1]
1

ϕ(Ak)

�
i∑

m=0

2mϕ(R2m) · 1
ϕ(A2m+1)

= I.
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Using (3.11), (3.12) and Lemma 1 and (1.8) we have that

I � K ·
i∑

m=0

2mϕ(A2m) · 1
ϕ(A2m)

� Kn

and this proves that a ∈ Sϕ holds, that is Fϕ ⊆ Sϕ .
Next we prove the relation Sϕ ⊆ Sϕ(δ) . This relation is obviously follows from

the definition taking δk = k−3 .
Now we show the embedding Sϕ(δ) ⊆ Sϕ(A) . Since a ∈ Sϕ(δ) there exists

a δ -quasi-monotone sequence {An} with
∑∞

n=1 n δn < ∞ . Applying Lemma 4 we
get that

∑∞
n=1 n|ΔAn| < ∞ . At the same time the estimation (1.13) is automatically

satisfied by a ∈ Sϕ(δ) because of (1.10). Thus Sϕ(δ) ⊆ Sϕ(A) is proved.
Next we prove the embedding relation

Sϕ(A) ⊆ F∗
ϕ .

The first part of the proof is the same as in [6].
Setting

Dm :=
2m+1∑
n=2m

|ΔAn|.

By
∑∞

n=1 n|ΔAn| < ∞ we obtain that

∞∑
m=0

2mDm < ∞. (4.2)

Since An → 0 thus

A2m =
∞∑

n=2m

ΔAn �
∞∑

n=m

Dn.

Utilizing the last inequality and (4.2) we get that

∞∑
m=1

2mA2m �
∞∑

m=1

2m
∞∑

n=m

Dn =
∞∑

n=1

Dn

n∑
m=1

2m � 2
∞∑
n=1

2nDn < ∞. (4.3)

Now we define one more sequence {Cm} as follows:

Cm := A2m + Dm for all m � 1.

If 2m < k � 2m+1 then

Ak = A2m −
k∑

n=2m

ΔAn � A2m +
k−1∑
n=2m

|ΔAn| � A2m + Dm = Cm.
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Using this estimation we have the following inequality

∞∑
m=1

2mϕ

(∑2m+1

n=2m+1 ϕ(|Δ an|)
2m

)
=

∞∑
m=1

2mϕ

⎛
⎝∑2m+1

n=2m+1
ϕ(|Δ an|)
ϕ(An)

ϕ(An)

2m

⎞
⎠

�
∞∑

m=1

2mϕ

⎡
⎣∑2m+1

n=2m+1
ϕ(|Δ an|)
ϕ(An)

2m
ϕ(Cm)

⎤
⎦ = I.

(4.4)

Since a ∈ Sϕ(A) we get by (1.13) that the sum in the bracket is ϕ(Cm) · O(1) , that is

I �
∞∑

m=1

2mϕ(Kϕ(Cm)) = II. (4.5)

By Lemma 1, using (1.8) we have that

II � K ·
∞∑

m=1

2mCm. (4.6)

Taking into account (4.2) and (4.3) we get that the right hand side of (4.6) is finite
which by (4.4)–(4.6) proves that a ∈ F∗

ϕ .
Herewith the embedding relation

Sϕ(A) ⊆ F∗
ϕ

is also proved.
Finally we show the embedding statement F∗

ϕ ⊆ Fϕ

∞∑
n=2

ϕ
(∑∞

k=n ϕ(|Δ ak|)
n

)
�

∞∑
m=0

2m+1∑
n=2m+1

ϕ
(∑∞

k=n ϕ(|Δ ak|)
2m

)

�
∞∑

m=0

2mϕ
(∑∞

k=2m+1 ϕ(|Δ ak|)
2m

)
= I∗.

(4.7)

By using Lemma 2, and (1.8) we have that

I∗ �
∞∑

m=0

2m
∞∑

i=m

ϕ

⎡
⎣ 2i+1∑

k=2i+1

ϕ(|Δ ak|)
2m

⎤
⎦ = I∗∗. (4.8)

By changing the order of summation we get from (4.8) that

I∗∗ =
∞∑
i=0

i∑
m=0

2mϕ

⎡
⎣ 1

2m

2i+1∑
k=2i+1

ϕ(|Δ ak|)
⎤
⎦ . (4.9)
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Since the boundedness of the sequence γi :=
∑2i+1

k=2i+1 ϕ(|Δak|) follows from (1.11),
we can use Lemma 3 with {γi} in place of {bi} , so we obtain that

I∗∗ � K
∞∑
i=0

2iϕ

[∑2i+1

k=2i+1 ϕ(|Δ ak|)
2i

]
. (4.10)

If a ∈ F∗
ϕ then the sum in (4.10) is finite thus from (4.7)–(4.10) it follows that the first

sum in (4.7) is also finite, that is a ∈ Fϕ .
Thus the relation

F∗
ϕ ⊆ Fϕ

is proved.
The proof of Theorem is complete.
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