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AVERAGING OPERATORS ON [} AND 17®)

DavID E. EDMUNDS AND ALES NEKVINDA

(communicated by L. Pick)

Abstract. We consider the generalized Lebesgue space I/ @) and its discrete analogue i{pn} ,
each given the appropriate Luxemburg norm. Let T} be the averaging operator given by

(an+ans1 +- + ayg1),a = {an} € 1P},

1
(Tra)n = %

We show that the 7} are uniformly bounded from 1Pn} into 1Pn} under certain assumptions
on p, and find a counter—example to show that 7} need not be bounded if these assumptions
are not satistied.

Moreover, we construct a bounded Lipschitz function p(x) on [0,00) such that the
operator T given, for each

T () = © /O S

N

is unbounded on IPY) forall s > 0.

1. Introduction

The generalized Lebesgue space L) and the corresponding Sobolev space W'#)
have attracted more and more interest in recent years. We refer to [5] for the establish-
ment of the fundamental properties of these spaces, to [2] for some properties of the
norm on 7%, and to [4] for inequalities of Sobolev type. Further motivation for the
study of these spaces is provided in [6,7] by means of mathematical models of elec-
trorheological fluids which involve nonlinear systems of partial differential equations
with coefficients of variable rate of growth.

A crucial difference between L) and the classical Lebesgue spaces is that 1)
is not, in general, invariant under translation (see [5], Ex. 2.9). Because of this, serious
problems arise with regard to convolutions, the density of smooth functions in W't
(see [3] and [8]) and the boundedness of the Hardy-Littlewood maximal operator. With
this last difficulty in mind we consider in this paper the averaging operator 7T given,
foreach s > 0, by

=1 [ s
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It is easy to see that for all s > 0 and all g € [1,00], T, is bounded from the classical
Lebesgue space LI(R) to L?(R), with norm independent of s. Here we show that in
[P the situation is much worse, for we construct a bounded Lipschitz function p(x)
such that for all s > 0, T, is unbounded from 17()(0, 00) to itself. We also consider
a discrete analogue [/ of 1’¥) and discrete versions of T} of the form

1
Tra = {(Tka)n}nela (Tka)n = %(an +api1+-+ an+k—1)>a = {an} € Z{Pn}7

where k € N, a = {ay}nez € 1{rn} | For a certain class of non-constant sequences
{p,} we show that the T} are bounded (uniformly with respect to k) from [{*"} to
itself. A counter—example is given to remove any faint hope that 7, might be bounded
for all sequences {p,}.

2. Preliminaries

Let Z denote the set of all integers and let {a,},cz (or simply {a,}) denote a
sequence of real numbers defined on Z. Let € be a subset of R and p be a measure on
Q; #(Q,u) will denote the set of all u -measurable functions defined on Q. When
Q = (0,00) and u is the Lebesgue measure on Q we write .#(Q, u) = .#(0,00).
We fix through the paper a sequence {p;}, 1 < p; forany k € Z and a u -measurable
function p(x), 1 < p(x) < co. We recall the definition of a Banach function space.

DEFINITION 2.1. A linear space X, X C #(Q, ), is called a Banach function
space if there exists a functional ||.||x : #(Q,u) — [0,00] with the norm property
satisfying:

f €Xifandonly if |If ||x < oc; ()
I llx = [ 1x forall f € M(Q, u); (i)
FO<fu A f then ||fullx / [If [|x; (iii)
IfE C Q,U(E) < 0o, then ||xellx < oo; (iv)
Sforany E C Q with u(E) < co (v)

there is a positive constant ¢(E) such that

/EV(X)‘dX < c(E)|f ||x forallf € X.

DEFINITION 2.2. Let T be a linear mapping from # (Q,u) into itself. We say
that T is a positive operator if Tf > 0 u-almost everywhere forany f > 0 U -almost
everywhere.

LEMMA 2.3. Let X,Y be Banach function spaces and T : X — Y be a positive
operator which is unbounded as an operator from X to Y. Then there is f € X such
that |[f||lx < 1 and ||Tf ||y = o0.

Proof. The proof is an easy modification of the proof of Theorem 1.8, Chap.1 in
1. O
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DEFINITION 2.4. Denote for a = {a,}, a, € R, and for f(x) € #(0,00) the
Luxemburg norms by

lall =

nez

and

0o (x)
17 = int > 0 ‘% dr< 1)
0

Define spaces 18P} and 1P >(0 o0) by

1) = {a:lall < oc}

and

L'Y(0,00) = {f € A (0,00): If || < o0}
It is not difficult to prove the following lemma.
LEMMA 2.5. Both 1%} and 17"¥)(0, 00) are Banach function spaces.

Proof. Let us prove only the case /™ (0,00). The properties (i), (ii), (iv) are
trivial.

Prove (iii). Let 0 < f,, /" f . Assume for simplicity A = |If]| < co. The case
A :==|If || = oo would be proved analogously. Set A, := ||f,||. It is not difficult to
verify that A, is nondecreasing and A, < A. Our aim is to prove 4, / A. Assume
the contrary. Then there isa § > 0 such that A, <A —25. Since

[ e 1

forall v > 0 we obtain
[ee] p(x) oo
1 2/ fn(x) dx}/ fn(x)
0 A +0

[ [l

which is a contradiction.
To prove (v) it suffices to write

/) Wi, Wi,
e I /{er:v<x><nf|} TR +/{xezs:w)c>|>nf|} e

<lxe E@I < IFI)] +/{YGEW - iW
which implies [ |f (x)|dx < (|E|+ 1)|If||. O
E

n

p(x)
dx

dx >1

dx < |[E|+1
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LEMMA 2.6. Let Sup,,cz pn < 00 and €ss Supye(o,00)P(X) < 00. Then
e}t — {a;z la,|P" < oo}
ne

and

’9(0,00) = {f € ///(O,oo);/oOO If (x)]P™dx < oo}

Proof. Let us prove this lemma only for the space [{”"} as the proof for the space
17¥(0,00) would be analogous. Denote p* = sup,.; p, and let ||a|| < co. Then

there is A > 0 such that 3 [% |
nez

|an |Pn |an |Pn |an |Pn
< <
;Z (max(1,A))"" ;Z max(1,A)P Z Apn

an
A

< 1. Thus we can write

which gives

S @l < (max(1,1))"

neZ
On the other hand, suppose > |a,["" < A < oco. Without loss of generality we can
ne
assume A > 1. Then
|an| \ P |an|™
S (F) <<
ne ne”z

and, consequently, ||a|| < A which finishes the proof. [

The following lemma is an easy consequence of Lemma 2.3, Lemma 2.5 and
Lemma 2.6.

LEMMA 2.7. Let €S8 SUpye(0,00)P(X) < 00; let T : LP™(0,00) — .#(0,00) be
positive. Then the following statements are equivalent:

T is unbounded as an operator from I’ (0, 00 into itself; (1)

there is f > 0 with / f(x)PWdx < 1 and / (Tf (x))PPdx = 0. (ii)
0 0

LEMMA 2.8. Let sup, ., pn < oo and T be a linear mapping which maps the set
of all real-valued sequences into itself. Let ¢ be a positive constant such that

Z la, " < 1 = Z | (Ta)n

nez nez

Pn

<L c.

Then
|Tal| < max(1,c)|all.

Proof. Assume 0 < |ja]| < oo as the other cases are clear. Then

Z(ﬁ)l’ngl

nez
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According to the assumptions we have

S| <
Then n . n
2 ("Gaama)) < ma(1,0) 2 (r(ran)),

c
S —~ <L
max(1,c)

This gives ||T(a)|| < max(1,c)||«|| and the lemma follows. [J

In an analogous way we can prove the following lemma.

LEMMA 2.9. Let essSupyc(0,00)P(X) < 00 and let T be a linear mapping from
M (0,00) into itself. Let there exist a positive constant ¢ such that

/ [ (0P Pde < 1 :>/ |Tf ()Y dx < c.
0 0

Then T is a bounded linear operator on L’¥)(0, o).

3. Boundedness of averaging operators

We adopt the notation x™ = max (0, x) for any real x.

LEMMA 3.1. Let 0 < by, > by, <1, let & < 1 and suppose that € = Y, € <

nez nez
00. Then
Yobie <elie(1+e).
nez
Proof. Set

Z, = {n e Ze, <0}
Zo={n€Z\7Z;b, > &}
Zz = {l’lEZ\Zl;bn < 8”}.

Since Z, ,Z, ,Z3 are pair-wise disjoint and Z; U Z; U Z3 = 7Z we can write
by = "b Y b+ Y by =L+ L+ . (3.1)
nez neZy neZs neZs

Note that, according to the assumptions, b, < 1 forall n € Z.
Let n € Z;. Then 1 — ¢, > 1 and b)~% < b,. Thus

L'<Y b (3.2)

neZy
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Let n € Z,.

Then b, > &, and, consequently, b, % < g% .
g < e¢ . Thus

Since ¢, > 0,

. (3.3)
neZls

Let n € Z3. Then 0 < b, < €, < 1, which gives

fep)
Sm—
|
o
Q
o
o

and yields with (3.1), (3.2) and (3.3),

So e Yt Yotet Ve et
nez neZy nely nels
O

LEMMA 3.2. Let s € Z and Y, |pn+s — pul < A < 00. Assume Y |a, |’ < 1.
nez
Then

nes
on 1
Z [ +A).

nez
Proof. Set b, = |ays|P* and g, = 1

Yob<l &<l D oel <D olal <Dl —pal <A
ne”z

ne”z nez nez

r\

— 2o Then
Pn+s

Using Lemma 3.1 we have

Y lanslr =D by < et (14 4),

n€Z ne€Z
which finishes the proof. [

DEFINITION 3.3. Let k € Z, k > 0. Define a linear operator Ty on 11} by

1
(Tka)n = %(an + ap+1 + -+ anJrk—l)'

LEMMA 3.4. Let supp, < oo and k € Z, k > 0. Assume for 1 < s < k— 1 that
> |Pnss — Pl <Ay < o0o. Then Ty : Hend — [} s bounded and
nez

ITa]l < e +

>-| S

k—
Proof. Assume

> lam <1

. (3.4)
ne
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By the Jensen inequality we have

I:Z Tya), " = Z’ (an + aps1 + -

Pn
nez nez

-+ Aptk—1 )

= k=1 k-1
0 ISARES wp WIER DITARE) 3 w0
n€Z s=0

s=0 neZ

nez s=1 n€ez
By Lemma 3.2 and (3.4) we obtain
k- L k=1
1 1 1 1 ee
SN e c— Y A,
St Z:: St LA
Using Lemma 2.8 we have
ok Kl oL !
1 e 1 e
ITill < max (1,eF + 3" A)) = et + 2374,
s=1 s=1

as required. [

DEFINITION 3.5. We say that the sequence {p,}t.cz satisfies the condition &

(write {p,} € P ) if there exists a number py > 1 and a sequence {&,}ncz such that
€= |es] < o0 and p, =po + €.
nez

Note that {p,} € & gives sup,c; pp < 00

THEOREM 3.6. Let {p,} € & and € be from Definition 3.5. Then | Tl
et (14 2¢) forall k e N.

Proof. Let g, be a corresponding sequence to {p,} from Definition 3.5 and € =
Y. len]. Set A= 37 |purs — pal. Clearly, Ay = 3 |65 — & <23, o5 l6] = 2¢
nez ne
for any s. Thus, according to Lemma 2.3 we obtain

1
ITill < et + =3 A <ef(1+2¢). O

4. Counter—examples

In this section we show that if {p,} ¢ & then the operator T; need not be

bounded. Moreover, we construct a bounded Lipschitz function p(x) such that Ty is
unbounded on 17 (0, 00) forall s > 0
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EXAMPLE 4.1. Let 1 < pg < p1 < 00. Define a sequence {py}nez by

{ Do if n isodd
Pn = . .
p1 if n iseven.

Then the operator Ty is not bounded.

Proof. Take any sequence {b, },cz such that

D bl <00 and Y |b,|" = 0.

nez nez
Set
{ 0 if n 1isodd
ap = . .
b2 if n iseven.
Then
D lanr =3 lanf =3 |baf" < co.
nez nez nez
On the other hand,
a, + a Pn o1 +a Pan—1
S I(aypr = 30 | S Y | e
nez nez nez
b, | 1
>S5 - m e -
nez nez

which finishes the proof. [J

EXAMPLE 4.2. There is a Lipschitz function p(x) on (0, 00),with

1< inf p(x) < sup p(x) < oo,
+€(0,50) <€ (000)

such that the operator
1 X+S
e = [ s
is unbounded from LP <x>(0, 00) to itself for any s > 0.

Proof. Let I,J C [0,00). Setting {(I) = inf I, #(I) = sup! we define I to be left
of J if r(I) <I(J).
Define forany n € N, k € N and i € {1,2,...,n} aninterval I,x; by

n(n+1) n i—1 nn+1) n i
In,k,i = D) - k=1 %k 2 - 2k—1 + ? :

Evidently,

1
‘In’k’j| - ? (41)
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We now prove that the system . = {[,x;sn € Nk € N,i € {1,2,...,n}} is a
non-overlapping covering of [0, 00). Take I, x; and I, j- If m <n then

m(m+1 m j m(m+1 m m m(m+1 m
iy = D) mlnt 1) _mlm+ 1)

2 2-1 "2l S ) -1 "2l T 2!

mm+1) nmn—-1) nnr+1) n(n+1) n i—1
< = —n< - = (Inp,
2 2 2 " 2 o1 T e = M)

and so, 1,,;; is left of I,;;. Assume m = n, I < k. Then the inequality [ < k — 1
gives

m(m+ 1) m j _nn+1) n _nn+1) n
Uni) = =5 — gty ST 5 @St 5 Ty
n(n+1) n i—1
g 2 - 2k—1 + 2k == l(ln,k,i)

and I, is leftof I,;,;. Assume m = n, [ = k, j < i. Then the inequality j <i— 1
gives immediately r(L, ;) < I(Iox;) and I, ;; is left of I, 4;.
Thus, the system . is non-overlapping. It remains to prove that . covers

[0,00). Let x > 0. Fix n € N such that "% < x < ) Since

F [n(n+1) n nn+1) n n “n"
:U|: 2 T ook-1’ 2 _2k71+? :UUI"’k’i

it follows that x € 1,,;; for some i and k.
We now construct a function p(x). Let py be a fixed real number, py > % . Let
g be the function defined on [0, 1] = 1,11 by

Po— X on [0, &J;
Po — % on [11_6a13_6]7
q(x) = 1 3017.
po—gtx on [, z];
Po on [%7%]

Then 1 < inf g(x), g(x) is a Lipschitz function with constant 1 and ¢(0) = q(%) =po.
Let us define functions p,x; on I,x; by

Puki(x) = po + 27 V(g2 (x — I(Lux))) — Po)-

Then p,i(x) is Lipschitz with constant 1 and by (4.1) we have

Prjei(l(Inki)) = Prji(r(Ing,i)) = Po- (4.2)
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Set p(x) = puxi(x) for x € I x;. According to (4.2) the function p(x) is continuous
and, consequently, it is Lipschitz with constant 1.
Denote

1
Kk = {l(ln,k’,-) + 5 kil (In,k,i)]
and

1 3
Juki = |:Z(In,k,i) + §|In,k,i\, WIng;) + §|In,k,i] .

We remark that
1

1
|Kn kil = ST kil = = (4.3)
and
1
p(x) = po on Kuki, p(x) = po = 55z on Jug (4.4)
Let {a;}£°, be a sequence of positive numbers such that
Za‘?o < land Zaf“g = oo forevery £ > 0. (4.5)

i=1 i=1
An example of such a sequence is {a;}7°, where

00 Po
S(+2) "2 +2) (i+2)"7 In" % (i + 2).
j=1

Let k € N be fixed. We show that T, is not bounded from L’™ (0, c0) into itself.
First we prove that given any ¢ > 0 we can find a function f (x) > 0 such that

/ Oo(f(x))”('”)dx <1 and / OO(THﬂf (x)PPdx > c.
0 0

Fix ¢ > 0. According to (4.5) thereis n € N such that

Soap T s amte, (4.6)
i=1

Set
k+1
= 2p0 ZazXK,,k,

Then due to (4.3), (4.4), and (4.5) we have

/f Ydx = Z/ (2% a;)"dy = 2"“Zap”\Knk,|—Zap°\
nk:
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Let x € Jyx;. To calculate (T,—x—if )(x) we first denote S, x; = I(Lyx;) + %\In’k,i|.
Clearly, by (4.1),

ke
Ty vf (x) = 2"“/ f()de
Snke,it 5 In il kel
= 2k+1/ f(n)de = 2k+12p° dig |Inkt‘ = _2p° -

Sokii

Thus, using (4.3), (4.4) and (4.6) it follows that

o0 1 k+1 (X)
/ (T2 i—f (x / 21’0 a; xjnﬁk,i(x)dx
0

_z—k—,%

1 k+1 po
- Z =27 a; |Jn,k,i|

f§ :42 K —popktin—pg (k+1)27 = a2 s 1
k2
i=1

k—3
>4~ Po IZ po=27"" 5 0
We have proved that for any ¢ > 0 there is a function f with

/ h F(x)PWdx <1 and / h (Ty—imrf ) (x)PWdx > c.
0 0

Since the T, are positive operators on .# (0,00) we have according to Lemma 2.3
functions f,(x) with

/ filx <1 and / M(Tszflfk)(x)p(")dx: 0.
0

Let s > 0. Take any & such that 2k+1 <s. Set f(x) = fi(x). Thus,

/ F)PYde < 1
0

0o 0o x+s (%)
¥ — L ),,
[T anwrtac= [T (5 [T noa) o
00 1 x+27k71 p(x)
> /0 (mzkﬂ /x fk(t)dt> dx

1 pPo o]
2 (m) /o (Tyimrf ) ()W x = oo

Thus, the operator T is unbounded which finishes the proof. [

and
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