
Mathematical
Inequalities

& Applications
Volume 5, Number 2 (2002), 235–246

AVERAGING OPERATORS ON l{pn} AND Lp(x)

DAVID E. EDMUNDS AND ALEŠ NEKVINDA

(communicated by L. Pick)

Abstract. We consider the generalized Lebesgue space Lp(x) and its discrete analogue l{pn} ,
each given the appropriate Luxemburg norm. Let Tk be the averaging operator given by

(Tka)n =
1
k
(an + an+1 + · · · + an+k−1), a = {an} ∈ l{pn}.

We show that the Tk are uniformly bounded from l{pn} into l{pn} under certain assumptions
on pn and find a counter–example to show that Tk need not be bounded if these assumptions
are not satisfied.

Moreover, we construct a bounded Lipschitz function p(x) on [0,∞) such that the
operator Ts given, for each

Tsf (x) =
1
s

∫ s

0
f (t)dt

is unbounded on Lp(x) for all s > 0 .

1. Introduction

The generalized Lebesgue space Lp(x) and the corresponding Sobolev space W1,p(x)

have attracted more and more interest in recent years. We refer to [5] for the establish-
ment of the fundamental properties of these spaces, to [2] for some properties of the
norm on Lp(x) , and to [4] for inequalities of Sobolev type. Further motivation for the
study of these spaces is provided in [6,7] by means of mathematical models of elec-
trorheological fluids which involve nonlinear systems of partial differential equations
with coefficients of variable rate of growth.

A crucial difference between Lp(x) and the classical Lebesgue spaces is that Lp(x)

is not, in general, invariant under translation (see [5], Ex. 2.9). Because of this, serious
problems arise with regard to convolutions, the density of smooth functions in W1,p(x)

(see [3] and [8]) and the boundedness of the Hardy–Littlewood maximal operator. With
this last difficulty in mind we consider in this paper the averaging operator Ts given,
for each s > 0 , by

Tsf (x) =
1
s

∫ x+s

x
f (t)dt.
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It is easy to see that for all s > 0 and all q ∈ [1,∞] , Ts is bounded from the classical
Lebesgue space Lq(R) to Lq(R) , with norm independent of s . Here we show that in
Lp(x) the situation is much worse, for we construct a bounded Lipschitz function p(x)
such that for all s > 0 , Ts is unbounded from Lp(x)(0,∞) to itself. We also consider
a discrete analogue lpn of Lp(x) and discrete versions of Tk of the form

Tka = {(Tka)n}n∈Z, (Tka)n =
1
k
(an + an+1 + · · · + an+k−1), a = {an} ∈ l{pn},

where k ∈ N , a = {an}n∈Z ∈ l{pn} . For a certain class of non-constant sequences
{pn} we show that the Tk are bounded (uniformly with respect to k ) from l{pn} to
itself. A counter–example is given to remove any faint hope that Tk might be bounded
for all sequences {pn} .

2. Preliminaries

Let Z denote the set of all integers and let {an}n∈Z (or simply {an} ) denote a
sequence of real numbers defined on Z . Let Ω be a subset of R and μ be a measure on
Ω ; M (Ω,μ) will denote the set of all μ -measurable functions defined on Ω . When
Ω = (0,∞) and μ is the Lebesgue measure on Ω we write M (Ω,μ) = M (0,∞) .
We fix through the paper a sequence {pk} , 1 � pk for any k ∈ Z and a μ -measurable
function p(x) , 1 � p(x) < ∞ . We recall the definition of a Banach function space.

DEFINITION 2.1. A linear space X , X ⊂ M (Ω,μ) , is called a Banach function
space if there exists a functional ‖.‖X : M (Ω,μ) → [0,∞] with the norm property
satisfying:

f ∈ X if and only if ‖f ‖X < ∞; (i)
‖f ‖X = ‖ |f | ‖X for all f ∈ M(Ω,μ); (ii)
if 0 � f n ↗ f then ‖f n‖X ↗ ‖f ‖X; (iii)
if E ⊂ Ω,μ(E) < ∞, then ‖χE‖X < ∞; (iv)
for any E ⊂ Ω with μ(E) < ∞ (v)
there is a positive constant c(E) such that∫

E
|f (x)|dx � c(E)‖f ‖X for all f ∈ X.

DEFINITION 2.2. Let T be a linear mapping from M (Ω,μ) into itself. We say
that T is a positive operator if Tf � 0 μ -almost everywhere for any f � 0 μ -almost
everywhere.

LEMMA 2.3. Let X , Y be Banach function spaces and T : X → Y be a positive
operator which is unbounded as an operator from X to Y . Then there is f ∈ X such
that ‖f ‖X � 1 and ‖Tf ‖Y = ∞ .

Proof. The proof is an easy modification of the proof of Theorem 1.8, Chap.1 in
[1]. �
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DEFINITION 2.4. Denote for a = {an} , an ∈ R , and for f (x) ∈ M (0,∞) the
Luxemburg norms by

‖a‖ = inf{λ > 0;
∑
n∈Z

∣∣∣an

λ

∣∣∣pn
� 1}

and

‖f ‖ = inf{λ > 0;
∫ ∞

0

∣∣∣∣ f (x)
λ

∣∣∣∣
p(x)

dx � 1}

Define spaces l{pn} and Lp(x)(0,∞) by

l{pn} = {a; ‖a‖ < ∞}
and

Lp(x)(0,∞) = {f ∈ M (0,∞); ‖f ‖ < ∞}.
It is not difficult to prove the following lemma.

LEMMA 2.5. Both l{pn} and Lp(x)(0,∞) are Banach function spaces.

Proof. Let us prove only the case Lp(x)(0,∞) . The properties (i), (ii), (iv) are
trivial.

Prove (iii). Let 0 � f n ↗ f . Assume for simplicity λ := ‖f ‖ < ∞ . The case
λ := ‖f ‖ = ∞ would be proved analogously. Set λn := ‖f n‖ . It is not difficult to
verify that λn is nondecreasing and λn � λ . Our aim is to prove λn ↗ λ . Assume
the contrary. Then there is a δ > 0 such that λn � λ − 2δ . Since

∫ ∞

0

∣∣∣∣ f n(x)
ν

∣∣∣∣
p(x)

dx ↗
∫ ∞

0

∣∣∣∣ f (x)
ν

∣∣∣∣
p(x)

dx

for all ν > 0 we obtain

1 �
∫ ∞

0

∣∣∣∣ f n(x)
λn

∣∣∣∣
p(x)

dx �
∫ ∞

0

∣∣∣∣ f n(x)
λn + δ

∣∣∣∣
p(x)

dx

�
∫ ∞

0

∣∣∣∣ f n(x)
λ − δ

∣∣∣∣
p(x)

dx ↗
∫ ∞

0

∣∣∣∣ f (x)
λ − δ

∣∣∣∣
p(x)

dx > 1

which is a contradiction.
To prove (v) it suffices to write∫

E

|f (x)|
‖f ‖ dx =

∫
{x∈E;|f (x)|�‖f ‖}

|f (x)|
‖f ‖ dx +

∫
{x∈E;|f (x)|>‖f ‖}

|f (x)|
‖f ‖ dx

� |{x ∈ E; |f (x)| � ‖f ‖}| +
∫
{x∈E;|f (x)|>‖f ‖}

∣∣∣∣ f (x)
‖f ‖

∣∣∣∣
p(x)

dx � |E| + 1

which implies
∫
E
|f (x)|dx � (|E| + 1)‖f ‖ . �
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LEMMA 2.6. Let supn∈Z
pn < ∞ and ess supx∈(0,∞)p(x) < ∞ . Then

l{pn} = {a;
∑
n∈Z

|an|pn < ∞}

and

Lp(x)(0,∞) = {f ∈ M (0,∞);
∫ ∞

0
|f (x)|p(x)dx < ∞}.

Proof. Let us prove this lemma only for the space l{pn} as the proof for the space
Lp(x)(0,∞) would be analogous. Denote p∗ = supn∈Z

pn and let ‖a‖ < ∞ . Then
there is λ > 0 such that

∑
n∈Z

∣∣ an
λ

∣∣pn � 1 . Thus we can write

∑
n∈Z

|an|pn

(max(1, λ ))p∗ �
∑
n∈Z

|an|pn

max(1, λ )pn
�
∑
n∈Z

|an|pn

λ pn
� 1

which gives ∑
n∈Z

|an|pn �
(
max(1, λ )

)p∗
.

On the other hand, suppose
∑
n∈Z

|an|pn � λ < ∞ . Without loss of generality we can

assume λ � 1 . Then ∑
n∈Z

( |an|
λ

)pn
�
∑
n∈Z

|an|pn

λ
� 1

and, consequently, ‖a‖ � λ which finishes the proof. �
The following lemma is an easy consequence of Lemma 2.3, Lemma 2.5 and

Lemma 2.6.

LEMMA 2.7. Let ess supx∈(0,∞)p(x) < ∞ ; let T : Lp(x)(0,∞) → M (0,∞) be
positive. Then the following statements are equivalent:

T is unbounded as an operator from Lp(x)(0,∞) into itself; (i)

there is f � 0 with
∫ ∞

0
f (x)p(x)dx � 1 and

∫ ∞

0
(Tf (x))p(x)dx = ∞. (ii)

LEMMA 2.8. Let supn∈Z
pn < ∞ and T be a linear mapping which maps the set

of all real–valued sequences into itself. Let c be a positive constant such that∑
n∈Z

|an|pn � 1 =⇒
∑
n∈Z

∣∣(Ta
)

n

∣∣pn � c.

Then
‖Ta‖ � max(1, c)‖a‖.

Proof. Assume 0 < ‖a‖ < ∞ as the other cases are clear. Then∑
n∈Z

( an

‖a‖
)pn

� 1.
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According to the assumptions we have

∑
n∈Z

∣∣∣∣(T( a
‖a‖

))
n

∣∣∣∣
pn

� c.

Then ∑
n∈Z

∣∣∣∣(T( a
max(1, c)‖a‖

))
n

∣∣∣∣
pn

� 1
max(1, c)

∑
n∈Z

∣∣∣∣(T( a
‖a‖

))
n

∣∣∣∣
pn

� c
max(1, c)

� 1.

This gives ‖T(a)‖ � max(1, c)‖a‖ and the lemma follows. �
In an analogous way we can prove the following lemma.

LEMMA 2.9. Let ess supx∈(0,∞)p(x) < ∞ and let T be a linear mapping from
M (0,∞) into itself. Let there exist a positive constant c such that∫ ∞

0
|f (x)|p(x)dx � 1 =⇒

∫ ∞

0
|Tf (x)|p(x)dx � c.

Then T is a bounded linear operator on Lp(x)(0,∞) .

3. Boundedness of averaging operators

We adopt the notation x+ = max(0, x) for any real x .

LEMMA 3.1. Let 0 � bn ,
∑
n∈Z

bn � 1 , let εn < 1 and suppose that ε =
∑
n∈Z

ε+
n <

∞ . Then ∑
n∈Z

b1−εn
n � e1/e(1 + ε).

Proof. Set

Z1 = {n ∈ Z; εn � 0}
Z2 = {n ∈ Z \ Z1; bn > εn}
Z3 = {n ∈ Z \ Z1; bn � εn}.

Since Z1 ,Z2 ,Z3 are pair-wise disjoint and Z1 ∪ Z2 ∪ Z3 = Z we can write∑
n∈Z

b1−εn
n =

∑
n∈Z1

b1−εn
n +

∑
n∈Z2

b1−εn
n +

∑
n∈Z3

b1−εn
n = I1 + I2 + I3. (3.1)

Note that, according to the assumptions, bn � 1 for all n ∈ Z .
Let n ∈ Z1 . Then 1 − εn � 1 and b1−εn

n � bn . Thus

I1 �
∑
n∈Z1

bn. (3.2)
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Let n ∈ Z2 . Then bn > εn and, consequently, bn
−εn < ε−εn

n . Since εn > 0 ,
ε−εn
n � e

1
e . Thus

I2 � e
1
e
∑
n∈Z2

bn. (3.3)

Let n ∈ Z3 . Then 0 � bn � εn < 1 , which gives

I3 �
∑
n∈Z3

ε1−εn
n � e

1
e
∑
n∈Z3

εn

and yields with (3.1), (3.2) and (3.3),∑
n∈Z

bn
1−εn �

∑
n∈Z1

bn + e
1
e
∑
n∈Z2

bn + e
1
e
∑
n∈Z3

εn � e
1
e (1 + ε).

�
LEMMA 3.2. Let s ∈ Z and

∑
n∈Z

|pn+s − pn| � A < ∞ . Assume
∑
n∈Z

|an|pn � 1 .

Then ∑
n∈Z

|an+s|pn � e
1
e (1 + A).

Proof. Set bn = |an+s|pn+s and εn = 1 − pn
pn+s

. Then

∑
n∈Z

bn � 1, εn < 1,
∑
n∈Z

ε+
n �

∑
n∈Z

|εn| �
∑
n∈Z

|pn+s − pn| � A.

Using Lemma 3.1 we have∑
n∈Z

|an+s|pn =
∑
n∈Z

b1−εn
n � e

1
e (1 + A),

which finishes the proof. �
DEFINITION 3.3. Let k ∈ Z , k > 0 . Define a linear operator Tk on l{pn} by

(Tka)n =
1
k
(an + an+1 + · · · + an+k−1).

LEMMA 3.4. Let sup pn < ∞ and k ∈ Z , k > 0 . Assume for 1 � s � k− 1 that∑
n∈Z

|pn+s − pn| � As < ∞ . Then Tk : l{pn} → l{pn} is bounded and

‖Tk‖ � e
1
e +

e
1
e

k

k−1∑
s=1

As.

Proof. Assume ∑
n∈Z

|an|pn � 1. (3.4)
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By the Jensen inequality we have

I =
∑
n∈Z

|(Tka)n|pn =
∑
n∈Z

∣∣1
k
(an + an+1 + · · · + an+k−1)

∣∣pn

� 1
k

∑
n∈Z

k−1∑
s=0

|an+s|pn =
1
k

k−1∑
s=0

∑
n∈Z

|an+s|pn =
1
k

∑
n∈Z

|an|pn +
1
k

k−1∑
s=1

∑
n∈Z

|an+s|pn .

By Lemma 3.2 and (3.4) we obtain

I � 1
k

+
1
k

k−1∑
s=1

e
1
e (1 + As) � e

1
e +

e
1
e

k

k−1∑
s=1

As.

Using Lemma 2.8 we have

‖Tk‖ � max
(
1, e

1
e +

e
1
e

k

k−1∑
s=1

As

))
= e

1
e +

e
1
e

k

k−1∑
s=1

As

as required. �

DEFINITION 3.5. We say that the sequence {pn}n∈Z satisfies the condition P
(write {pn} ∈ P ) if there exists a number p0 � 1 and a sequence {εn}n∈Z such that
ε =

∑
n∈Z

|εn| < ∞ and pn = p0 + εn .

Note that {pn} ∈ P gives supn∈Z
pn < ∞ .

THEOREM 3.6. Let {pn} ∈ P and ε be from Definition 3.5. Then ‖Tk‖ �
e

1
e (1 + 2ε) for all k ∈ N .

Proof. Let εn be a corresponding sequence to {pn} from Definition 3.5 and ε =∑
n∈Z

|εn| . Set As =
∑
n∈Z

|pn+s − pn| . Clearly, As =
∑
n∈Z

|εn+s − εn| � 2
∑

n∈Z
|εn| = 2ε

for any s . Thus, according to Lemma 2.3 we obtain

‖Tk‖ � e
1
e +

e
1
e

k

k−1∑
s=1

As � e
1
e (1 + 2ε). �

4. Counter–examples

In this section we show that if {pn} 
∈ P then the operator Tk need not be
bounded. Moreover, we construct a bounded Lipschitz function p(x) such that Ts is
unbounded on Lp(x)(0,∞) for all s > 0 .
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EXAMPLE 4.1. Let 1 < p0 < p1 < ∞ . Define a sequence {pn}n∈Z by

pn =
{

p0 if n is odd

p1 if n is even.

Then the operator T2 is not bounded.

Proof. Take any sequence {bn}n∈Z such that∑
n∈Z

|bn|p1 < ∞ and
∑
n∈Z

|bn|p0 = ∞.

Set

an =
{

0 if n is odd

bn/2 if n is even.

Then ∑
n∈Z

|an|pn =
∑
n∈Z

|a2n|p1 =
∑
n∈Z

|bn|p1 < ∞.

On the other hand,

∑
n∈Z

|(T2a)n|pn =
∑
n∈Z

∣∣∣∣an + an+1

2

∣∣∣∣
pn

�
∑
n∈Z

∣∣∣∣a2n−1 + a2n

2

∣∣∣∣
p2n−1

�
∑
n∈Z

∣∣∣∣bn

2

∣∣∣∣
p0

=
1

2p0

∑
n∈Z

|bn|p0 = ∞,

which finishes the proof. �

EXAMPLE 4.2. There is a Lipschitz function p(x) on (0,∞) ,with

1 < inf
x∈(0,∞)

p(x) < sup
x∈(0,∞)

p(x) < ∞,

such that the operator

Tsf (x) =
1
s

∫ x+s

x
f (t)dt

is unbounded from Lp(x)(0,∞) to itself for any s > 0 .

Proof. Let I, J ⊂ [0,∞) . Setting l(I) = inf I, r(I) = sup I we define I to be left
of J if r(I) � l(J) .

Define for any n ∈ N , k ∈ N and i ∈ {1, 2, . . . , n} an interval In,k,i by

In,k,i =
[
n(n + 1)

2
− n

2k−1
+

i − 1
2k

,
n(n + 1)

2
− n

2k−1
+

i
2k

)
.

Evidently,

|In,k,i| =
1
2k

. (4.1)
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We now prove that the system S = {In,k,i; n ∈ N, k ∈ N, i ∈ {1, 2, . . . , n}} is a
non-overlapping covering of [0,∞) . Take Im,k,i and In,l,j . If m < n then

r(Im,l,j) =
m(m + 1)

2
− m

2l−1
+

j
2l

� m(m + 1)
2

− m
2l−1

+
m
2l

=
m(m + 1)

2
− m

2l

<
m(m + 1)

2
� n(n − 1)

2
=

n(n + 1)
2

− n � n(n + 1)
2

− n
2k−1

+
i − 1
2k

= l(In,k,i)

and so, Im,l,j is left of In,k,i . Assume m = n , l < k . Then the inequality l � k − 1
gives

r(Im,l,j) =
m(m + 1)

2
− m

2l−1
+

j
2l

� n(n + 1)
2

− n
2l

� n(n + 1)
2

− n
2k−1

� n(n + 1)
2

− n
2k−1

+
i − 1
2k

= l(In,k,i)

and Im,l,j is left of In,k,i . Assume m = n , l = k , j < i . Then the inequality j � i − 1
gives immediately r(Im,l,j) � l(In,k,i) and Im,l,j is left of In,k,i .

Thus, the system S is non-overlapping. It remains to prove that S covers
[0,∞) . Let x � 0 . Fix n ∈ N such that n(n−1)

2 � x < n(n+1)
2 . Since

[
n(n − 1)

2
,
n(n + 1)

2

)

=
∞⋃
k=1

[
n(n − 1)

2
+

n
2

+
n
22

+ · · · + n
2k−1

,
n(n − 1)

2
+

n
2

+
n
22

+ · · · + n
2k

)

=
∞⋃
k=1

[
n(n + 1)

2
− n

2k−1
,
n(n + 1)

2
− n

2k−1
+

n
2k

)
=

∞⋃
k=1

n⋃
i=1

In,k,i

it follows that x ∈ In,k,i for some i and k .
We now construct a function p(x) . Let p0 be a fixed real number, p0 > 17

16 . Let
q be the function defined on [0, 1

2 ] = I1,1,1 by

q(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p0 − x on [0, 1
16 ];

p0 − 1
16 on [ 1

16 ,
3
16 ];

p0 − 1
4 + x on [ 3

16 ,
1
4 ];

p0 on [ 1
4 ,

1
2 ].

Then 1 < inf q(x), q(x) is a Lipschitz function with constant 1 and q(0) = q( 1
2 ) = p0 .

Let us define functions pn,k,i on In,k,i by

pn,k,i(x) = p0 + 2−(k−1)(q(2k−1(x − l(In,k,i))) − p0).

Then pn,k,i(x) is Lipschitz with constant 1 and by (4.1) we have

pn,k,i(l(In,k,i)) = pn,k,i(r(In,k,i)) = p0. (4.2)
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Set p(x) = pn,k,i(x) for x ∈ In,k,i . According to (4.2) the function p(x) is continuous
and, consequently, it is Lipschitz with constant 1 .

Denote

Kn,k,i =
[
l(In,k,i) +

1
2
|In,k,i|, r(In,k,i)

]
and

Jn,k,i =
[
l(In,k,i) +

1
8
|In,k,i|, l(In,k,i) +

3
8
|In,k,i|

]
.

We remark that

|Kn,k,i| =
1

2k+1
, |Jn,k,i| =

1
2k+2

(4.3)

and

p(x) = p0 on Kn,k,i, p(x) = p0 − 1
2k+3

on Jn,k,i. (4.4)

Let {ai}∞i=1 be a sequence of positive numbers such that

∞∑
i=1

ap0
i � 1 and

∞∑
i=1

ap0−ε
i = ∞ for every ε > 0. (4.5)

An example of such a sequence is {ai}∞i=1 where

ai =

⎛
⎝ ∞∑

j=1

(j + 2)−1 ln−2(j + 2)

⎞
⎠

− 1
p0

(i + 2)−
1
p0 ln−

2
p0 (i + 2).

Let k ∈ N be fixed. We show that T2−k−1 is not bounded from Lp(x)(0,∞) into itself.
First we prove that given any c > 0 we can find a function f (x) � 0 such that∫ ∞

0
(f (x))p(x)dx � 1 and

∫ ∞

0
(T2−k−1 f (x))p(x)dx � c.

Fix c > 0 . According to (4.5) there is n ∈ N such that

n∑
i=1

ap0−2−k−3

i � 4p0+1c. (4.6)

Set

f (x) = 2
k+1
p0

n∑
i=1

aiχKn,k,i(x).

Then due to (4.3), (4.4), and (4.5) we have

∫ ∞

0
f (x)p(x)dx =

n∑
i=1

∫
Kn,k,i

(2
k+1
p0 ai)p0dx = 2k+1

n∑
i=1

ap0
i |Kn,k,i| =

n∑
i=1

ap0
i � 1.
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Let x ∈ Jn,k,i . To calculate (T2−k−1 f )(x) we first denote Sn,k,i = l(In,k,i) + 1
2 |In,k,i| .

Clearly, by (4.1),

T2−k−1 f (x) = 2k+1
∫ x+2−k−1

x
f (t)dt

� 2k+1
∫ Sn,k,i+

1
8 |In,k,i|

Sn,k,i

f (t)dt = 2k+12
k+1
p0 ai

1
8
|In,k,i| =

1
4
2

k+1
p0 ai.

Thus, using (4.3), (4.4) and (4.6) it follows that∫ ∞

0

(
T2−k−1 f (x)

)p(x)
dx �

∫ ∞

0

n∑
i=1

(
1
4
2

k+1
p0 ai

)p(x)

χJn,k,i(x)dx

=
n∑

i=1

(
1
4
2

k+1
p0 ai

)p0−2−k−3

|Jn,k,i|

=
n∑

i=1

42−k−3−p02k+12−
1
p0

(k+1)2−k−3

ap0−2−k−3

i
1

2k+2

� 4−p0
1
2

2−1
n∑

i=1

ap0−2−k−3

i � c.

We have proved that for any c > 0 there is a function f with∫ ∞

0
f (x)p(x)dx � 1 and

∫ ∞

0
(T2−k−1 f )(x)p(x)dx � c.

Since the Ts are positive operators on M (0,∞) we have according to Lemma 2.3
functions f n(x) with∫ ∞

0
f k(x)p(x)dx � 1 and

∫ ∞

0
(T2−k−1 f k)(x)p(x)dx = ∞.

Let s > 0 . Take any k such that 1
2k+1 � s . Set f (x) = f k(x) . Thus,∫ ∞

0
f (x)p(x)dx � 1

and ∫ ∞

0
(Tsf )(x)p(x)dx =

∫ ∞

0

(
1
s

∫ x+s

x
f k(t)dt

)p(x)

dx

�
∫ ∞

0

(
1

2k+1s
2k+1

∫ x+2−k−1

x
f k(t)dt

)p(x)

dx

�
(

1
2k+1s

)p0 ∫ ∞

0
(T2−k−1 f )(x)p(x)dx = ∞.

Thus, the operator Ts is unbounded which finishes the proof. �
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[6] M. RŮŽIČKA, Electrorheological fluids: mathematical modelling and existence theory, Habilitationss-

chrift, Universität Bonn (1998).
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