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STURMIAN COMPARISON METHOD: THE VERSION FOR

FIRST ORDER NEUTRAL DIFFERENTIAL EQUATIONS

Y. DOMSHLAK, G. KVINIKADZE AND I. P. STAVROULAKIS

(communicated by R. P. Agarwal)

Abstract. In this paper the Sturmian Comparison Method is developed for the first order neutral
differential equation of the type

l(y) := [y(t + 1) − P(t)y(t)]
′
+ Q(t)y(t + 1 − σ) = 0, σ � 0. (1)

Using this method, a general theorem is proved on the location of zeros of (1), which is then
applied to obtain two concrete results. The first one of them turns out to be the best possible in
the case where P and Q are constants. The second one is concerned, for the first time, with the
oscillation theory of first order neutral differential equations, in the case where the coefficient
Q(t) is oscillatory.

1. Introduction

In the present paper we investigate oscillation properties of the first order neutral
differential equation of the type

l(y) := [y(t + 1) − P(t)y(t)]
′
+ Q(t)y(t + 1 − σ) = 0, σ � 0, (1)

where P : [a, b] �−→ R and Q : [a, b] �−→ R are continuous.
Throughout the paper we will denote

ρ := max{1,σ − 1}, ρ0 := max{0,σ − 1} (2)

and will suppose that b − a > ρ . Under a solution of Eq. (1) it will be understood
a continuous function y : [a − ρ0, b + 1] �−→ R such that [y(t + 1) − P(t)y(t)] is
continuously differentiable and Eq. (1) is fulfilled on [a, b] .

The main tool in our investigationwill be the Sturmian ComparisonMethod which,
as it is well known, was the starting point for all the oscillation theory. The two classical
Sturmian theorems for second order ordinary differential equations read as follows.

THEOREM A. (The Fundamental Sturm Comparison Theorem) Let a , b be two
adjacent zeroes of a solution y of the equation

y′′ + p(t)y = 0, (3)
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and let

q(t) � p(t) on [a, b].

Then any solution of the equation

z′′ + q(t)z = 0 (4)

has at least one zero on [a, b] .

COROLLARY A1. (The Sturm Oscillation Comparison) If q(t)�p(t) on [t0, +∞)
and all solutions of Eq. (3) are oscillatory, then all solutions of Eq. (4) are also
oscillatory.

Note that these statements radically differ from each other. Theorem 1., describing
properties of solutions on a finite interval, has local character while Corollary 1. refers
to global properties of solutions on the half–axis. It should be noted that just the
latter is known in the literature under the name of Sturm comparison theorem and it
is generalized in many directions (for nonlinear differential equations, higher order
equations, delay differential equations etc.). Corollary A1 was generalized for neutral
differential equations as well (see, for example, [1], Section 3.4). It should be noted,
however, that Corollary A1 and its generalizations, unlike Theorem 1., cannot give any
information about location of zeros of solutions.

The first generalization of Theorem 1. for delay differential equations appeared
in [2]. The method elaborated therein was called Sturmian Comparison Method and
was stated in detail in [3], Chapter 4. First generalizations of Theorem A for neutral
differential equations were published in [4] (for Eq. (1) with σ = 0 ) and in [5] (for
second order neutral differential equations). The complete exposition of [5] can be
found in [6], Section 3.5, as well. In the present paper we continue the investigations in
the direction begun in [4].

2. Sturmian comparison method for neutral differential equations

The object to compare Eq. (1) with is the “testing” inequality

l̃(z)(t) := −z′(t − 1) + P(t)z′(t) + Q̃(t − 1 + σ)z(t − 1 + σ) � 0 on [a, b], (5)

where Q̃ : [a − 1 + σ, b − 1 + σ] �−→ R is continuous.

A solution of Ineq. (5) is a continuously differentiable function z : [a − 1, b +
ρ0] �−→ R satisfying it everywhere on [a, b] .

Let now the functions y : [a − ρ0, b + 1] �−→ R and 0] �−→ R be any solutions
of Eq. (1) and Ineq. (5), respectively. Multiply Eq. (1) by z(t) and Ineq. (5) by y(t) ,
subtract and integrate over [a, b]. Using integration by parts, we obtain the following
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identities. For 0 � σ < 1 :∫ b

a
[ly](t)z(t)dt=

∫ b

a
[l̃z](t)y(t)dt +

∫ b−(1−σ)

a
[Q(t)−Q̃(t)]y(t + 1 − σ)z(t)dt

+
∫ a

a−1
y(t + 1)z′(t)dt −

∫ b

b−1
y(t + 1)z′(t)dt + z(b)[y(b + 1) − P(b)y(b)]

−z(a)[y(a + 1) − P(a)y(a)] −
∫ a

a−(1−σ)
Q̃(t)y(t + 1 − σ)z(t)dt

+
∫ b

b−(1−σ)
Q(t)y(t + 1 − σ)z(t)dt, (6)

for σ > 1 :∫ b

a
[ly](t)z(t)dt=

∫ b

a
[l̃z](t)y(t)dt+

∫ b

a+(σ−1)
[Q(t) − Q̃(t)]y(t + 1 − σ)z(t)dt

+
∫ a

a−1
y(t + 1)z′(t)dt −

∫ b

b−1
y(t + 1)z′(t)dt + z(b)[y(b + 1) − P(b)y(b)]

−z(a)[y(a + 1) − P(a)y(a)] −
∫ b+(σ−1)

b
Q̃(t)y(t + 1 − σ)z(t)dt

+
∫ a+(σ−1)

a
Q(t)y(t + 1 − σ)z(t)dt, (7)

and for σ = 1 :∫ b

a
[ly](t)z(t) =

∫ b

a
[l̃z](t)y(t) +

∫ b

a
[Q(t) − Q̃(t)]y(t)z(t)dt

+
∫ a

a−1
y(t + 1)z′(t)dt −

∫ b

b−1
y(t + 1)z′(t)dt + z(b)[y(b + 1) − P(b)y(b)]

−z(a)[y(a + 1) − P(a)y(a)]. (8)

These identities play a crucial role in proving the following statement in the form
of Theorem A. It combines three cases: 0 � σ < 1, σ > 1 and σ = 1 .

THEOREM 1. Let the functions Q : [a, b] �−→ R and Q̃ : [a+σ−1, b+σ−1] �−→
R be such that

1◦. for 0 � σ < 1 : Q̃(t) � 0 on [a − (1 − σ), a],
for σ > 1 : Q̃(t) � 0 on [b, b + (σ − 1)],
for σ = 1 : no restriction on the sign of Q̃;

(9)

2◦. for 0 � σ � 1 : Q(t) �
{

Q̃(t) on t ∈ [a, b − (1 − σ)],
0 on t ∈ [b − (1 − σ), b];

for σ > 1 : Q(t) �
{

0 on t ∈ [a, a + (σ − 1)],
Q̃(t) on t ∈ [a + (σ − 1), b];

(10)
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3◦ : Ineq. (5) has at least one solution z defined on [a − 1, b + ρ0] such that

(i) z(a) = z(b) = 0, z(t) > 0 on (a, b); (11)

(ii)

⎧⎨
⎩

for 0 � σ < 1 : z(t) � 0 on [a − (1 − σ), a],
for σ > 1 : z(t) � 0 on [b, b + (σ − 1)],
for σ = 1 : no restriction;

(12)

(iii) z′(t) > 0 on [a − 1, a] and z′(t) < 0 on [b − 1, b]. (13)

Then Eq. (1) has no positive solution on (a− ρ0, b + 1) . In other words, any solution
of Eq. (1) has a zero on (a − ρ0, b + 1).

Proof. Suppose that on [a − ρ0, b + 1] there exists a positive solution y of (1)
and for y and z write out (6), (7) or (8). The left-hand side is zero while all the terms
in the right-hand side are nonnegative, at least two of them being strictly positive. This
contradiction proves Theorem 1.

3. Constructing of the “testing” inequalities

Theorem 2., like any comparison theorem, is uneffective since such is the expres-
sion “If Ineq. (5) has a solution z satisfying . . . ”. The problem now is to formulate, in
terms of the coefficients P and Q̃ effective conditions for the existence of such a z.
Lemma 3. and Lemma 3. below are examples of such conditions.

LEMMA 1A. Let σ �= 1 , ϕ : [a−1, b+ρ0] �−→]0, +∞[ be an arbitrary continuous
function such that

∫ b

a
ϕ(t)dt = π,

∣∣∣∣∣
∫ t+σ−1

t
ϕ(t)dt

∣∣∣∣∣ < π, t ∈ [a − 1, b], (14)

and let a continuous function k : [a − 1, b + ρ0] �−→ R satisfy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k(t) < ϕ(t) cot
∫ a

t
ϕ(s)ds on [a − 1, a),

k(t) < ϕ(t) cot
∫ b

t
ϕ(s)ds on [b − 1, b).

(15)

Let, moreover, P : [a, b] �−→ R satisfy

R(t,σ)sgn(σ − 1) � 0 on [a, b] in case σ �= 1, (16)
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where

R(t,σ) = exp

(
−
∫ t

t−1
k(s)ds

)[
ϕ(t − 1) cos

∫ t+σ−1

t−1
ϕ(s)ds

−k(t − 1) sin
∫ t+σ−1

t−1
ϕ(s)ds

]

−P(t)

[
ϕ(t) cos

∫ t+σ−1

t
ϕ(s)ds − k(t) sin

∫ t+σ−1

t
ϕ(s)ds

]
for t ∈ [a, b], (17)

and let Q̃ : [a + σ − 1, b + σ − 1] �−→ R be defined by

Q̃(t + σ − 1) := cosec

(∫ t+σ−1

t
ϕ(s)ds

){
exp

(
−
∫ t+σ−1

t−1
k(s)ds

)
×

×
[
ϕ(t − 1) cos

∫ t

t−1
ϕ(s)ds − k(t − 1) sin

∫ t

t−1
ϕ(s)ds

]

−P(t)ϕ(t) exp

(
−
∫ t+σ−1

t
k(s)ds

)}
for t ∈ [a, b]. (18)

Then the function z(t) = exp
(∫ t

a k(s)ds
)

sin
∫ t

a ϕ(s)ds is a solution of Ineq. (5) on

[a, b] satisfying (11)– (13) . If, in addition,

L(t) sign(σ − 1) � 0

{
for t ∈ [a, a + 1 − σ] in case 0 � σ < 1
for t ∈ [b − (σ − 1), b] in case σ > 1

, (19)

where

L(t) := exp

(
−
∫ t

t−1
k(s)ds

)
×

×
[
ϕ(t − 1) cos

∫ t

t−1
ϕ(s)ds − k(t − 1) sin

∫ t

t−1
ϕ(s)ds

]
− P(t)ϕ(t), (20)

then Ineq. (5) can serve as a “testing” inequality in the sense of Th.1 .

Proof. We have

z′(t) = exp

(∫ t

a
k(s)ds

)[
ϕ(t) cos

∫ t

a
ϕ(s)ds + k(t) sin

∫ t

a
ϕ(s)ds

]
for t ∈ [a − 1, b + ρ0],

z(t + σ − 1) = exp

(∫ t

a
k(s)ds

)
exp

(∫ t+σ−1

t
k(s)ds

)
×

×
[
sin
∫ t+σ−1

t
ϕ(s)ds cos

∫ t

a
ϕ(s)ds + cos

∫ t+σ−1

t
ϕ(s)ds sin

∫ t

a
ϕ(s)ds

]

for t ∈ [a, b],
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z′(t − 1) = exp

(∫ t

a
k(s)ds

)
exp

(
−
∫ t

t−1
k(s)ds

)
×

×
{[

ϕ(t − 1) sin
∫ t

t−1
ϕ(s)ds + k(t − 1) cos

∫ t

t−1
ϕ(s)ds

]
sin
∫ t

a
ϕ(s)ds

+
[
ϕ(t − 1) cos

∫ t

t−1
ϕ(s)ds − k(t − 1) sin

∫ t

t−1
ϕ(s)ds

]
cos
∫ t

a
ϕ(s)ds

}
for t ∈ [a, b].

Substituting all this into (5), we see that the following inequality must be fulfilled

A(t) sin
∫ t

a
ϕ(s)ds + B(t) cos

∫ t

a
ϕ(s)ds � 0 for t ∈ [a, b], (21)

where

A(t) := Q̃(t + σ − 1) cos
∫ t+σ−1

t
ϕ(s)ds + P(t)k(t) exp

(
−
∫ t+σ−1

t
k(s)ds

)

− exp

(
−
∫ t+σ−1

t−1
k(s)ds

)[
ϕ(t − 1) sin

∫ t

t−1
ϕ(s)ds

+ k(t − 1) cos
∫ t

t−1
ϕ(s)ds

]
for t ∈ [a, b], (22)

B(t) := Q̃(t + σ − 1) sin
∫ t+σ−1

t
ϕ(s)ds + P(t)ϕ(t) exp

(
−
∫ t+σ−1

t
k(s)ds

)

− exp

(
−
∫ t+σ−1

t−1
k(s)ds

)[
ϕ(t − 1) cos

∫ t

t−1
ϕ(s)ds

−k(t − 1) sin
∫ t

t−1
ϕ(s)ds

]
for t ∈ [a, b]. (23)

By (18) we have B(t) ≡ 0 and therefore Ineq. (21) is equivalent to

A(t) sin
∫ t

a
ϕ(s)ds � 0 for t ∈ [a, b]. (24)

Using (22), (18) and (17), after some calculations we get

A(t) sin
∫ t+σ−1

t
ϕ(s)ds = R(t,σ) exp

(
−
∫ t+σ−1

t
k(s)ds

)
for t ∈ [a, b],

so in view of (14) the inequality (24) follows from (16). Therefore z satisfies (5) on
[a, b].

The conditions (11) and (12) obviously follow from (14). As to (13), it can be
easily checked that the conditions z′(t) > 0 on [a − 1, a) and z′(t) < 0 on [b − 1, b)
coincide with (15).

In view of (15) and (19) we obtain (9) for Q̃ defined by (18). Therefore Ineq. (5)
can serve as a “testing” inequality in Th.1.
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LEMMA 2. Let σ = 1 , ϕ : [a − 1, b] �−→ (0, +∞) be an arbitrary continuous

function with
∫ b

a ϕ(t)dt = π and let a continuous function k : [a, b] �−→ R be such
that the equality

L(t) = 0 for t ∈ [a, b] (25)

holds with L defined by (20). Let, moreover, (15) hold and Q̃ in Ineq. (5) satisfy

Q̃(t) � exp

(
−
∫ t

t−1
k(s)ds

)
×

×
[
ϕ(t − 1) sin

∫ t

t−1
ϕ(s)ds − k(t − 1) cos

∫ t

t−1
ϕ(s)ds

]
−P(t)k(t) for t ∈ [a, b]. (26)

Then the statement of Lemma 1 is true and Ineq. (5) can serve as a “testing” inequality
in Th.1 .

Proof. Analogously to Lemma 1 we obtain (21) with

A(t) = Q̃(t) + P(t)k(t) − exp

(
−
∫ t

t−1
k(s)ds

)
×

×
[
ϕ(t − 1) sin

∫ t

t−1
ϕ(s)ds − k(t − 1) cos

∫ t

t−1
ϕ(s)ds

]

and B(t) = −L(t) = 0.

In view of (25) and (26) Ineq. (21) yields (24). In view of (9) no additional
condition is needed for the case σ = 1.

REMARK 1. Theorem 1 and Lemma 1 for the case σ = 0 were formulated and
proved in [4] ( see also [2], Chapter 2) .

Now we formulate the main oscillation theorem and its corollary.

THEOREM 2. Suppose that there exist continuous functions ϕ : [a−1, b+ρ0] �−→
]0, +∞[ and k : [a − 1, b + ρ0] �−→ R such that the conditions (14) - (20) for σ �= 1
((25)– (26) for σ = 1) are satisfied. Let, moreover, Cond.2◦ of Theorem 2. hold.
Then any solution of Eq. (1) has at least one zero on (a − ρ0, b + 1).

COROLLARY 1. Let there exist a sequence [an, bn] of disjoint intervals such that
the conditions of Theorem 2 hold on each of them and an → +∞ as n → ∞.Then
all solutions of Eq. (1) are oscillatory and any solution has at least one zero on each
(an − ρ0, bn + 1).

4. Some effective criteria

Everywhere in this section we will assume that σ �= 1.
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1◦. Let some constants k and ν satisfy⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν
tan(1 − σ)ν

< k <
ν

tan ν
if 0 � σ < 1,

k <
ν

tan ν
if 1 � σ � 2,

k <
ν

tan (σ − 1) ν
if σ > 2

(27)

and
0 < νρ < π, (28)

where ρ is defined by (2). If we put b = a + π/ν , k(t) ≡ k , ϕ(t) ≡ ν , then the
conditions (14) and (15) are evidently satisfied. Further, define

M[k, ν] :=
ν cosσν − k sinσν

ν cos (σ − 1)ν − k sin (σ − 1)ν
e−k, (29)

N[k, ν; P(t)] :=
ν cos ν − k sin ν − νekP(t)

ekσ sin (σ − 1) ν
. (30)

Theorem 3. implies the following

COROLLARY 2. Let σ �= 1 and (27) and (28) be fulfilled. Assume

(P(t) − M [k, ν]) sign (σ − 1) � 0 on
[
a, a +

π
ν

]
, (31)

Q(t − σ + 1) � N [k, ν; P(t)] on
[
a, a +

π
ν

]
, (32)

where M [k, ν] and N [k, ν; P(t)] are defined by (29) and (30) , respectively. Then any
solution of Eq. (1) has a zero on the interval (a − ρ0, a + π

ν + 1).

Proof. As we have already noted, (14) and (15) take the form (27) and (28).
Further, (16) takes the form (31), and (18) yields

Q̃(t − σ + 1) ≡ N [k, ν; P(t)] .

As to (19), in our case it is equivalent to[
P(t) − e−k

(
cosν − k

ν
sin ν

)]
sign (σ − 1) � 0 on

[
a, a +

π
ν

]
,

and follows from (31) since[
ν cosσν − k sinσν

ν cos (σ − 1) ν − k sin (σ − 1)ν
−
(

cosν − k
ν

sin ν
)]

sign (σ − 1) � 0.

Indeed, in view of (27), it is easy to see that the last inequality is equivalent to

−ν2 + k2

ν
sin (σ − 1)ν sin ν sign (σ − 1) � 0,

which, by (28), is obviously true. Therefore all the conditions of Theorem 3. are
fulfilled, and the proof is complete.
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Let now P and Q be defined in a neighbourhood of +∞ and k satisfy⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
1 − σ

< k < 1 if 0 � σ < 1

k < 1 if 1 < σ � 2,

k <
1

σ − 1
if σ > 2

(33)

and

M [k, 0] := lim
ν→0

M [k, ν] =
1 − σk

1 − (σ − 1) k
e−k, (34)

N [k, 0] := lim
ν→0

N [k, ν; M [k, ν]] =
k2e−σk

1 − (σ − 1) k
. (35)

REMARK 2. The statement of Cor.2 is sharp in the following sence: Eq. (1) with
P(t) := M [k, 0] and Q(t) := N [k, 0] has an eventually positive solution y(t) = e−kt.

2◦ . Now suppose that 0 < σ < 1 and let be k(t) := c sinπt with 0 < c < 1 , so
k(t) is a 1 -antiperiodic function, that is k(t+1) ≡ −k(t). Let ϕ(t) := ν be sufficiently
small . It can be easily checked that the conditions (14) and (15) are satisfied. According
to (17) and (18), define

P(t) : =
ν cosσν − k(t − 1) sinσν

ν cos (1 − σ)ν + k(t) sin(1 − σ)ν
exp

(
−
∫ t

t−1
k(s)ds

)

=
ν cosσν + c sinσν sin πt

ν cos (1 − σ)ν + c sin(1 − σ)ν sinπt
exp

(
2c
π

cos πt

)
, (36)

Q̃(t − 1 − σ) :=

=

[
ν2 − k2(t)

]
sin ν − 2νk(t) cos ν

ν cos (1 − σ)ν + c sin(1 − σ)ν sinπt
exp

(
−
∫ t−1−σ

t−1
k(s)ds

)

=
ν cos ν − c sinπt

[
2 cosν + c sinπt sin ν

ν
]

cos (1 − σ) ν + c sinπt sin(1−σ)ν
ν

exp

(
2c
π

sin
πσ
2

sin(πt +
πσ
2

)
. (37)

The uniform limit of Q̃(t − 1 − σ) as ν → 0 equals

−c sinπt (2 + c sinπt)
1 + c (1 − σ) sin πt

,

so we see that if ν is sufficiently small, the condition Q̃(t) � 0 holds on
[a − 1 + σ, a] for a = 2n + 1, n ∈ N (not for any a !). As for the condition
Q(t) � 0 on [a + π

ν − 1 + σ, a + π
ν ] (under supposition Q � Q̃ ), it can be ensured

by choosing an appropriate ν, namely, ν = π
2k+1 , k ∈ N. Therefore all conditions of

Theorem 2 are valid. So we see that the following statement is true
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COROLLARY 4. Let 0 < σ < 1 , a = 2n + 1 , ν = π
2k+1 , where n , k ∈ N with k

sufficiently large. Let, moreover, P and Q̃ be defined by (36) and (37) , respectively.
Then every solution of Eq. (1) with Q(t) � Q̃(t) on [a, a + π

ν ] has at least one zero
on (a, a + π

ν + 1).

REMARK 4. Note that Q(t) ≡ Q̃(t) does not preserve sign on the whole (a, a+ π
ν ).

As far as we know, such a result with an oscillating coefficient is the first one in the
oscillation theory for neutral differential equations.
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