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ON THE SERIES OF HAAR-FOURIER COEFFICIENTS
L. LEINDLER

(communicated by R. N. Mohapatra)

Abstract. Sufficient conditions are given for the convergence of the series

Z/l o(lenl),

where ¢, are the Haar-Fourier coefficients of an integrable function, ¢(x) (x >0, ¢(0) =0)
is an increasing and concave function, and A(x) (x > 1) denotes a function satisfying certain
easily achievable conditions.

1. Introduction

In a recent paper [4], among others, generalizing a result of N. Ogata [5] we gave
sufficient condition for the convergence of the series

Zn (lan]) + @(|Bal)),

n=1

where a, and b, are Fourier coefficients, 6 > 0 and @(u) (z > 0, @(0) = 0) is an
increasing and concave function.
In the now note we present a similar result for the convergence of the series

Z/l o(lcal),

n=1

where ¢, are the Haar—Fourier coefficients of an integrable function, and A (x) (x > 1)
denotes a function satisfying certain natural conditions. Plainly A(x) = x% (8§ > 0)
will satisfy these condition.
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The orthonormal Haar system can be given in the interval (0,1) as follows:
%" :=1andforn=0,1,... and k= 1,2,...,2"

22 if xe (%F,%H),
(®) (%) := . _
B =4 ki xe (3R A,
0, otherwise.

We shall set
2000 =2 and  ga(x) = 20 ()
ifm=2"+k (n=0,1,...,; k=1,2,...,2").
The Haar—Fourier coefficients of an integrable function f are

1
Cm = cn(f) = /0 I () xm (x)dx.

Near forty years ago several authors investigated the convergence of the series

Zm‘s\cm\ﬁ (B>0,6>0),
m=1

e.g. Z. Ciesielski and I. Musielak [1], P. L. Ulyanov [6], B. I. Golubov [2] and myself
3].
In [3] we proved, among others, the following

THEOREM A. Let A(x) (x > 1) be a positive and monotone function with the
property KA(2") > A2 ) > K 'A2") (K>1,n=1,2,...). f0<B <1 and

1 1—x
/0 /}Cz(_léjcz)< A If (x +1) —f(x)ldt)ﬁdx < 00,

then -
> Am)|enl? < . (1.1)
m=1
If
Y1 )x)xP
/0 de =0

then there exists a function f (x) € Lipa (0 < a < 1) such that for its Haar-Fourier
coefficients the series (1.1) diverges.

Before formulating our result we present some definitions.
We shall say that a positive function y(x) (x > 1) is quasi f -power-monotone
increasing (decreasing) if there exists a constant K := K(f,7) > 1 such that

KuPy(u) > Py(v) (Py(u) < KPy(v))

holds forany u > v (= 1).
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A positive function y(x) (x > 1) will be called limitedly varying if there exist
two positive constants K; := K;(y) < Kz := Kx(Yy) such that

Kiy(x) < v(2x) < Koy (x)

holds forany x > 1.

Here and further in the sequel, K and K; will denote positive constants depending
on the parameters concerned in the particular problem in which it appears. If we wish to
express the dependence explicitly, we write K in the form K(c, 3, ...). The constants
are not necessarily the same at different occurrences.

In the present work we generalize the Theorem A such a way that we replace the
function xf, B is appearing in Theorem A as an exponent, by an increasing concave
function ¢(x). Our new theorem will be deduced from a more general result to be
proven here as Lemma 3.

2. Theorem

We prove the following result.

THEOREM. Let @(u) (u > 0, @(0) = 0) be an increasing and concave function.
Furthermore let A(x) (x > 1) be a positive limitedly varying function and either
quasi 8 —power-monotone increasing with some 8 > 0, or quasi p—power—monotone
decreasing with some p < 0.

Then

oo

> Am)o(len])

m=3

1 1—x
<klo.) [ auo( [yt - wlar)a

0

Furthermore if
1
1
/ A(=)x2p(x2 ) dx = 0o
0 X

then there exists a function fq(x) € Lipa (0 < o < 1), such that with its Haar-Fourier
coefficients the series

> Am)o(len])

m=1

diverges.

It is obvious that our new Theorem in the special case @(x) = x (0 < B < 1) is
also a mild generalization of Theorem A, namely the monotonicity—conditionis replaced
by a quasi power—monotonicity—condition.
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3. Lemmas

The first two lemmas are known, and the third one is a general result implying our
Theorem effortlessly.

LEMMA 1. The function
fx) :=falx):= 22_“" cos2"nx, 0<a<1,
n=1

belongs to the class Lipo.
Let N, denote the number of the indices m being between 2" and 2"*', and
simultaneously the Haar—Fourier coefficients c,,(f ) satisfy the following inequality

|Cm(f)‘ > 2a—32—n(a+1/2).

Then
N, = K(a)2",

where K(a) is a positive constant.

The proof of the first statement of Lemma 1 can be found e.g. in [7, p. 47] and that
of the second one in [2, p. 1284].

LEMMA 2. (Jensen’s inequality). Let @(u) (u > 0, ¢(0) = 0) be an increasing
concave function. Then, for any finite sequence of nonnegative numbers x1,Xa, ..., Xy
and any finite sequence of positive numbers py,pa, . ..,pm the following inequality

m m
Z Pn®(xn) Z PnXn
n=1 n=1

Z Pn Z Pn
n=1 n=1

holds.

LEMMA 3. Let ¥ > 0 and ¢@(u) (u > 0, ¢(0) = 0) be an increasing concave
Sfunction. Furthermore let A(x) (x > 1) be such a positive limitedly varying function
that it is either quasi O —power—-monotone increasing with some 6 > 0, or quasi
p—power—monotone decreasing with some p < 0. Then

n+t 2VH
o =3 3 Amolenl))’ (3.1)
v=n m=2V+1
27! 1—x
<Klpay) [ WQWTT R [ —f0)lands

holds for any natural numbers n and £.
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Furthermore there exists a function f(x) € Lipae (0 < a < 1), whose Haar-
Fourier coefficients satisfy the inequality

2*7!

Gne > K(0, 1,7, )/2 A 17 (e . (3.2)

—n—/{ X

Proof. Using the properties of the functions A (x) and the Jensen’s inequality we
obtain that

2)1+l 2ﬂ+l
Z Am)o(lew|) < KA > @(lew]) (3.3)
=2""+1 m=2"+1
P!
< KA (2n+1)2n(p(27n Z |Cm|)~
m=2"+1

By the definition of ¢,

2)1+l /2 2/( 12 n—1 1
o] = 2 ]/ ~fr 2
holds, and thus
2)1+l 1_2,,171
o2 3 lal) <o [ Fw-rur2 ar),
m=2"+1 0
Hence, by (3.3), we get that
n+t 1—27 V!
0 <KL AR [ ) a2
v=n 0
ntl V=2 l—p—v—1
<kd [ aowrte [ o sl
v=n /2777 0

n+t V=2 1—x

1
<ng/2+3 PO W [ @)~ e+l
n+{ 2—VvV—2 1 1_p—Vv—I
+K3 > Ao el (272 [f (x+1) —f (1 +27"")dr)dx.
v—p J27V3 X 0

Now an integration by substitution # = u — x gives that

/12 (%) — f (¢ + 2D de
0
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1_2 v—1
= / If () —f (u+2"""" —x)|du,

and thus by x = 27V~! —y we obtain that

27V72

/2’7 v—3

27V71 l_y
<K, / w;)yﬂ*w(zw/z / () — f (u + 3)|du)dy = 1.
2*V*2 27\,717_\7

Finally with y = x and u =t we realize that

_p—v—t

1 1
M(—)x-y—lw(z—vﬂ/ F (x4 1) —F(t+ 271 |de)dx
X 0

2 v—I1 1 —x
I < Ks / A 1er 2 [ ) — e+ Dl
2—v—2 X 0

Collecting our estimations we conclude that

nt+l VTl 1—

)x 1 1)2 X
Out < Kﬁz/ g | CF () —f G+ )ldi)dx

holds, and hence (3.1) plainly follows.

In order to prove the statement (3.2) we distinguish two cases. If 0 < a < 1 then
we consider the function f (x) given in Lemma 1. The Haar-Fourier coefficients of this
function satisfy the following inequality

2V+l
> Amo(len)) > K222 (27 H), (3.4)
m=2V+1
whence
n+t 1
On,e = K, ZAY(ZV)zqu)V (2—v(oc+7))
e (3.5)

2 n
1
> K / (L1 (e
2—n—Lt X

obviously follows considering the properties of the functions A (x) and @(x).

This yields (3.2) for 0 < a < 1.

If o =1 let f(x):=1—2x. Itisclear that f € Lipl. On the other hand an easy
calculation shows that

enl(f) =2712732 if 2" < m < 2"

Now reproduce the estimations given in (3.4) and (3.5) with o = 1 in place of
o, 0 < o < 1, we can see that the inequality (3.2) with o = 1 also holds.

Herewith the proof of Lemma 3 is complete.
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4. Proof of Theorem

Applying Lemma 3 with y = 1, n = 1 and letting £ — oo we clearly get the
statements of our Theorem.
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