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ON THE SERIES OF HAAR–FOURIER COEFFICIENTS

L. LEINDLER

(communicated by R. N. Mohapatra)

Abstract. Sufficient conditions are given for the convergence of the series

∞∑
n=1

λ(n)ϕ(|cn|),

where cn are the Haar–Fourier coefficients of an integrable function, ϕ(x) (x � 0 , ϕ(0) = 0)
is an increasing and concave function, and λ(x) (x � 1) denotes a function satisfying certain
easily achievable conditions.

1. Introduction

In a recent paper [4], among others, generalizing a result of N. Ogata [5] we gave
sufficient condition for the convergence of the series

∞∑
n=1

nδ (ϕ(|an|) + ϕ(|bn|)),

where an and bn are Fourier coefficients, δ � 0 and ϕ(u) (u � 0, ϕ(0) = 0) is an
increasing and concave function.

In the now note we present a similar result for the convergence of the series

∞∑
n=1

λ (n)ϕ(|cn|),

where cn are the Haar–Fourier coefficients of an integrable function, and λ (x) (x � 1)
denotes a function satisfying certain natural conditions. Plainly λ (x) = xδ (δ � 0)
will satisfy these condition.
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The orthonormal Haar system can be given in the interval (0, 1) as follows:
χ(0)

0 := 1 and for n = 0, 1, . . . and k = 1, 2, . . . , 2n

χ(k)
n (x) :=

⎧⎪⎪⎨
⎪⎪⎩

2n/2, if x ∈
(

2k−2
2n+1 , 2k−1

2n+1

)
,

−2n/2, if x ∈
(

2k−1
2n+1 , 2k

2n+1

)
,

0, otherwise.

We shall set
χ1(x) := χ(0)

0 (x) and χm(x) := χ(k)
n (x)

if m = 2n + k (n = 0, 1, . . . , ; k = 1, 2, . . . , 2n) .
The Haar–Fourier coefficients of an integrable function f are

cm := cm(f ) :=
∫ 1

0
f (x)χm(x)dx.

Near forty years ago several authors investigated the convergence of the series

∞∑
m=1

mδ |cm|β (β > 0, δ � 0),

e.g. Z. Ciesielski and I. Musielak [1], P. L. Ulyanov [6], B. I. Golubov [2] and myself
[3].

In [3] we proved, among others, the following

THEOREM A. Let λ (x) (x � 1) be a positive and monotone function with the
property Kλ (2n) � λ (2n−1) � K−1λ (2n) (K � 1, n = 1, 2, . . .) . If 0 < β � 1 and

∫ 1

0

λ (1/x)
x2−β/2

(∫ 1−x

0
|f (x + t) − f (x)|dt

)β
dx < ∞,

then ∞∑
m=1

λ (m)|cm|β < ∞. (1.1)

If ∫ 1

0

λ (1/x)xαβ

x2−β/2
dx = ∞

then there exists a function f (x) ∈ Lipα (0 < α � 1) such that for its Haar–Fourier
coefficients the series (1.1) diverges.

Before formulating our result we present some definitions.
We shall say that a positive function γ (x) (x � 1) is quasi β -power-monotone

increasing (decreasing) if there exists a constant K := K(β , γ ) � 1 such that

Kuβγ (u) � vβ γ (v) (uβγ (u) � Kvβγ (v))

holds for any u � v (� 1) .
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A positive function γ (x) (x � 1) will be called limitedly varying if there exist
two positive constants K1 := K1(γ ) � K2 := K2(γ ) such that

K1γ (x) � γ (2x) � K2γ (x)

holds for any x � 1 .
Here and further in the sequel, K and Ki will denote positive constants depending

on the parameters concerned in the particular problem in which it appears. If we wish to
express the dependence explicitly, we write K in the form K(α, β , . . .) . The constants
are not necessarily the same at different occurrences.

In the present work we generalize the Theorem A such a way that we replace the
function xβ , β is appearing in Theorem A as an exponent, by an increasing concave
function ϕ(x) . Our new theorem will be deduced from a more general result to be
proven here as Lemma 3.

2. Theorem

We prove the following result.

THEOREM. Let ϕ(u) (u � 0, ϕ(0) = 0) be an increasing and concave function.
Furthermore let λ (x) (x � 1) be a positive limitedly varying function and either
quasi δ –power–monotone increasing with some δ � 0 , or quasi ρ –power–monotone
decreasing with some ρ � 0 .

Then
∞∑

m=3

λ (m)ϕ(|cm|)

� K(ϕ, λ )
∫ 1

0
λ (

1
x
)x−2ϕ

(
x1/2

∫ 1−x

0
|f (x + t) − f (t)|dt

)
dx.

Furthermore if ∫ 1

0
λ (

1
x
)x−2ϕ(x

1
2 +α)dx = ∞

then there exists a function fα(x) ∈ Lipα (0 < α � 1) , such that with its Haar–Fourier
coefficients the series

∞∑
m=1

λ (m)ϕ(|cm|)

diverges.

It is obvious that our new Theorem in the special case ϕ(x) = xβ (0 < β � 1) is
also a mild generalizationof TheoremA, namely themonotonicity–conditionis replaced
by a quasi power–monotonicity–condition.
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3. Lemmas

The first two lemmas are known, and the third one is a general result implying our
Theorem effortlessly.

LEMMA 1. The function

f (x) := fα(x) :=
∞∑

n=1

2−αn cos 2n+1πx, 0 < α < 1,

belongs to the class Lipα .
Let Nn denote the number of the indices m being between 2n and 2n+1 , and

simultaneously the Haar–Fourier coefficients cm(f ) satisfy the following inequality

|cm(f )| � 2α−32−n(α+1/2).

Then
Nn � K(α)2n,

where K(α) is a positive constant.

The proof of the first statement of Lemma 1 can be found e.g. in [7, p. 47] and that
of the second one in [2, p. 1284].

LEMMA 2. (Jensen’s inequality). Let ϕ(u) (u � 0, ϕ(0) = 0) be an increasing
concave function. Then, for any finite sequence of nonnegative numbers x1, x2, . . . , xm

and any finite sequence of positive numbers p1, p2, . . . , pm the following inequality

m∑
n=1

pnϕ(xn)

m∑
n=1

pn

� ϕ
(

m∑
n=1

pnxn

m∑
n=1

pn

)

holds.

LEMMA 3. Let γ > 0 and ϕ(u) (u � 0, ϕ(0) = 0) be an increasing concave
function. Furthermore let λ (x) (x � 1) be such a positive limitedly varying function
that it is either quasi δ –power–monotone increasing with some δ � 0 , or quasi
ρ –power–monotone decreasing with some ρ � 0 . Then

σn,� :=
n+�∑
ν=n

( 2ν+1∑
m=2ν+1

λ (m)ϕ(|cm|)
)γ

(3.1)

� K(ϕ, λ , γ )
∫ 2−n−1

2−n−�−3

λ γ (
1
x
)x−γ−1ϕγ (x1/2

∫ 1−x

0
|f (x + t) − f (t)|dt)dx

holds for any natural numbers n and � .
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Furthermore there exists a function f (x) ∈ Lipα (0 < α � 1) , whose Haar-
Fourier coefficients satisfy the inequality

σn,� � K(ϕ, λ , γ ,α)
∫ 2−n

2−n−�
λ (

1
x
)x−γ−1ϕγ (xα+ 1

2 )dx. (3.2)

Proof. Using the properties of the functions λ (x) and the Jensen’s inequality we
obtain that

2n+1∑
m=2n+1

λ (m)ϕ(|cm|) � Kλ (2n+1)
2n+1∑

m=2n+1

ϕ(|cm|) (3.3)

� Kλ (2n+1)2nϕ(2−n
2n+1∑

m=2n+1

|cm|).

By the definition of cm

2n+1∑
m=2n+1

|cm| = 2n/2
2n∑

k=1

∣∣∣
∫ (2k−1)2−n−1

(2k−2)2−n−1

(f (t) − f (t + 2−n−1))dt
∣∣∣

holds, and thus

ϕ
(
2−n

2n+1∑
m=2n+1

|cm|
)

� ϕ
(
2−n/2

∫ 1−2−n−1

0
|f (t) − f (t + 2−n−1)|dt

)
.

Hence, by (3.3), we get that

σn,� � K1

n+�∑
ν=n

λ γ (2ν+1)2νγ ϕγ (2−ν/2
∫ 1−2−ν−1

0
|f (t) − f (t + 2−ν−1)|dt)

� K2

n+�∑
ν=n

∫ 2−ν−2

2−ν−3

λ γ (
1
x
)x−γ−1ϕγ (2−ν/2

{∫ 1−2−ν−1

0
|f (t) − f (t + x)|dt

+
∫ 1−2−ν−1

0
|f (x + t) − f (t + 2−ν−1)|dt

}
)dx

� K3

n+�∑
ν=n

∫ 2−ν−2

2−ν−3

λ γ (
1
x
)x−γ−1ϕγ (x1/2

∫ 1−x

0
|f (t) − f (t + x)|dt)dx

+K3

n+�∑
ν=n

∫ 2−ν−2

2−ν−3

λ γ (
1
x
)x−γ−1ϕγ (2−ν/2

∫ 1−2−ν−1

0
|f (x + t) − f (t + 2−ν−1)|dt)dx.

Now an integration by substitution t = u − x gives that

∫ 1−2−ν−1

0
|f (t + x) − f (t + 2−ν−1)|dt
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=
∫ 1−2−ν−1+x

x
|f (u) − f (u + 2−ν−1 − x)|du,

and thus by x = 2−ν−1 − y we obtain that

∫ 2−ν−2

2−ν−3

λ γ (
1
x
)x−γ−1ϕγ (2−ν/2

∫ 1−2−ν−1

0
|f (x + t) − f (t + 2−ν−1)|dt)dx

� K4

∫ 2−ν−1

2−ν−2

λ γ (
1
y
)y−γ−1ϕγ (2−ν/2

∫ 1−y

2−ν−1−y
|f (u) − f (u + y)|du)dy =: Iν.

Finally with y = x and u = t we realize that

Iν � K5

∫ 2−ν−1

2−ν−2

λ γ (
1
x
)x−γ−1ϕγ (x1/2

∫ 1−x

0
|f (t) − f (x + t)|dt)dx.

Collecting our estimations we conclude that

σn,� � K6

n+�∑
ν=n

∫ 2−ν−1

2−ν−3

λ γ (
1
x
)x−γ−1ϕγ (x1/2

∫ 1−x

0
|f (t) − f (x + t)|dt)dx

holds, and hence (3.1) plainly follows.
In order to prove the statement (3.2) we distinguish two cases. If 0 < α < 1 then

we consider the function f (x) given in Lemma 1. The Haar–Fourier coefficients of this
function satisfy the following inequality

2ν+1∑
m=2ν+1

λ (m)ϕ(|cm|) � Kλ (2ν)2νϕ(2−ν(α+ 1
2 )), (3.4)

whence

σn,� � K1

n+�∑
ν=n

λ γ (2ν)2νγ ϕγ (2−ν(α+ 1
2 ))

� K2

∫ 2−n

2−n−�
λ γ (

1
x
)x−γ−1ϕγ (xα+ 1

2 )dx

(3.5)

obviously follows considering the properties of the functions λ (x) and ϕ(x) .
This yields (3.2) for 0 < α < 1 .
If α = 1 let f (x) := 1− 2x . It is clear that f ∈ Lip1 . On the other hand an easy

calculation shows that

cm(f ) = 2−12−3n/2 if 2n < m � 2n+1.

Now reproduce the estimations given in (3.4) and (3.5) with α = 1 in place of
α , 0 < α < 1 , we can see that the inequality (3.2) with α = 1 also holds.

Herewith the proof of Lemma 3 is complete.
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4. Proof of Theorem

Applying Lemma 3 with γ = 1 , n = 1 and letting � → ∞ we clearly get the
statements of our Theorem.
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