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ON THE RIESZ IDEMPOTENT OF CLASS A OPERATORS

A. UCHIYAMA AND K. TANAHASHI

(communicated by T. Furuta)

Abstract. In this paper, we show that if T is a class A operator and λ is a non–zero isolated
eigenvalue of σ(T) , then EH = ker(T −λ) = ker(T −λ)∗ , where E is the Riesz idempotent
with respect to λ . In this case, E is self–adjoint, i.e, it is an orthogonal projection.

1. Introduction

A bounded linear operator T on a separable Hilbert space H is called isoloid if
every isolated point of σ(T) is an eigenvalue of T . Here σ(T) denotes the spectrum of
T and we also denote the point spectrum of T by σp(T) . It is important and useful for
studying some classes of operators to investigate whether every operator in such classes
is isoloid or not. Stampfli’s result that every hyponormal operator is isoloid is one of the
most famous results in this subject. See [17]. The proof of this result is very excellent
and simple by using the Riesz idempotent. This result was extended to several classes of
operators, e.g., p -hyponormal, log -hyponormal and paranormal. See [5], [6], [7], [19],
[21], [22]]. Here an operator T is called p -hyponormal for p > 0 if (T∗T)p � (TT∗)p ,
log -hyponormal if T is invertible and log(T∗T) � log(TT∗) , p -quasihyponormal for
p > 0 if T∗{(T∗T)p−(TT∗)p}T � 0 . A 1 -hyponormal operator is called hyponormal
and a 1 -quasihyponormal operator is called quasihyponormal. An operator T is called
class A if |T2| � |T|2 , and paranormal if ‖Tx‖2 � ‖T2x‖‖x‖ for all x ∈ H , where
|T| = (T∗T)

1
2 which is called the absolute value of T . See Furuta [9] for properties

of paranormal operators. We remark that every hyponormal, p -hyponormal or log -
hyponormaloperator is paranormal [3] (see also [1], [8], [10], [11], [18]). We also remark
that p -quasihyponormal is paranormal if 0 < p � 1 [15]. Class A is an interesting
class of bounded linear operators on a Hilbert space, which was defined by T. Furuta,
M. Ito and T. Yamazaki [10]. They showed that class A is a subclass of paranormal and
contains every invertible log -hyponormal operator.

Let T ∈ B(H ) and let λ ∈ σ(T) be an isolated point of σ(T) . Then there
exists a closed disk Dλ centered λ which satisfies Dλ ∩ σ(T) = {λ} . The operator

E =
1

2πi

∫
∂Dλ

(λ − T)−1dλ is called the Riesz idempotent with respect to λ which
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has properties that E2 = E, ET = TE, ker(T − λ ) ⊂ EH and σ(T|EH ) = {λ} . In
[17], Stampfli also proved that if T is hyponormal and λ ∈ σ(T) is isolated, then the
Riesz idempotent E with respect to λ is self-adjoint and satisfies

EH = ker(T − λ ) = ker(T − λ )∗.

Recently, M. Chō and K. Tanahashi [7] proved that if T is a p -hyponormal or log -
hyponormal operator and λ is an isolated point of σ(T) , then the Riesz idempotent
E with respect to λ is self-adjoint and EH = ker(T − λ ) = ker(T − λ )∗ . This
result is an extension of Stampfli’s result for hyponormal operators. It is interesting to
study whether Stampfli’s result hold for the other classes of operators. In this paper,
we extend these results to the case of class A operators and λ �= 0 . However, it is
necessarily not true for the case λ = 0 , we give a counter-example after. See [19] for
p -quasihyponormal operators.

2. Preliminaries

The following two inequalities are important.

PROPOSITION 1. (Löwner-Heinz inequality [13], [16]) If A , B ∈ B(H ) satisfy
0 � A � B and α ∈ (0, 1] , then Aα � Bα .

PROPOSITION 2. (Hansen’s inequality [12]) If A , B ∈ B(H ) satisfy A � 0 and
‖B‖ � 1 , then (B∗AB)δ � B∗AδB for all δ ∈ (0, 1] .

DEFINITION 3. An operator T ∈ B(H ) is called normaloid if

‖T‖ = sup{|z| | z ∈ σ(T)}.

LEMMA 4. ([9], [14]) If T is paranormal, then T is normaloid.

LEMMA 5. If T is paranormal, then the restriction T|M to its invariant subspace
M is also paranormal.

The following Lemmas 6 and 8 have been proved in [22]. For the completeness,
we contain proofs.

LEMMA 6. ([21], [22]) If T is paranormal, then T is isoloid.

Proof. Let λ ∈ σ(T) be an isolated point. Then the range of Riesz idempotent
E = 1

2πi

∫
∂Dλ

(zI − T)−1 dz is an invariant closed subspace of T and σ(T|EH ) = {λ} .

Here Dλ is a closed disk with its center λ such that σ(T) ∩ Dλ = {λ} .
If λ = 0 , then σ(T|EH ) = {0} . Since T|EH is paranormal by Lemma 5,

T|EH = 0 by Lemma 4. Therefore 0 is an eigenvalue of T .
If λ �= 0 , then T|EH is an invertible paranormal operator and hence (T|EH )−1 is

also paranormal [14]. We see ‖T|EH ‖ = |λ | and ‖(T|EH )−1‖ = 1
|λ | . Let x ∈ EH be

an arbitrary vector. Then ‖x‖ � ‖(T|EH )−1‖‖T|EH x‖ = 1
|λ |‖T|EH x‖ � 1

|λ | |λ |‖x‖ =
‖x‖ . This implies that 1

λ T|EH is unitary with its spectrum σ( 1
λ T|EH ) = {1} . Hence

T|EH = λ and λ is an eigenvalue of T . This completes the proof. �
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PROPOSITION 7. ([4], [23]) If T is p -hyponormal, then (T −λ )x = 0 implies that
(T − λ )∗x = 0 .

LEMMA 8. ([22]) If T belongs to the class A and λ ∈ C\{0} , then (T−λ )x = 0
implies that (T − λ )∗x = 0 .

Proof. We may assume x �= 0 . Since ‖|T2|x‖ = ‖T2x‖ = |λ |2‖x‖ and

|λ |2‖x‖2 = 〈 |T|2x, x〉
� 〈 |T2|x, x〉 (since T belongs to the class A)

� ‖|T2|x‖‖x‖ = |λ |2‖x‖2,

we have |T2|x = |λ |2x . Since

‖(|T2| − |T|2) 1
2 x‖2 = 〈 |T2|x, x〉 − 〈 |T|2x, x〉 = 0,

we also have |T|2x = |λ |2x . This implies that T∗x = λx . �

3. The main theorem

THEOREM 9. Let T ∈ B(H ) be a class A operator and λ be a non-zero isolated
point of σ(T) . Let Dλ denote the closed disk which centered λ such that Dλ ∩
σ(T) = {λ} . Then the Riesz idempotent E = 1

2πi

∫
∂Dλ

(z − T)−1 dz satisfies that

EH = ker(T − λ ) = ker(T − λ )∗ . In particular, E is self-adjoint.

Proof. Since class A operators are paranormal, λ is an eigenvalue of T by
Lemma 6. As we see in the proof of Lemma 6, EH = ker(T−λ ) . Since ker(T−λ ) ⊂
ker(T − λ )∗ by Lemma 8, it suffices to show that ker(T − λ )∗ ⊂ ker(T − λ ) . Since
ker(T − λ ) is a reducing subspace of T by Lemma 8 and the restriction of a class A
operator to its reducing subspace is also a class A operator, we see that T is of the form
T = λ⊕T ′ on H = ker(T−λ )⊕(ker(T−λ ))⊥ , where T ′ is a class A operator with
ker(T ′ − λ ) = {0} . Since λ ∈ σ(T) = {λ} ∪ σ(T ′) is isolated, the only two cases
occur. One is λ �∈ σ(T ′) and the other is that λ is an isolated point of σ(T ′) . The
latter case, however, does not occur otherwise we have λ ∈ σp(T ′) and this contradicts
the fact that ker(T ′ − λ ) = {0} . ker(T − λ ) = ker(T − λ )∗ is immediate from the
invertivity of T ′ − λ as an operator on (ker(T − λ ))⊥ .

Next, we show that E is self-adjoint. Since EH = ker(T − λ ) = ker(T − λ )∗ ,
we have ((z − T)∗)−1 E = (z − λ )−1E . Hence

E∗E = − 1
2πi

∫
∂Dλ

((z − T)∗)−1 E dz

= − 1
2πi

∫
∂Dλ

(z − λ )−1E dz

= (
1

2πi

∫
∂Dλ

1
z − λ

dz)E = E,
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this completes the proof. �

REMARK 10. In the above theorem, to prove EH = ker(T − λ ) we only use
the fact that T is paranormal, so it also holds for the case of λ = 0 . The following
example, however, tells us that ker(T − λ ) = ker(T − λ )∗ is necessarily not true for
the case of λ = 0 .

We show that if T is a p -quasihyponormal operator for some p ∈ (0, 1] such
that T is not p -hyponormal and 0 is an isolated point of σ(T) , then ker T �= kerT∗

and the Riesz idempotent with respect to 0 is not self-adjoint. Let T =
(

A S
0 0

)
be 2 × 2 matrix representation of T with respect to H = ranT ⊕ kerT∗ . Then
(AA∗)p � (AA∗ + SS∗)p � (A∗A)p and σ(A) ⊂ σ(T) ⊂ σ(A) ∪ {0} , in particular,
A is p -hyponormal. See [20]. By the assumption S �= 0 , otherwise T = A ⊕ 0
is also p -hyponormal. If x ∈ kerA = {u ∈ ranT | Au = 0} , then A∗x = 0 and
S∗x = 0 by the above inequality and hence T∗x = A∗x ⊕ S∗x = 0 . This shows that
kerA ⊂ ranT ∩ kerT∗ = {0} . So A is invertible, otherwise 0 is an isolated point of
σ(A) and hence 0 ∈ σp(A) by Lemma 6. This contradicts the fact that kerA = {0} .
It is easy to check kerT = {−A−1Su ⊕ u | u ∈ ker T∗} and hence kerT �= ker T∗ . In
this case,

E =
1

2πi

∫
∂D0

(z − T)−1 dz

=
1

2πi

∫
∂D0

(
(z − A)−1 z−1(z − A)−1S

0 z−1

)
dz

=
1

2πi

∫
∂D0

(
(z − A)−1 −(z−1 − (z − A)−1)A−1S

0 z−1

)
dz

=

(
1

2πi

∫
∂D0

(z − A)−1 dz
(

1
2πi

∫
∂D0

(z − A)−1 dz − 1
2πi

∫
∂D0

z−1 dz
)

A−1S

0 1
2πi

∫
∂D0

z−1 dz

)

=
(

0 −A−1S
0 1

)
(because

1
2πi

∫
∂D0

(z − A)−1 dz = 0 and
1

2πi

∫
∂D0

z−1 dz = 1),

where E is the Riesz idempotent with respect to 0 . Hence EH = kerT and E is not
self-adjoint.

EXAMPLE 11. Let {en}∞n=−∞ be a completely orthonormal basis on H and U be

a weighted bilateral shift such as Uen =
{

en+1 (if n � 0 )√
2en+1 (if n � 1 )

. Let K = Ce1 (one-

dimensional subspace of H generated by e1 ) and S : K → H be the operator

defined by S(αe1) = αe1 for α ∈ C . Then the operator T =
(

U S
0 0

)
on H ⊕K
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is quasihyponormal because

T∗(T∗T − TT∗)T

=
(

U∗ 0
S∗ 0

){(
U∗ 0
S∗ 0

)(
U S
0 0

)
−
(

U S
0 0

)(
U∗ 0
S∗ 0

)}(
U S
0 0

)
=
(

U∗ 0
S∗ 0

)(
U∗U − UU∗ − SS∗ U∗S

S∗U S∗S

)(
U S
0 0

)
=
(

U∗ 0
S∗ 0

)(
0 U∗S

S∗U S∗S

)(
U S
0 0

)
= 0.

Hence T is also class A operator, U is invertible and 0 is an isolated point of
σ(T) = {0} ∪ σ(U) .

In [19], we give an example of p -quasihyponormal operator for 0 < p < 1 such
that it is not p -hyponormal and 0 is an isolated point of its spectrum, so we do not give
such example in this paper.

An operator T is called w -hyponormal [2] if its Aluthge transform T̃ = |T| 1
2 U|T| 1

2

satisfies
|T̃| � |T| � |(T̃)∗|,

where T = U|T| is the polar decomposition of T . w -hyponormal is a subclass of class
A . See [1]. As above example, in general, the Riesz idempotent of class A operator
with respect to 0 is not self-adjoint and kerT �= kerT∗ . In case of w -hyponormal
operators, there is also an example T of w -hyponormal operator, Example 13, which
has properties that 0 is an isolated point of σ(T) , the Riesz idempotent with respect to
0 is not self adjoint and kerT �= kerT∗ .

LEMMA 12. Let H = ⊕∞
n=0C

2  x = x0 ⊕ x1 ⊕ · · · and define an operator T

on H by Tx = 0 ⊕ Bx0 ⊕ Bx1 ⊕ · · · , where B =
(

1 0
0 0

)
. Then for |λ | < 1 ,

(T − λ )H is closed.

Proof. Let V be the unilateral shift on �2 . It is easy to see that ‖(V − λ )x‖ �
(1 − |λ |)‖x‖ for |λ | < 1 and x ∈ �2 . Using a decomposition H = �2 ⊕ �2 , we
have a representation T = V ⊕ 0 . Since TH = ranV ⊕ {0} , TH is closed. For
0 < |λ | < 1 , ‖(T − λ )x‖ = ‖(V − λ )x1 ⊕ (−λx2)‖ � min{1 − |λ |, |λ |}‖x‖ for
x = x1 ⊕ x2 (x1, x2 ∈ �2) , so that (T − λ )H is also closed. �

EXAMPLE 13. Let H = ⊕∞
n=0C

2 and define an operator T on H by T(· · · ⊕
x−2⊕x−1⊕

(0)
x0⊕x1⊕· · · ) = · · ·⊕Ax−2⊕

(0)
Ax−1⊕Bx0⊕Bx1⊕· · · , where A = 1

4

(
1
2

1
2

1
2

1
2

)
and B =

(
1 0
0 0

)
. Then T is w -hyponormal and σ(T) = {0} ∪ {z | 1

4 � |z| � 1} .

Moreover EH = ker T , E is not self-adjoint and kerT �= kerT∗ , where E is the
Riesz idempotent with respect to 0 .
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Proof. For x = · · · ⊕ x−2 ⊕ x−1 ⊕
(0)
x0 ⊕ x1 ⊕ · · · , we have

T∗x = (· · · ⊕ Ax−0 ⊕
(0)
Bx1 ⊕ Bx2 ⊕ · · · ),

|T|x = (⊕n<0Axn) ⊕ (⊕n�0Bxn),

|T̃|x = (⊕n<−1Axn) ⊕ (A
1
2 BA

1
2 )

1
2 x−1 ⊕ (⊕n�0Bxn),

|(T̃)∗|x = (⊕n<0Axn) ⊕ (BAB)
1
2 x0 ⊕ (⊕n�1Bxn).

Since (A
1
2 BA

1
2 )

1
2 =

√
2A and (B

1
2 AB

1
2 )

1
2 = (BAB)

1
2 = 1

2
√

2
B ,

〈 (|T̃| − |T|)x, x〉 = 〈 ((A 1
2 BA

1
2 )

1
2 − A

)
x−1, x−1〉 � 0

〈 (|T| − |(T̃)∗|)x, x〉 = 〈 (B − (BAB)
1
2
)
x0, x0〉 � 0.

Hence T is w -hyponormal.
(i) Let H+ = {(T − λ )x | x ∈ H , x = · · · ⊕ 0 ⊕ x0 ⊕ x1 ⊕ x2 ⊕ · · · }, H− =

{(T − λ )x | x ∈ H , x = · · · ⊕ x−4 ⊕ x−3 ⊕ 0 ⊕ · · · } , and H0 = {(T − λ )x | x ∈
H , x = · · · ⊕ 0 ⊕ x−2 ⊕ x−1 ⊕ 0 ⊕ · · · } . Then H+ ⊥ H− . We remark that 4A is
unitary equivalent to B . By Lemma 12, H+ and H− are closed for |λ | < 1

4 . Since
H0 is finite dimensional, (T − λ )H = (H+ ⊕ H−) + H0 is closed.

(ii) It is easy to check that

kerT =
{[⊕n�−1 cn

(
1
−1

)]⊕ [⊕n�0 cn

(
0
1

)] | {cn} ∈ �2(Z)
}

,

kerT∗ =
{[⊕n�0 cn

(
1
−1

)]⊕ [⊕n�1 cn

(
0
1

)] | {cn} ∈ �2(Z)
}

.

Hence kerT �= ker T∗ .
(iii) If 0 < |λ | < 1

4 , it is easy to check that ker(T − λ ) = ker(T − λ )∗ = {0} .
Since (T − λ )H is closed by Lemma 12, we have (T − λ )H = (T − λ )H =
{ker(T − λ )∗}⊥ = H and therefore λ �∈ σ(T) .

(iv) If 1
4 < |λ | < 1 , we have

ker(T − λ )∗ = C

([⊕n<0
1

2(4λ )|n|

(
1
1

)]⊕ [⊕n�0 λ n

(
1
0

)])
.

(v) It follows from (iii) and (iv) that σ(T) = {0} ∪ {λ ∈ C | 1
4 � |λ | � 1} .

(vi) We finally show that the Riesz idempotent E is not self-adjoint. Since T
is paranormal, we have EH = kerT by the proof of Lemma 6. Suppose that E is
self-adjoint. Then EH ⊥ (1 − E)H , so that T = 0 ⊕ T2 for some paranormal
operator on (1 − E)H with kerT2 = {0} . Since T2 is isoloid, 0 �∈ σ(T2) . Hence
kerT = EH = kerT∗ . This contradicts (ii). �

REMARK 14. An operator T is called class A(k) for k > 0 if (T∗|T|2kT)
1

k+1 �
|T|2 . Class A(k) operators were defined by T. Furuta, M. Ito and T. Yamazaki [10]. In
that paper, they proved that every invertible log -hyponormal operator is a class A(k)
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operator for k > 0 and every invertible class A operator is a class A(k) operator for
k � 1 .

Now we assert that the operator T of Example 13 is class A(k) for k � 1
4 . In

fact, for each k � 1
4 ,〈((

T∗|T|2kT
) 1

k+1 − |T|2
)

x, x
〉

=
〈(

(ABA)
1

k+1 − A2
)

x−1, x−1

〉
=

{(
1
32

) 1
k+1

− 1
16

}∥∥∥∥( 1
2

1
2

1
2

1
2

)
x−1

∥∥∥∥2

� 0

for all x ∈ H .

Let 0 < α < 1 and A = α
(

1
2

1
2

1
2

1
2

)
in Example 13. Then T is class A(k) with

k � − log 2
2 logα

and 0 is an isolated point of σ(T) . Also kerT �= kerT∗ and the Riesz idempotent

E with respect to 0 is not self-adjoint. Since
− log 2
2 logα

→ 0 (as α → +0 ) , for any

k > 0 , there exists a class A(k) operator T such that 0 is an isolated point of σ(T) ,
kerT �= kerT∗ and the Riesz idempotent E with respect to 0 is not self-adjoint.
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