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A MINIMAX PROBLEM ABOUT UNIT VECTORS IN THE PLANE

SEON-HONG KIM

(communicated by A. M. Fink)

Abstract. For n � 2 , we obtain the extremal values of the minimax problem for exponential
sums

μ(n) := min
|x|=1

max

⎧⎨⎩
∣∣∣∣∣∣
n−1∑
k=0

xk

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
n−1∑
k=0

xkn

∣∣∣∣∣∣
⎫⎬⎭ .

Moreover, we show that the polynomial with coefficients 0 and 1 derived from μ(n) does not
have zeros on the unit circle.

1. Introduction

For n � 2 , Kim [2] obtained the extremal values of the minimax problem for
exponential sums

f (n) := min
ai real

max

{∣∣∣∣∣
n∑

k=1

eiak

∣∣∣∣∣ ,
∣∣∣∣∣

n∑
k=1

einak

∣∣∣∣∣
}

.

In fact, the values are

f (n) =

⎧⎨⎩
1, n = 2,√

2c + 3, n = 3,

0, n � 4,

where c is the real root of 1 + 2(1 + x + x2 + x3) = 0 , thus f (3) = 0.769292 · · · . In
particular, Kim [2] reduced the two extremal problems f (3) and

max
a,b,c∈[0,2π]

min
{∣∣(eia − eib)(eib − eic)(eic − eia)

∣∣ ,∣∣(ei3a − ei3b)(ei3b − ei3c)(ei3c − ei3a)
∣∣}

to the problems about the packing of certain convex sets in the plane and obtained the
results. This new packing method also could be used to solve some other extremal
problems (see [2]). While using packing method to obtain the extremal value

f (3) = min
0�a,b<2π

max
{∣∣1 + eia + eib

∣∣ ,
∣∣1 + ei3a + ei3b

∣∣} ,
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Kim [2] realized that this extremal value was attained when b = 2a . Hence we have
another representation of f (3) as follows;

f (3) = min
|x|=1

max
{∣∣1 + x + x2

∣∣ , ∣∣1 + x3 + x6
∣∣} = 0.769292 · · · . (1)

In this paper, we consider following generalization of (1);

μ(n) := min
|x|=1

max
{∣∣r1

n(x)
∣∣ , |rn

n(x)|
}

(n � 2), (2)

where rt
n(x) =

∑n−1
k=0 xkt . Note that switching min and max in (2) leads to trivial

problems. On the other hand, there is another representation of μ(n) ;

1
n
μ(n)2 = min

a∈[0,1)
max {Δn(a), Δn2(na)} ,

where

Δn(x) =
n∑
−n

(
1 − |k|

n

)
e2πikx =

1
n

(sin πnx
sin πx

)2

is Fejër’s kernel. In fact, for x = e(a) := e2πia , a ∈ [0, 1) ,

r1
n(x) =

e(na) − 1
e(a) − 1

=
e
(

na
2

)
e
(

a
2

) e
(

na
2

) − e
(− na

2

)
e
(

a
2

) − e
(− a

2

) = e

(
(n − 1)a

2

)
sin πna
sin πa

,

and similarly

rn
n(x) = e

(
n(n − 1)a

2

)
sin πn2a
sin πna

.

We will show in Section 2 that

μ(n) =

⎧⎪⎨⎪⎩
1, n = 2,

0.769292 · · · , n = 3,

csc (n−2)π
(n−1)2 sin (n−2)nπ

(n−1)2 , n � 4.

While obtaining μ(n) in Section 2, we will encounter with the polynomial with coeffi-
cients 0 and 1

Qn(x) := x(n−2)n + x(n−3)n + x(n−4)n + · · · + x2n + xn + 1

+ x
(
x(n−3)n + x(n−4)n + x(n−5)n + · · · + x2n + xn + 1

)
+ x2

(
x(n−4)n + x(n−5)n + x(n−6)n + · · · + x2n + xn + 1

)
+ · · ·
+ xn−3 (xn + 1)

+ xn−2.
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The zeros of polynomials with each coefficient either 0 or 1 are “near” the unit circle.
More precisely, if we let W denote the complete set of zeros of polynomials from the
set

P = {f (x) = 1 +
n∑

j=1

εjx
j : εj ∈ {0, 1} for all j }

and let W denote the closure of W , then Odlyzko and Poonen [4] showed that (a) if
z ∈ W , then 0.61803 · · · = φ−1 < |z| < φ = 1.61803 · · · , where φ = (1 +

√
5)/2 ,

and (b) there is an open neighborhoodof {z ∈ C : |z| = 1, z �= 1} contained in W . The
bound in (a) was also proved independently in different contexts by Flatto, Lagarias,
and Poonen [3] and by Solomyak [5]. In Section 3, we also show that the polynomial
Qn(x) derived from μ(n) does not have zeros on the unit circle.

2. The extremal values of μ(n)

It is obvious that μ(2) = 1 . By (1), we have μ(3) =
√

2c + 3 , where c is the
real root of 1 + 2(1 + x + x2 + x3) = 0 . Thus μ(3) = 0.769292 · · · . Hence we only
need to consider integers n � 4 . Throughout the rest of this paper, we let n be an
integer � 4 . Our first assertion is the following.

PROPOSITION 2.1. If μ(n) is extremal, then the two moduli are equal.

Proof. For 0 � a < 2π , let Rh
n(a) :=

∣∣rh
n(eia)

∣∣2 for h = 1, n . It is enough to
show that, if μ(n) is extremal, then R1

n(a) = Rn
n(a) for some a . The extremal value

of μ(n) is attained at a point a satisfying one of the following; (i) either R1
n(a) or

Rn
n(a) is a local minimum whose value is greater than and equal to the other value, (ii)

R1
n(a) = Rn

n(a) . We show that (i) is not the case either. We can easily compute that

R1
n(a) =

eina − 1
eia − 1

e−ina − 1
e−ia − 1

=
1 − cos na
1 − cos a

= csc2 a
2

sin2 an
2

by double-angle formulas. We may assume that 0 < a < π . By simple calculation,

d
da

R1
n(a) = csc2 a

2
sin

an
2

(
n cos

an
2

− cot
a
2

sin
an
2

)
=

1
2

csc3 a
2

sin
an
2

t1n(a),

where t1n(a) = (n − 1) sin (a(n + 1)/2) − (n + 1) sin (a(n − 1)/2) . Observe that the
zeros of csc3 (a/2) sin (an/2) = 0 are

ak :=
2kπ
n

(
0 < k �

⌊n
2

⌋)
,

and R1
n(ak) = 0 . Now we show that the only local minimum of R1

n is 0 at a = ak .
But t1n(a) has at least � n

2� − 1 zeros since

t1n(ak) = (n − 1) sin
k(n + 1)π

n
− (n + 1) sin

k(n − 1)π
n
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for 0 < k �
⌊

n
2

⌋
, and

t1n(ak)
{

< 0, k odd,

> 0, k even.

It follows from
d
da

t1n(a) = −(n + 1)(n − 1) sin
a
2

sin
an
2

that all zeros of t1n(a) are ak , where (0 < k � �n/2�) . Since (R1
n)2(ak) = 0 , R1

n(a)
has only local minimum 0 at a = ak . On the other hand, Rn

n(ak) = 0 , which completes
the proof. �

We have that r1
n(1) = rn

n(1) = n . For x with xn−1 = 1 and x �= 1 , an easy
computation yields that r1

n(x) = rn
n(x) = 1 . Hence we have μ(n) � 1 . By Proposition

2.1, in order that μ(n) be extremal, we must have |r1
n(x)| = |rn

n(x)| . In the rest of this
section, we assume that xn �= ±1 , since, if xn = 1 , then rn

n(x) = n , and if xn = −1 ,
then |r1

n(x)| = 2/|x − 1| � 1 . In the following, we omit some easy trigonometric
computations.

PROPOSITION 2.2. Let x = eiζ , 0 < ζ < 2π , and

r1
n(x) =

xn − 1
x − 1

= seiρ, rn
n(x) =

xn2 − 1
xn − 1

= seiθ , (s > 0).

If μ(n) is extremal, then
sin (θ − nρ) = 0

and ζ is a (n − 1)2 -th root of unity.

Proof. Let 0 < ζ < 2π and

r1
n(x) =

xn − 1
x − 1

= seiρ, rn
n(x) =

xn2 − 1
xn − 1

= seiθ .

Substituting eiζ for x in r1
n(x) = seiρ derives

(s(cos ρ − cos (ζ + ρ)) + cos (nζ) − 1) + i (s(sin ρ − sin (ζ + ρ)) + sin (nζ)) = 0

and

s =
1 − cos (nζ)

cos ρ − cos (ζ + ρ)
= − sin (nζ)

sinρ − sin (ζ + ρ)
. (3)

Here cosρ �= cos (ζ + ρ) and sin ρ �= sin (ζ + ρ) , since xn �= ±1 . From the equation
(3), we can compute that

csc
ζ
2

csc

(
ζ
2

+ ρ
)

sec

(
ζ
2

+ ρ
)

sin
nζ
2

sin

(
ζ
2
(1 − n) + ρ

)
= 0.

Similarly, from rn
n(x) = seiθ , we have

csc
nζ
2

csc

(
nζ
2

+ θ
)

sec

(
nζ
2

+ θ
)

sin
n2ζ
2

sin

(
nζ
2

(1 − n) + θ
)

= 0.
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It follows from sin
(
ζ
2 (1 − n) + ρ

)
= 0 and sin

(
nζ
2 (1 − n) + ρ

)
= 0 that

sin (θ − nρ) = 0

and

ζ =
2jπ

(n − 1)2

for some integer j . �
Now we compute μ(n) for n � 4 .

THEOREM 2.3. For n � 4 , we have

μ(n) = csc
(n − 2)π
(n − 1)2

sin
(n − 2)nπ
(n − 1)2

.

Proof. By Proposition 2.2, μ(n) is attained when x is a (n − 1)2 -th root of

unity. Note that x �= 1 . We can compute that, for x = e
i 2kπ
(n−1)2 for some integer k ,

0 < k < (n − 1)2 ,

r1
n(x) = csc

kπ
(n − 1)2

sin
knπ

(n − 1)2

(
cos

kπ
n − 1

− i sin
kπ

n − 1

)
.

Hence, by Proposition 2.1, we have

μ(n) = min
0<k<(n−1)2

k∈Z

csc
kπ

(n − 1)2

∣∣∣∣sin knπ
(n − 1)2

∣∣∣∣ .

But sin knπ
(n−1)2 vanishes when k = (n − 1)2h/n /∈ Z for 0 < h � n − 1 . Moreover

we may check that the function csc kπ
(n−1)2 sin knπ

(n−1)2 has only one critical point on each

subinterval ((n− 1)2h/n, (n− 1)2(h + 1)/n) , where 0 < h � n− 2 . This implies that

μ(n) = min

{
min

0<h�=n−1
α(h), min

0<h<n−1
β(h)

}
,

where

α(h) = csc

(⌊
h(n−1)2

n

⌋
− 1

)
π

(n − 1)2
sin

(⌊
h(n−1)2

n

⌋
− 1

)
nπ

(n − 1)2

and

β(h) = csc

(⌈
h(n−1)2

n

⌉
− 1

)
π

(n − 1)2

∣∣∣∣∣∣sin
(⌈

h(n−1)2

n

⌉
− 1

)
nπ

(n − 1)2

∣∣∣∣∣∣ .
Since (h(n − 1)2)/n = (n − 2)h + h/n , we have

α(h) = csc
(h(n − 2) − 1)π

(n − 1)2
sin

(h(n − 2) − 1) nπ
(n − 1)2

,

β(h) = csc
h(n − 2)π
(n − 1)2

∣∣∣∣sin h(n − 2)nπ
(n − 1)2

∣∣∣∣ .
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But, for n even, the α(h) is minimal when h = n/2 − 1 or h = n/2 . In fact,

α(h) = csc
(h(n − 2) − 1)π

(n − 1)2

∣∣∣∣sin(
h − n + h

(n − 1)2

)∣∣∣∣
= csc

(h(n − 2) − 1)π
(n − 1)2

sin

(
n + h

(n − 1)2
π
)

.

Observe that
n + h

(n − 1)2
π <

π
2
,

and, as h increases from 1 to n − 1 , (h(n−2)−1)
(n−1)2π is faster than n+h

(n−1)2 π . Since

(h(n − 2) − 1)π
(n − 1)2

=
π
2

when h =
n
2

+
3

2(n − 2)
,

the min0<h�n−1 α(h) is attained when h = n/2 − 1 or h = n/2 . But substituting
n/2 − 1 and n/2 for h in (h(n−2)−1)π

(n−1)2 give

n2 − 4n + 2
2(n − 1)2

and
(n2 − 2n − 2)π

2(n − 1)2

(
<

π
2

)
,

respectively. Since

(n2 − 6)π
2(n − 1)2

− π
2
−

(
π
2
− (n2 − 2n − 2)π

2(n − 1)2
=

(n − 5)π
(n − 1)2

)
> 0,

the minimum is attained when h = n/2 . We can show in the similar way that, for n odd,
the minimum is attained when h = �n/2� = (n − 1)/2 . Hence the min0<h�n−1 α(h)
equals ⎧⎨⎩ α

(
n
2 − 1

)
= csc (n2−4n+2)π

2(n−1)2 sin (3n−2)π
2(n−1)2 , n even,

α
(

(n−1)
2

)
= csc (n−3)nπ

2(n−1)2 sin (3n−1)π
2(n−1)2 , n odd.

Next we attain the extremal value min0<h<n−1 β(h) . A calculation yields

(n − 1)2(β2)′(h) = (n − 2)π csc3 h(n − 2)π
(n − 1)2

sin
h(n − 2)nπ
(n − 1)2

−
(

(n − 1) sin
h(n2 − n − 2)π

(n − 1)2
+ (n + 1) sin

h(n − 2)π
n − 1

)
> 0

by considering for cases of h even and h odd, respectively. Hence

min
0<h<n−1

β(h) = β (1) = csc
(n − 2)π
(n − 1)2 sin

(n − 2)nπ
(n − 1)2 .
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In all, we have

μ(n) =
{

min
{
α

(
n
2 − 1

)
, β(1)

}
, n even,

min
{
α

(
n−1

2

)
, β(1)

}
, n odd.

On the other hand, for n = 2k , we can compute that

α
(n

2
− 1

)
− β(1)

=
1
4

csc
(k − 1)π
(2k − 1)2

csc
(2k2 − 4k + 1)π

2(2k − 1)2
sec

(k − 1)π
(2k − 1)2

sec
(2k2 − 4k + 1)π

2(2k − 1)2(
sin

2(k − 1)π
(2k − 1)2

sin
(3k − 1)π
(2k − 1)2

− sin
4(k − 1)kπ
(2k − 1)2

)
> 0.

Also, for n = 2k + 1 ,

α
(

n − 1
2

)
− β(1)

=
1
8

csc
(2k − 1)π

8k2
csc

(2k2 − k − 1)π
8k2

sec
(2k − 1)π

8k2
sec

(2k2 − k − 1)π
8k2(

cos
(k + 2)π

4k2
− cos

5π
4k

+ sin
π
4k

− sin
(k + 2)π

4k2

)
> 0.

This completes the proof �

3. Polynomials with coefficients 0 and 1

By Proposition 2.1, if μ(n) is extremal, then |r1
n(x)| = |rn

n(x)| . In this section, we
consider the case r1

n(x) = rn
n(x) . For x with |x| = 1 , xn �= 1 , we have

r1
n(x) = rn

n(x) ⇔ (x − 1)(xn2 − 1) − (xn − 1)2 = 0.

Define, for n � 4 ,

Fn(x) =
(x − 1)(xn2 − 1) − (xn − 1)2

x(x + 1)(x − 1)3
,

Pn(x) =

{
xn−1
x2−1 , n even,

xn−1
x−1 , n odd,

Qn(x) = x(n−2)n + x(n−3)n + x(n−4)n + · · · + x2n + xn + 1

+ x
(
x(n−3)n + x(n−4)n + x(n−5)n + · · · + x2n + xn + 1

)
+ x2

(
x(n−4)n + x(n−5)n + x(n−6)n + · · · + x2n + xn + 1

)
+ · · ·
+ xn−3 (xn + 1)

+ xn−2.
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Then the following can be verified with tedious calculation.

LEMMA 3.1. For n � 4 , we have

Fn(x) = Pn(x)Pn−1(x)Qn(x).

In this section, we investigate the zero distributions of the polynomial Qn(x) .
Define, for n � 4 ,

F̃n(x) = x(x + 1)(x − 1)3Fn(x) = (x − 1)(xn2 − 1) − (xn − 1)2.

LEMMA 3.2. The polynomial Qn(x) does not have a zero x with xn−1 = 1 .

Proof. Suppose that x is a zero of Qn(x) such that xn−1 = 1 and x �= 1 . Since
xn = x , we have

Qn(x) = (n − 1)xn−2 + (n − 2)xn−3 + (n − 3)xn−4 + · · · + 2x + 1. (4)

Then the zeros of
(x − 1)Qn(x) = 0

are those of

xn−1 =
xn−2 + xn−3 + · · · + x + 1

n − 1
.

This contradicts to the fact that the average of points on the unit circle is strictly inside
the unit circle unless all of the points are equal. �

We use Lemma 3.1 and Lemma 3.2 to prove the following.

THEOREM 3.3. The polynomials Qn(x) does not have zeros on the unit circle.

Proof. It is obvious that Qn(1) �= 0 and, for n even, Qn(−1) �= 0 . It is easy to
compute that, for n odd, Qn(−1) = 1 + (−1)(n − 1)/2 = (3 − n)/2 �= 0 . Thus it is
enough to show that all zeros of F̃n(x) with modulus 1 except 1 and −1 are not the
zeros of Qn(x) . Let x = eia is a zero of both F̃n(x) and Qn(x) . Then, by Proposition
2.2, x(n−1)2

= 1 . But xn2
= x2n−1 and

F̃n(x) = xn2+1 − xn2 − x − x2n + 2xn

= −x(xn−1 − 1)2.

However, by Lemma 3.2, the polynomial Qn(x) does not have a zero with xn−1 = 1 .
This contradicts to the assumption. This proves the result. �

REMARK 3.4. By Eneström-Kakeya theorem (see p. 136 of [1]) and the proof of
Lemma 3.2, the polynomial equation in (4)

(n − 1)xn−2 + (n − 2)xn−3 + (n − 3)xn−4 + · · · + 2x + 1 = 0

has all its zeros strictly inside the unit circle
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