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A MINIMAX PROBLEM ABOUT UNIT VECTORS IN THE PLANE
SEON-HONG KiMm

(communicated by A. M. Fink)

Abstract. For n > 2, we obtain the extremal values of the minimax problem for exponential

n—l1 n—l1
u(n) := mln max{ Zxk Zxk" }

k=0

Moreover, we show that the polynomial with coefficients 0 and 1 derived from p(n) does not
have zeros on the unit circle.

1. Introduction

For n > 2, Kim [2] obtained the extremal values of the minimax problem for
exponential sums

n n

R : iay, inay
f(n):= min max Ze , Ze
k=1 k=1
In fact, the values are
1, n=>2,
f(n)=1< V2c+3, n=3,
0, n =4,

where c is the real root of 1+ 2(1 +x + 2 +x3) =0, thus £(3) =0.769292 - - - . In
particular, Kim [2] reduced the two extremal problems f (3) and

ma min _ ib\( ib _ ic ic _ jia
abce[g%ﬂ] {‘ ¢ )(6 ¢ )(6 ¢ )

b
’(ei3a o eiSb)(eBb o eiSC i3c 13a ‘}
to the problems about the packing of certain convex sets in the plane and obtained the

results. This new packing method also could be used to solve some other extremal
problems (see [2]). While using packing method to obtain the extremal value

£3) =, min_max {[1+e% 4 &) |14 e ]},

0<a,b<2m
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Kim [2] realized that this extremal value was attained when b = 2a. Hence we have
another representation of f(3) as follows;

fB3) =

1+ +x°|} =0.769292 - - . (1)

)

inmax{‘l +x 4 x*
x|=1

In this paper, we consider following generalization of (1);

p(n) == min max {|r, (x)| , [ )|} (n>2), )

xl=1

where 7 (x) = ZZ;OI x¥ . Note that switching min and max in (2) leads to trivial
problems. On the other hand, there is another representation of p(n);

1 2 .
, #)" = min max {A,(a), A (na)},

where
‘ K[\ opiae 1 /sinznxy?
) =3 (1= KLY gors 1 sy
() Z;( n ¢ n \ sinmx

is Fejér’s kernel. In fact, for x = e(a) := €™, a € [0, 1),

e(na)—1 e(B)e(%)—e(—%) _, <(n l)a) sin 7tna

efa) =1 e(%) e(%) —e(-2) 2 sin 7ta

ra(x) =

)

and similarly

2 sin Tna

) = e (n(n — l)a) sin Tnta

17 n = b
u(n) = 0769292 n=3
csc ((2:23)7; sin (E';_—zl);lf, n>4.

While obtaining u(n) in Section 2, we will encounter with the polynomial with coeffi-
cients 0 and 1

Qn(x) — x(n72)n +x(i173)n +x(n74)n NI +x2n +xX+1
+x (x(n—3)n +x(n—4)n +x(n—5)n NI +x2n +x" 4+ 1)
+X2 (x(nf4)n + x(n75)n +x(nf6)n 4t x2n X"+ 1)

FOT ()
+ X2
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The zeros of polynomials with each coefficient either 0 or 1 are “near” the unit circle.
More precisely, if we let W denote the complete set of zeros of polynomials from the

set
n

P={f(x)=1 JrZejxj 1€ €4{0,1} forall j}
=1
and let W denote the closure of W, then Odlyzko and Poonen [4] showed that (a) if
z€ W, then 0.61803--- = ¢~ < |z| < ¢ = 1.61803- -, where ¢ = (1 +/3)/2,
and (b) there is an open neighborhoodof {z € C: |z| = 1,z # 1} containedin W . The
bound in (a) was also proved independently in different contexts by Flatto, Lagarias,
and Poonen [3] and by Solomyak [5]. In Section 3, we also show that the polynomial
0, (x) derived from u(n) does not have zeros on the unit circle.

2. The extremal values of u(n)

It is obvious that u(2) = 1. By (1), we have u(3) = v/2c¢ + 3, where c is the
real root of 1+ 2(1 +x+ x?> 4+ x*) = 0. Thus u(3) = 0.769292 - - - . Hence we only
need to consider integers n > 4. Throughout the rest of this paper, we let n be an
integer > 4. Our first assertion is the following.

PROPOSITION 2.1. If u(n) is extremal, then the two moduli are equal.

Proof. For 0 < a < 2m, let R'(a) := |rf§(e"”)|2 for h = 1,n. It is enough to
show that, if wu(n) is extremal, then R!(a) = R"(a) for some a. The extremal value
of u(n) is attained at a point a satisfying one of the following; (i) either R!(a) or
R!(a) is a local minimum whose value is greater than and equal to the other value, (ii)
R!(a) = R"(a). We show that (i) is not the case either. We can easily compute that
¢ —1e ™ —1 1—cosna ,a

= csc sin® an
ela —1 e~ia — 1 1 —cosa 2 2

R,(a) =
by double-angle formulas. We may assume that 0 < a < 7. By simple calculation,
d

—R!(a) = csc? 2sinZ (n cos = cot = sin @)
da " 2 2 2 2 2

1
=3 esc? g sin % t(a),
where t(a) = (n — 1)sin (a(n + 1)/2) — (n + 1) sin (a(n — 1)/2). Observe that the
zeros of csc® (a/2) sin (an/2) = 0 are

wie 22 (ocie]2))

and R!(a;) = 0. Now we show that the only local minimum of R} is 0 at a = a.
But 7)(a) has atleast [5| — 1 zeros since
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for 0 <k < |%],and

<0, k odd,
y (ak){

>0, k even.
It follows from

1 .a . an
datn(a) =—(n+1)(n l)sm2 sin —
that all zeros of t.(a) are a;, where (0 <k < |n/2]). Since (R})*(ax) = 0, Ri(a)
has only local minimum O at a = a; . On the other hand, R"(a;) = 0, which completes
the proof. [J

We have that r}(1) = #'(1) = n. For x with x"~! = 1 and x # 1, an easy
computation yields that ! (x) = 7(x) = 1. Hence we have u(n) < 1. By Proposition
2.1, in order that u(n) be extremal, we must have |r!(x)| = |[r*(x)|. In the rest of this
section, we assume that x" # +1, since, if X" = 1, then 7(x) = n, and if x" = —1,
then |r!(x)| = 2/]x — 1] > 1. In the following, we omit some easy trigonometric
computations.

PROPOSITION 2.2. Let x = ¢*, 0 < { < 21, and

rh(x) = );_ 11 =5, rx) = );n — 11 =se% (s>0).
If u(n) is extremal, then
sin (6 —np) =0
and C is a (n — 1)?-th root of unity.
Proof. Let 0 < { < 27 and
2
ra(x) = )::11 =se®, i) :);:11 — 5¢.

Substituting /¢ for x in rl(x) = se’ derives

(s(cosp —cos (& +p)) +cos(nl) — 1) +i (s(sinp —sin({ + p)) + sin (nf)) =0

and
1 — cos (ng) sin (n{)
s = =—— - . (3)
cosp —cos (€ + p) sinp —sin (§ + p)
Here cosp # cos ({ + p) and sin p # sin (§ + p), since x" # +1. From the equation
(3), we can compute that

cscgcsc (g +p> sec (g +p) sinnz—gsin (g(l —n) +p> =0.

i0

, we have

csc%csc (% + 6) sec (% + 9) sinnzTgsin <%(1 —n)+ 9) =0.

Similarly, from 7! (x) = se
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It follows from sin (%(1 —n) +p) =0 and sin (%(1 —n) +p) =0 that

sin(6 —np) =0
and Y
__4n
STy

for some integer j. [
Now we compute (n) for n > 4.
THEOREM 2.3. For n > 4, we have
n=2)nr . (n—2)nx

u(n) = csc CERE sin TR

Proof. By Proposition 2.2, u(n) is attained when x is a (n — 1)?-th root of

2kT

unity. Note that x # 1. We can compute that, for x = ¢ =17 for some integer k,
0<k<(n—1)2,

'(x) = csc kn sin knz cos kn | sin kn
r,(x) = i —i .
" (n—12"" (n—1)2 n—1 n—1

Hence, by Proposition 2.1, we have

(n) = min csc kn sin knz
H 0<k<(n—1)>  (n—1)2 (n—1)2|"
kez

But sin (nkf’BZ vanishes when k = (n — 1)?h/n ¢ Z for 0 < h < n— 1. Moreover

we may check that the function csc (ni—ﬂl)Z sin (k”—’f)z has only one critical point on each

n—

subinterval ((n— 1)?h/n,(n—1)?>(h+1)/n), where 0 < h < n— 2. This implies that

/.L(n):min{ min o(h), min ﬁ(h)},

0<hzn—1 T 0<h<n—1
where an;an _ 1) - QMJ - 1) nm
alh) = ese Mg sin S
(2] )], (2] )
Blh) =cse =— — | T |

Since (h(n —1)%)/n = (n —2)h + h/n, we have

(hn—2)— D7 . (h(n—2)—1)nn
e T

hin—2)m

1y

o(h) = csc

sin

B(h) = csc
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But, for n even, the o(h) is minimal when A =n/2 — 1 or h = n/2. In fact,
(h(n—=2)-1)m

CEEya (h%)‘

*Csc(h(niz)il)ﬂsin n+h
- =1y (<n—1>2”)'

o(h) = csc

Observe that
n+h T

(n— 1)2ﬂ< 2’

and, as A increases from 1 ton—1, U’((Z:iﬂz;l) is faster than %TC Since
(hn-2)-1)m = n 3
n—172 2 Ve =S =)

the ming<;<,—1 (k) is attained when h = n/2 — 1 or h = n/2. But substituting
n/2—1 and n/2 for h in W give

n? —4n+2
2(n—1)2
and

n? —2n—
: 2(n2f 1)22)7: (< g)

respectively. Since

n>—-6)r & (7: (n*>—2n-2)m (n—S)n>>O

2mn—12 2 \2 T 2m-12  (n-17

the minimum is attained when & = n/2 . We can show in the similar way that, for n odd,
the minimum is attained when & = |n/2] = (n — 1)/2. Hence the ming<,<,—1 0¢(h)

equals
("’ —4n+2)m
2(n—1)2

a (M) — csc U=3Inm Gy Bl n odd.

(Bn—2)m

sin 5577,

o (% — 1) = csc n even,

2 2(n—1)2 2(n—1)2>
Next we attain the extremal value ming<,<,—; B(h). A calculation yields

(n = 1*(B%)'(h) = (n = 2)mesc’ h((:_ 12))27r sin h((’:l—21));;n

n’—n— n—
- <(n1)sin%+(n+l)sin%> >0

by considering for cases of / even and % odd, respectively. Hence

min B = B (1) = ese (=T sin (=20,
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In all, we have

un) = { min {o (5 —1), B(1)}, n even,

min {o (251), B(1)}, n odd.
On the other hand, for n = 2k, we can compute that
n
o(5-1) -0y
1 (k—)r (2k2—4k+1)7r (k—)m (2k2—4k+1)7r
=-—csc csc sec sec
4 (2k — 1)? 2(2k—1)? (2k—1) 2(2k—1)?

2k—Drm . Bk—1)m . 4(k— Dkn
(sm k= 1) sin k= 1) — sin k=1 ) 0.

Also, forn =2k + 1,

a(”zl) ~B(1)

1 k-UO)mr (2kP—k—-1)r (2k—-U)r (2K —k— 1)=&

= 3 csc e csc e sec e sec e
cos (k+2)z cos o7 + sin i sin (k+2)z >0
4k2 4k 4k 4k2 '

This completes the proof [

3. Polynomials with coefficients 0 and 1

By Proposition 2.1, if u(n) is extremal, then |r}(x)| = |#(x)|. In this section, we
consider the case r.(x) = r'(x). For x with |x| =1, x" # 1, we have

) =) e - DE 1) - (@ —1)2=0.

n n

Define, for n > 4,

=D - = @ —1)?
x(x+1)(x—1)3
:Z L n even,
B { -”j . nodd,
=y =3

)

=

=
»—»—

=

>-<

+x (x(n—3)n +x(n—4)n +x(n—5)n NI +x2n +x" 4+ 1)
+X2 (x(nf4)n + x(n75)n +x(nf6)n 4t x2n X"+ 1)

FOT ()
+ X2
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Then the following can be verified with tedious calculation.

LEMMA 3.1. For n > 4, we have
Fu(x) = Pp(x)Pr—1(x)On(x).

In this section, we investigate the zero distributions of the polynomial Q,(x).
Define, for n > 4,

Folx) = x(x+ D(x = 1)3Fu(x) = (x = D — 1) — (@ — 1)~
LEMMA 3.2. The polynomial Q,(x) does not have a zero x with x"~! = 1.

Proof. Suppose that x is a zero of Q,(x) such that x"~! = 1 and x # 1. Since
x" = x, we have

0 x)=(n—1Dx" 2+ n-2)x"+n-=3)""*+- +2x+ 1 4)

Then the zeros of
()C - I)Qn(x) =0
are those of
R
n—1 '
This contradicts to the fact that the average of points on the unit circle is strictly inside
the unit circle unless all of the points are equal. [

=

We use Lemma 3.1 and Lemma 3.2 to prove the following.
THEOREM 3.3. The polynomials Q,(x) does not have zeros on the unit circle.

Proof. Tt is obvious that 0,(1) # 0 and, for n even, Q,(—1) # 0. Itis easy to
compute that, for n odd, Q,(—1) =1+ (—=1)(n —1)/2 = (3 —n)/2 # 0. Thusitis
enough to show that all zeros of f;(x) with modulus 1 except 1 and —1 are not the
zeros of 0,(x). Let x = € is a zero of both F,,(x) and Q,(x). Then, by Proposition
2.2, x=V" = 1. But x” = x*~! and

Fn(x) — )Hl2+1 o xnz —x 7)(2” + 2%
= —x(x"' =12

However, by Lemma 3.2, the polynomial Q,(x) does not have a zero with x"~! = 1.
This contradicts to the assumption. This proves the result. [

REMARK 3.4. By Enestrom-Kakeya theorem (see p. 136 of [1]) and the proof of
Lemma 3.2, the polynomial equation in (4)

=" 2+ m=2"3 4+ (=34 +2x+1=0
has all its zeros strictly inside the unit circle
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