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LOWER AND UPPER BOUNDS FOR THE PROBABILITY

THAT AT LEAST r AND EXACTLY r OUT OF n EVENTS OCCUR

LINCHUN GAO AND ANDRÁS PRÉKOPA

(communicated by Z. Daróczy)

Abstract. Lower and upper bounds are presented for the probability that at least r or exactly r
out of n events occur, in terms of sums of joint probabilities of at most m events, where m < n .

1. Problem formulation and preliminary Lemmas

Let A1, . . . , An be arbitrary events in an arbitrary probability space. Introduce the
indicator variables:

Xi =
{

1, if Ai occurs,
0,otherwise,

i = 1, . . . , n

and let

ν = X1 + · · · + Xn.

Clearly, ν designates the number of events which occur. In this paper we present new
lower and upper bounds for P(ν � r) , and P(ν = r) , where 1 � r � n . The bounds
for P(ν � r) generalize bounds presented in Prékopa, Vizvári, Regös and Gao [7], who
dealt with the case of r = 1 .

Our new bounds are different from those presented in Boros and Prékopa [1],
for P(ν � r) and P(ν = r) and also from those in Sathe, Pradha and Shah [8], for
P(ν � r) . The new bounds are based on joint probabilities of at least r and at most
m + r events which are taken into account in more detailed forms, than in the above
cited papers. In Section 6 we present numerical examples and in almost all of them our
bounds outperform the just mentioned other ones.

In what follows, the sets

Ai1 ∩ · · · ∩ Aik ∩ Āik+1
∩ · · · ∩ Āin , (1)

which subdivide the sample space into 2n disjoint parts, will be referred to as atoms. Our
bounds are based on simple lemmas and linear programming formulations, where the
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optimum values provide us with the bounds. The first lemma enunciates a well-known
fact. For a proof the reader is referred to Prékopa [5] (pp. 182-183).

LEMMA 1.1. We have the equality(
ν
k

)
=

∑
1�i1<···<ik�n

Xi1 · · ·Xik . (2)

LEMMA 1.2. Let 1 � j1 < · · · < jr � n . We have the equality(
ν − r
k − r

)
Xj1 · · ·Xjr =

∑
1 � i1 < · · · < ik � n

{i1, . . . , ik} ⊃ {j1, . . . , jr}

Xi1 · · ·Xik , (3)

where 1 � k � r .

Proof. Equation (3) holds trivially, if k = r . Otherwise, it can be written in the
following equivalent form:(

ν − r
k − r

)
Xj1 · · ·Xjr = Xj1 · · ·Xjr

∑
1 � i1 < · · · < ik−r � n

{i1, . . . , ik−r} ⊂ {1, . . . , n} \ {j1, . . . , jr}

Xi1 · · ·Xik−r . (4)

If Xji = 0 , for at least one i , then both sides are 0 . If Xj1 = · · · = Xjr = 1 , then
(4) follows by (2), if we reduce the sample space determined by these equations.

LEMMA 1.3. Let 1 � j1 < · · · < jr � n , and

xj1···jrh = P(Xj1 = 1, . . . , Xjr = 1, ν = h), (5)

where h � r . We define

pi1···ik = P(Xi1 = 1, . . .Xik = 1),

for any 1 � i1 < · · · < ir � n .
Then we have the equality:

n∑
h=r

(
h − r
k − r

)
xj1···jrh =

∑
1 � i1 < · · · < ik � n

{i1, . . . , ik} ⊃ {j1, . . . , jr}

pi1···ik , (6)

where k � r .

Proof. If we take the expectations on both sides in (3), then we obtain (6).
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LEMMA 1.4. Introduce the notation:

yj1···jrh =
xj1···jrh(

h
r

) , h = r, . . . , n. (7)

We have the equalities ∑
1�j1<···<jr�n

yj1···jrh = P(ν = h) (8)

and

∑
1�j1<···<jr�n

n∑
h=r

yj1···jrh = P(ν � r). (9)

Proof. As j1, . . . , jr vary such that 1 � j1 < · · · < jr � n , any atom for which

ν = h will came up

(
h
r

)
times in the events Aj1 ∩ · · · ∩ Ajr . This implies that

∑
1�j1<···<jr�n

xj1···jrh =
(

h
r

)
P(ν = h). (10)

Equation (10) is the same as (8). Finally,

∑
1�j1<···jr�n

n∑
h=r

yj1···jrh

=
n∑

h=r

(
h
r

)−1 ∑
1�j1<···<jr�n

xj1···jrh (11)

=
n∑

h=r

P(ν = h) = P(ν � r).

2. Linear programming formulations of the probability bounding problems

We rewrite equation (6) by replacing

(
h
r

)
yj1···jrh for xj1···jrh and introducing

S
′
j1···jrk =

1(
k
r

) ∑
1 � i1 < · · · < ik � n

{i1, . . . , ik} ⊃ {j1, . . . , jr}

pi1···ik . (12)

Since (
h − r
k − r

) (
h
r

)
=

(
h
k

) (
k
r

)
,
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equation (6) takes the form

n∑
h=r

(
h
k

)
yj1···jrh = S

′
j1···jrk, (13)

where k � r and 1 � j1 < · · · < jr � n . If we consider (13) as a system of linear
equations, then we observe that for a fixed j1, . . . , jr the right hand side values S

′
j1···jrk ,

k � r uniquely determine the values of yj1···jrh , h � r . In fact, the matrix of the
equation is ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
r
r

)(
r + 1

r

)
· · ·

(
n
r

)
(

r + 1
r + 1

)
· · ·

(
n

r + 1

)
. . .

...(
n
n

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

where in the blank positions we have zeros, and this matrix is clearly nonsingular. Thus,
the sets of values S

′
j1···jrk , k � r and yj1···jrh , h � r uniquely determine each other for

fixed j1, . . . , jr , and also if j1, . . . , jr vary in all possible ways.
In practice the probabilities xj1···jrh , hence also the values yj1···jrh , are unknown

but known are the S
′
j1···jrk for some k . Assume that we know

S
′
j1···jrk, k = r, r + 1, . . . , mj1···jr , (15)

for all 1 � j1 < · · · < jr � n .
Now we relax the equation (13) in such a way that we keep only those which have

right hand side values (15). The obtained equations, together with the nonnegativity
restrictions

yj1···jrh � 0, for h = r, . . . , n, (16)

for all 1 � j1 < · · · < jr � n , determine a set of feasible solutions. For such a feasible
solution the equation (11) is not necessarily valid any more. However, the optimal
solutions of the LP’s:

min(max)
∑

1�j1<···<jr�n

n∑
h=r

yj1···jrh (17)

subject to
n∑

h=r

(
h
k

)
yj1···jrh = S

′
j1···jrk, k = r, r + 1, . . . , mj1···jr

yj1···jrh � 0, h = r, r + 1, . . . , n (18)
1 � j1 < · · · < jr � n



LOWER AND UPPER BOUNDS FOR THE PROBABILITY . . . 319

are lower and upper bounds, respectively, for P(ν � r) . Similarly, the optimal solutions
of the LP’s:

min(max)
∑

1�j1<···<jr�n

yj1···jrh (19)

subject to (18)

are lower and upper bounds, respectively, for the probability P(ν = r) .

The constraints (18) split into

(
n
r

)
subconstraints such that they contain disjoint

sets of variables. These variables are coupled only in the objective function, which is the
sum of the objective functions of the subproblems. Thus, the minimization, as well as

the maximization problem (17) splits into

(
n
r

)
subproblems and the optimum value

of the original problem is simply the sum of the optimum values of the subproblems.
Let us introduce the notations:
P(r) = probability that at least r out of the n events occur
P[r] = probability that exactly r out of the n events occur
L(r) = optimum value of the minimization problem (17)-(18)
U(r) = optimum value of the maximization problem (17)-(18)
L[r] = optimum value of the minimization problem (19)
U[r] = optimum value of the maximization problem (19)
lj1...jr(r) = optimum value of the minimization subproblem (17)-(18), corre-
sponding to j1 · · · jr
uj1...jr(r) = optimum value of the maximization subproblem (17)-(18), corre-
sponding to j1 · · · jr
lj1···jr [r] = optimum value of the minimization subproblem (19), corresponding
to j1 · · · jr
uj1,...,jr [r] = optimumvalue of themaximization subproblem (19), corresponding
to j1 · · · jr .

Then, we have the relations

L(r) =
∑

1�j1<···<jr�n

lj1···jr(r) (20)

U(r) =
∑

1�j1<···<jr�n

uj1···jr(r) (21)

L[r] =
∑

1�j1<···<jr�n

lj1···jr [r] (22)

U[r] =
∑

1�j1<···<jr�n

uj1···jr [r]. (23)

Since the true probability distribution, that provides us with the input data S
′
j1···jrk ,

k = r, r + 1, . . . , mj1···jr , 1 � j1 < · · · jr � n , is among the feasible solutions of the
constraints (18), it follows that L(r) � P(r) , L[r] � P[r] , and these bounds are sharp.
For the same reason we also have the inequalities: P(r) � U(r) , P[r] � U[r] . However,
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it may happen, that U(r) > 1 and U[r] > 1 . In these cases the sharp upper bounds are
equal to 1 . Summarizing, the sharp bounds for P(r) and P[r] are given by:

L(r) � P(r) � Min(U(r), 1) (24)
L[r] � P[r] � Min(U[r], 1). (25)

Luckily, we are able to provide simple solutions to the subproblems, which, in turn,
provide us with the sharp bounds (24) and (25).

3. Solutions to the subproblems of problems (17)-(18)

Let us pick one subproblem fromproblem (17)-(18), and, for the sake of simplicity,
suppress the subscripts j1, . . . , jr in the variables as well as the right hand side values.
Assume that r + m � n and introduce the notations:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
r
r

)(
r + 1

r

)(
r + 2

r

)
· · ·

(
r + m

r

)
· · ·

(
n
r

)
(

r + 1
r + 1

)(
r + 2
r + 1

)
· · ·

(
r + m
r + 1

)
· · ·

(
n

r + 1

)
...(

r + m
r + m

)
· · ·

(
n

r + m

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

y = (yr, yr+1, · · · , yn)T

b = (S
′
r, S

′
r+1, · · · , S

′
r+m)T

c = (1, 1, · · · , 1)T ,

where c has n − r + 1 components. Then the subproblem takes the form

min(max) cTy

subject to

Ay = b (26)
y � 0.

The LP (26) falls into the category of totally positive linear programs (see Prékopa
[4]), meaning that all minors of order m + 1 from A and all minors of order m + 2

from

(
cT

A

)
are positive. This fact is ensured by a theorem on binomial determinants

proved by Gessel and Viennot [2] and Prékopa [3], stating that any minor of the matrix(
i
k

)n

i,k=0

, that has all positive entries above its main diagonal, is positive.

In what follows we use some notions, notations and facts in linear programming.
For a simple and short presentation of the basic ideas, methods and theorems of linear
programming the reader is referred to Prékopa [6].
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Let ar, . . . , an designate the columns of the matrix A and take m + 1 of them
to form a basis B . The basis is said to be primal feasible, if B−1b � 0 , and dual
feasible in the minimization (maximization) problem, if cT

BB−1ak � ck , k = r, . . . , n
( cT

BB−1ak � ck , k = r, . . . , n ). If k is the subscript of a basic vector, then
cT
BB−1ak = ck . If for all other k subscripts the inequalities are strict, then we call the

basis dual non-degenerate.
The following theorem specializes the assertions of theorem 12.1, 12.2 and 12.3 in

Prékopa [4] to the present case. Since the proof is short, we present it for the reader’s
convenience. We remark, however, that the main ideas of the proof are the same as
those in the proofs of Theorems 8, 9, 10 in Prékopa [3].

THEOREM 3.1. All bases in problem (26) are dual non-degenerate and the dual
feasible bases have the following structure, described in terms of the subscripts of the
basic vectors:

m + 1 even m + 1 odd
min problem i, i + 1, . . . , j, j + 1 i, i + 1, . . . , j, j + 1, n
max problemr, i, i + 1, . . . , j, j + 1, n r, i, i + 1, . . . , j, j + 1.

(27)

Proof. Let B designate the basis. Since we have the equalities(
1cT

B
0 B

)−1

=
(

1−cT
BB−1

0 B−1

)

(
1cT

B
0 B

)−1 (
cp

ap

)
=

(
1−cT

BB−1

0 B−1

) (
cp

ap

)
=

(
cp − cT

BB−1ap

B−1ap

)
,

it follows that (
1cT

B
0 B

) (
cp − zp

dp

)
=

(
cp

ap

)
, (28)

where r � p � n , dp = B−1ap , zp = cT
BB−1ap . Equation (28) is a system of linear

equations for the unknown components in
(
cp − zp, dT

p

)T
, but at this point we are

interested only in the first component of it. By Cramer’s rule we obtain

cp − zp =

∣∣∣∣cp cT
B

ap B

∣∣∣∣
|B| , r � p � n. (29)

If p is a nonbasic subscript, then the determinant in the numerator is different from
0 . In fact, the determinant is either a minor of the matrix A or can be made one by
changing the order of the columns. Thus, all bases are dual non-degenerate.

If we use the above result, then we can state that the basis B is dual feasible in the
minimization problem (26) iff cp − zp > 0 for every nonbasic p , i.e., the determinant
in the numerator of (29) is positive for every nonbasic p .

This is, however,equivalent to the requirement that the basis has the structure
presented in the first line of (27).
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Similarly, if B is a basis in the maximization problem (26), it is dual feasible iff
cp − zp < 0 for every nonbasic p , i.e., the numerator in (29) is negative for every
nonbasic p . This takes us to the structure in the second line of (27).

Based on this theorem we can derive formulas for the optimum values of problem
(26), if m is small. Otherwise we can give simple dual type algorithm that solves the
problem for the general case. As the formulas are simple and elegant only if m � 2 ,
we restrict ourselves to these cases. We have the formulas for m = 3 , but we disregard
their presentations because they are too complicated.

Case m = 0 , S
′
r is known. We mention it for the sake of completeness, because

the bounds are trivial. The optimum values of the minimization and maximization

problems are S
′
r/

(
n
r

)
, and S

′
r , respectively, hence

l(r) =
S
′
r(

n
r

) , u(r) = S
′
r (30)

and the sharp bounds can be expressed by the relations

Sr(
n
r

) � P(r) � min (Sr, 1). (31)

Case m = 1 , S
′
r, S

′
r+1 are known. Minimization problem. Any dual feasible

basis is of the form B = (ar+i−1, ar+i) , where 1 � i � n − r . This is also primal
feasible, i.e., optimal, if for the solutions of the equations(

r + i − 1
r

)
yr+i−1 +

(
r + i

r

)
yr+i =S

′
r(

r + i − 1
r + 1

)
yr+i−1 +

(
r + i
r + 1

)
yr+i =S

′
r+1 (32)

we obtain yr+i−1 � 0 , yr+i � 0 . The optimum value is l(r) = yr+i−1 + yr+i . The result
is

l(r) =
1(

r + i − 1
r − 1

) [
r(r + 1)

r + i
S
′
r − r2(r + 1)

i(r + i)
S
′
r+1

]
, (33)

where

i = 1 +

⌊
(r + 1)

S
′
r+1

S′
r

⌋
.

Case m = 1 , S
′
r, S

′
r+1 are known. Maximization problem. The only dual

feasible basis is B = (ar, an) . Since problem (26) has feasible solution, (we assume
that the components of b have been computed exactly by the use of the real data) and
finite optimum, it follows that there exists a basis which is both primal and dual feasible.
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This implies that B has that property. The optimum value is ur = yr + yn , where yr

and yn are obtained from the equations

yr +
(

n
r

)
yn =S

′
r(

n
r + 1

)
yn =S

′
r+1. (34)

Simple calculation shows that

u(r) = S
′
r − r + 1

n − r

⎛
⎜⎜⎝1 − 1(

n
r

)
⎞
⎟⎟⎠ S

′
r+1. (35)

Case m = 2 , S
′
r , S

′
r+1 , S

′
r+2 are known. Minimization problem. Any dual

feasible basis has the form: B = (ar+i−1, ar+i, an) , where 1 � i � n−r . The equations
for the basic variables are the following:(

r + i − 1
r

)
yr+i−1 +

(
r + i

r

)
yr+i +

(
n
r

)
yn = S

′
r(

r + i − 1
r + 1

)
yr+i−1 +

(
r + i
r + 1

)
yr+i +

(
n

r + 1

)
yn = S

′
r+1 (36)(

r + i − 1
r + 2

)
yr+i−1 +

(
r + i
r + 2

)
yr+i +

(
n

r + 2

)
yn = S

′
r+2.

If we introduce the new variables(
r + i − 1

r − 1

)
yr+i−1 = zr+i−1,

(
r + i
r − 1

)
yr+i = zr+i,

(
n

r − 1

)
yn = zn, (37)

then (36) takes the form

izr+i−1 + (i + 1)zr+i + (n − r + 1)zn = rS
′
r

i(i − 1)zr+i−1 + (i + 1)izr+i + (n − r + 1)(n − r)zn = r(r + 1)S
′
r+1 (38)

i(i − 1)(i − 2)zr+i−1 + (i + 1)i(i − 1)zr+i

+ (n − r + 1)(n − r)(n − r − 1)zn = r(r + 1)(r + 2)S
′
r+2.

The condition on i that produces zr+i−1 � 0 , zr+i � 0 , zn � 0 can be obtained by
simple calculations. After simplification the result is:

i = 1 +

⌊
−(r + 1)(r + 2)S

′
r+2 + (n − r − 1)(r + 1)S

′
r+1

−(r + 1)S′
r+1 + (n − r)S′

r

⌋
. (39)

It remains to solve equations (36) and obtain the optimumvalue l(r) = yr+i−1+yr+i+yn .
The result is:

l(r) = yr+i−1 + yr+i + yn
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=
1
D

1
i

1(
r + i − 1

r − 1

)
∣∣∣∣∣∣∣

rS
′
r 1 1

r(r + 1)S
′
r+1 i n − r

r(r + 1)(r + 2)S
′
r+2 i(i − 1)(n − r)(n − r − 1)

∣∣∣∣∣∣∣

+
1
D

1
i + 1

1(
r + i
r − 1

)
∣∣∣∣∣∣∣

1 rS
′
r 1

i − 1 r(r + 1)S
′
r+1 n − r

(i − 1)(i − 2)r(r + 1)(r + 2)S
′
r+2 (n − r)(n − r − 1)

∣∣∣∣∣∣∣ (40)

+
1
D

1
n − r + 1

1(
n

r − 1

)
∣∣∣∣∣∣∣

1 1 rS
′
r

i − 1 i r(r + 1)S
′
r+1

(i − 1)(i − 2) i(i − 1)r(r + 1)(r + 2)S
′
r+2

∣∣∣∣∣∣∣ .

That is,

l(r) =
1
D

1
i

1(
r + i

r

) [
i(n − r)(rn + n + 1 − r2 − ri − 2i − r)S

′
r (41)

+ (r + 1)(2r2n + nr + ri2 + 2i2 − ir − n2r − r3 − r2 − 2i)S
′
r+1

+ (r + 1)(r + 2)(rn − r2 − ri − i)S
′
r+2

]
+

1
D

1
n − r + 1

1(
n

r − 1

) [
ri(i − 1)S

′
r

−2r(r + 1)(i − 1)S
′
r+1 + r(r + 1)(r + 2)S

′
r+2

]
,

where

D=

∣∣∣∣∣∣
1 1 1

i − 1 i n − r
(i − 1)(i − 2) i(i − 1)(n − r)(n − r − 1)

∣∣∣∣∣∣ (42)

=(n − r − i + 1)(n − r − i).

Case m = 2 , S
′
r , S

′
r+1 , S

′
r+2 are known. Maximization problem. Any dual fea-

sible basis has the form: B = (ar, ar+i−1, ar+i) , the equations for the basic components
are:

yr +
(

r + i − 1
r

)
yr+i−1 +

(
r + i

r

)
yr+i =S

′
r(

r + i − 1
r + 1

)
yr+i−1 +

(
r + i
r + 1

)
yr+i =S

′
r+1 (43)(

r + i − 1
r + 2

)
yr+i−1 +

(
r + i
r + 2

)
yr+i =S

′
r+2.
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Ifwe introduce the newvaribales yr = zr ,

(
r + i − 1

r

)
yr+i−1 = zr+i−1 ,

(
r + i

r

)
yr+i =

zr+i , then equations (43) take the form:

zr + zr+i−1 + zr+i =S
′
r

(i − 1)zr+i−1 + izr+i =(r + 1)S
′
r+1 (44)

(i − 1)(i − 2)zr+i−1 + i(i − 1)zr+i =(r + 1)(r + 2)S
′
r+2.

The value of i that ensures zr � 0 , zr+i−1 � 0 , zr+i � 0 can be obtained from the last
two equations. Simple calculation shows that

i = 2 +

⌊
(r + 2)

S
′
r+2

S′
r+1

⌋
. (45)

For the optimum value u(r) = yr + yr+i−1 + yr+i we obtain

u(r) = S
′
r − r + 1(

r + i − 1
r

) (
2

(
r + i − 1

r

)
1
i

− r + 2
r + i

)
S
′
r+1

+
(r + 1)(r + 2)(

r + i − 1
r

) ((
r + i − 1

r

)
1

i(i − 1)
− r + 1

(i − 1)(r + i)

)
S
′
r+2. (46)

For the case of r = 1 and m = 1 or m = 2 the above bounds coincide with known
lower and upper bounds for the probability that at least one out of n events occur. For
these known formulas and the references see Prékopa [5].

ALGORITHMIC BOUNDS. We have not presented formulas for l(r) and u(r) if

S
′
r, . . . , S

′
r+m are known and m � 3 . However, a simple dual type algorithm for

the solution of any of the (minimization or maximization) subproblems can be given.
It consists of the following steps.

Step 1. Find an initial dual feasible basis B to the problem in agreement with
Theorem 3.1.
Step 2. Check for B−1b � 0 . If it holds, then go to Step 4. Otherwise, go to
Step 3.
Step 3. Pick any k for which (B−1b)k < 0 . Remove the k th column from B
and replace it by the uniquely determined vector which restores the dual feasible
basis structure in Theorem 3.1. Go to Step 2.
Step 4. Stop, the basis is optimal and the corresponding basic solution is an
optimal solution to the problem.

4. Solutions to the subproblems of problem (19)

We keep the notations introduced in Section 3 but now c = (1, 0, . . . , 0)T . We
pick a subproblem, suppress the subscripts j1, . . . , js and cast it in the form (26).
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Below we state a theorem that can be proved by the use of similar ideas what we
have used in the proof of Theorem 3.1.

THEOREM 4.1. Any basis that does not contain ar is dual feasible in the minimiza-
tion problem (19) ( and it is also dual-degenerate). All other bases in problem (19) are
dual non-degenerate and have the following structure, described in terms of the basic
subscripts:

m + 1 even m + 1 odd
min problem r, r + 1, i, i + 1, . . . , j, j + 1r, r + 1, i, i + 1, , . . . , j, j + 1, n
max problem r, i, i + 1, . . . , j, j + 1, n r, i, i + 1, . . . , j, j + 1.

Below we derive formulas for the optimum values of the problem, when m =
0, 1, 2 .

Case m = 0 , S
′
r is known. The optimum values for the minimization and

maximization problems are 0 and S
′
r , respectively. Thus,

l[r] = 0, u[r] = S
′
r.

Case m = 1 , S
′
r, S

′
r+1 are known. Minimization problem. The only dual

feasible basis that contains ar is (ar, ar+1) . The equations for the basic components of
the optimal solution are:

yr + (r + 1)yr+1 =S
′
r,

yr+1 =S
′
r+1.

The basis is primal feasible iff yr = S
′
r − (r + 1)S

′
r+1 � 0 . Otherwise the optimal basis

does not contain ar , and the optimum value is 0 . Thus, we have the optimum value:

l[r] = Max(S
′
r − (r + 1)S

′
r+1, 0). (47)

Case m = 1 , S
′
r , S

′
r+1 are known. Maximization problem. The only dual

feasible basis is (ar, an) . The equations for the basic components of the optimal
solution are the same as in (34). This time, however, yr alone gives the optimum value:

u[r] = S
′
r −

r + 1
n − r

S
′
r+1. (48)

Case m = 2 , S
′
r , S

′
r+1 , S

′
r+2 are known. Minimization problem. The only dual

feasible basis that contains ar is: (ar, ar+1, an) . The equations for yr , yr+1 , yn are:

yr + (r + 1)yr+1 +
(

n
r

)
yn =S

′
r

yr+1 +
(

n
r + 1

)
yn =S

′
r+1(

n
r + 2

)
yn =S

′
r+2.
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Since yn � 0 , the basis is primal feasible iff

yr+1 = S
′
r+1 − r + 2

n − r − 1
S
′
r+2 � 0 (49)

yr = S
′
r − (r + 1)S

′
r+1 +

(r + 1)(r + 2)
n − r

S
′
r+2 � 0. (50)

If both (49) and (50) hold, then l[r] = yr . Otherwise, l[r] = 0 .

Case m = 2 , S
′
r , S

′
r+1 , S

′
r+2 are known. Maximization problem. Any dual

feasible basis has the form B = (ar, ar+i−1, ar+i) , 1 � i � n − r . The equations for
the basic components of the optimal solution are identical to those in (43). Thus, i is
given by (45) but now the optimum value is equal to yr . Simple calculation shows that

u[r] = S
′
r − 2

r + 1
i

S
′
r+1 +

(r + 1)(r + 2)
(i − 1)i

S
′
r+2, (51)

where, as we have mentioned above,

i = 2 +

⌊
(r + 2)

S
′
r+2

S′
r+1

⌋
. (52)

For the case of r = 1 and m = 1 or m = 2 the above bounds coincide with
the known lower and upper bounds for the probability that exactly one out of n events
occur. For these known formulas and the references see Prékopa [5].

For the case of a general m an algorithmic solution of the optimization problem,
that produces the bound, can be given here too. It follows the same scheme as the
algorithm that we have presented at the end of Section 3.

5. Summary of bounding formulas

We present the complete bounding formulas for the cases of m = 1, 2 .
Lower and upper bounds for P(r) . Case m = 1 . By (20), (21), (33), (34) and

(35) we obtain the formulas

P(r) �
∑

1�j1<···<jr�n

(
r + ij1...jr − 1

r − 1

)−1 [
r(r + 1)
r + ij1...jr

S
′
j1...jr ,r

− r2(r + 1)
ij1...jr(r + ij1 ...jr)

S
′
j1...jr ,r+1

]
, (53)

where

ij1...jr = 1 +

⌊
(r + 1)

S
′
j1...jr ,r+1

S′
j1...jr ,r

⌋
(54)

and

P(r)
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� Min

⎡
⎢⎢⎣ ∑

1�j1<···<jr�n

⎛
⎜⎜⎝S

′
j1...jr,r − r + 1

n − r

⎛
⎜⎜⎝1 − 1(

n
r

)
⎞
⎟⎟⎠ S

′
j1...jr ,r+1

⎞
⎟⎟⎠ , 1

⎤
⎥⎥⎦ . (55)

Case m = 2 . By (20), (21), (39) and (41), we obtain the lower bound:

P(r) �
∑

1�j1<···<jr�n

lj1...jr(r) (56)

where

lj1...jr(r) =
1

Dj1...jr

1
ij1 ...jr

1(
r + ij1...jr

r

)

×
[
ij1...jr(n − r)(rn + n + 1 − r2 − rij1...jr − 2ij1...jr − r)S

′
j1...jr ,r (57)

+ (r + 1)(2r2n + nr + ri2j1...jr − ij1...jr r − n2r − r3 − r2 − 2ij1...jr)S
′
j1...jr ,r+1

+ (r + 1)(r + 2)(rn − r2 − rij1...jr − ij1...jr)S
′
j1...jr,r+2

]
+

1
Dj1...jr

1
n − r + 1

1(
n

r − 1

) [
ij1...jr r(ij1...jr − 1)S

′
j1...jr ,r

−2r(r + 1)(ij1...jr − 1)S
′
j1...jr ,r+1 + r(r + 1)(r + 2)S

′
j1...jr,r+2

]
,

where

Dj1...jr = (n − r − ij1...jr + 1)(n − r − ij1...jr), (58)

and

ij1...jr = 1 +

⌊
−r(r + 1)(r + 2)S

′
j1...jr,r+2 + (n − r − 1)r(r + 1)S

′
j1...jr ,r+1

−r(r + 1)S′
j1...jr ,r+1 + (n − r)rS′

j1 ...jr ,r

⌋
. (59)

In case of the upper bound we use (20), (21), (45) and (46). The result is:

P(r) � Min

⎛
⎝ ∑

1�j1<···<jr�n

uj1...jr(r), 1

⎞
⎠ , (60)

where

uj1...jr(r) = S
′
j1...jr,r
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− r + 1(
r + ij1 ..jr − 1

r

) (
2

(
r + ij1...jr − 1

r

)
1

ij1...jr
− r + 2

r + ij1 ...jr

)
S
′
j1...jr ,r+1 (61)

+
(r + 1)(r + 2)(
r + ij1...jr − 1

r

)
⎛
⎜⎜⎝

(
r + ij1...jr − 1

r

)
1

2

(
ij1...jr − 1

2

)

− r + 1
(ij1 ...jr − 1)(r + ij1...jr)

)
S
′
j1...jr ,r+2

and

ij1 ...jr = 2 +

⌊
(r + 2)

S
′
j1...jr,r+2

S
′
j1...jr,r+1

⌋
. (62)

Lower and upper bounds for P[r] . The bounds given by (53)-(61) reduce to
those in Prékopa, Vizvári, Regös and Gao [7] if r = 1 . Those, in turn, are more general
than the well-known binomial moment bounds for P(1) , based on S1 , S2 and S1 , S2 ,
S3 , respectively.

Case m = 1 . By (22), (23), (47) and (48) we obtain the bounds:

P[r] �
∑

1�j1<···<jr�n

Max
(
S
′
j1...jr,r − (r + 1)S

′
j1...jr ,r+1, 0

)
(63)

and

P[r] � Min

⎡
⎣ ∑

1�j1<···<jr�n

(
S
′
j1...jr,r − r + 1

n − r
S
′
j1...jr ,r+1

)
, 1

⎤
⎦ . (64)

Case m = 2 . First we look at the lower bound. If

S
′
j1...jr ,r+1 − r + 2

n − r − 1
S
′
j1...jr ,r+2 � 0

S
′
j1...jr ,r − (r + 1)S

′
j1...jr ,r+1 +

(r + 1)(r + 2)
n − r

S
′
j1...jr ,r+2 � 0, (65)

then

lj1...jr [r] = S
′
j1...jr ,r − (r + 1)S

′
j1...jr ,r+1 +

(r + 1)(r + 2)
n − r

S
′
j1...jr,r+2, (66)

otherwise lj1...jr [r] = 0 . By (22) the bound is given by

P[r] �
∑

1�j1<···<jr�n

lj1...jr [r]. (67)
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The upper bound can be obtained by the use of (23) and (51). It is given by

P[r] � Min

⎡
⎣ ∑

1�j1<···<jr�n

(
S
′
j1...jr ,r − 2

r + 1
ij1...jrr

S‘
j1...jr ,r+1

+
(r + 1)(r + 2)

2

(
ij1...jr

2

) S
′
j1...jr ,r+2

⎞
⎟⎟⎠ , 1

⎤
⎥⎥⎦ , (68)

where

ij1...jr = 2 +

⌊
(r + 2)

S
′
j1...jr,r+2

S′
j1...jr,r+1

⌋
. (69)

6. Numerical example

We present one example to illustrate how the method mentioned in this paper
works. Let the elementary events be ω1, . . . ,ω15 and x1, . . . , x15 the corresponding
probabilities, respectively. We define three event sequences A(k)

j , j = 1, . . . , 20, k =

1, 2, 3 and the matrices R(k) = (r(k)
ij ) where r(k)

ij = 1 if ωi ∈ A(k)
j and r(k)

ij = 0 if

ωi /∈ A(k)
j , k = 1, 2, 3 . We present the matrices R(1) , R(2) , R(3) in detailed forms.

R(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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R(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0
1 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1
1 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 1
1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0
1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1
1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0
0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1
0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0
0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1
1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0
0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1
0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1
0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For each event sequence, we compute the bounds for P(ν � 2) for three different
probability distributions.

Distribution 1: x1 = 0.012 , x2 = 0.022 , x3 = 0.023 , x4 = 0.033 , x5 = 0.034 ,
x6 = 0.044 , x7 = 0.045 , x8 = 0.055 , x9 = 0.056 , x10 = 0.066 , x11 = 0.011 ,
x12 = 0.077 , x13 = 0.078 , x14 = 0.088 , x15 = 0.356 .

Distribution 2: x1 = 0.023 , x2 = 0.034 , x3 = 0.045 , x4 = 0.056 , x5 = 0.067 ,
x6 = 0.078 , x7 = 0.067 , x8 = 0.056 , x9 = 0.045 , x10 = 0.038 , x11 = 0.067 ,
x12 = 0.022 , x13 = 0.033 , x14 = 0.044 , x15 = 0.315 .

Distribution 3: x1 = 0.0329 , x2 = 0.1076 , x3 = 0.0599 , x4 = 0.1108 , x5 =
0.042 , x6 = 0.055 , x7 = 0.0508 , x8 = 0.1142 , x9 = 0.048 , x10 = 0.0235 ,
x11 = 0.0676 , x12 = 0.0295 , x13 = 0.0441 , x14 = 0.1265 , x15 = 0.1371 .

All the upper bounds are 1 . The lower bounds are presented in Table 1.
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Table 1: Lower Bounds for the Numerical Example
Distribution Event Sequence Our method SPS BP S1, S2, S3

Distribution1 1 0.9061 0.8228 0.8228 0.8509
Distribution1 2 0.9022 0.8244 0.8244 0.8530
Distribution1 3 0.9821 0.8707 0.8707 0.8988
Distribution2 1 0.8777 0.8239 0.8239 0.8563
Distribution2 2 0.8900 0.8272 0.8272 0.8499
Distribution2 3 0.9784 0.8398 0.8398 0.8796
Distribution3 1 0.9379 0.9132 0.9132 0.9317
Distribution3 2 0.9097 0.9089 0.9089 0.9247
Distribution3 3 0.9896 0.9358 0.9358 0.9459

In Table 1, we compare our results with the results obtained by the formulae in
Sathe, Pradhan and Shah [8], Boros and Prékopa [1] and optimal solutions obtained by
using S1, S2 and S3 . In Sathe, Pradhan and Shah [8], for any integer k , they defined

Uk = S1 − k

Vk = S2 − k(k − 1)
2

,

where

Sm =
∑

1�i1<i2<···<im�n

P(Ai1 . . .Aim), m = 1, 2, 3. (70)

Hence, if 2Vr−1 < (n + r − 2)Ur−1 , then

P(ν � r) � 2
(i − 1)Ur−1 − Vr−1

(i − r)(i − r + 1)
, (71)

where

i = 1 +
⌊

2Vr−1

Ur−1

⌋
. (72)

In Boros and Prékopa [1], the bounds for P(ν � r) in case of m = 2 is given as follows:

P(ν � r) � (r − 1)(r − 2i − 2) + 2iS1 − 2S2

(i − r + 2)(i − r + 1)
, (73)

where

i =
⌊

2S2 − (r − 2)S1

S1 − (r − 1)

⌋
. (74)

In Table 1, column “Our method” corresponds to the results obtained by the use of
(53) and (54), column “SPS ”, column “BP” correspond to the results obtained by (71)
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and (73) respectively, column “S1, S2, S3 ” corresponds to the optimal solution of the
following linear programming problem:

min
n∑

i=r

vi

subject to
n∑

i=m

(
i
m

)
vi = Sm, m = 0, 1, 2, 3 (75)

vi � 0, i = 0, 1, . . . , n,

where S0 = 1 and Sm, m = 1, 2, 3 are defined as (70). From Table 1, we observe that
the bounds proposed in this paper outperforms the other three bounds in most cases.
Meanwhile, we observe that when r = 2 , the bounds from Sathe, Pradhan and Shah
[8] are exactly the same as those from Boros and Prékopa [1]. This fact can be easily
shown by replacing r by 2 in (71) and (73).
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