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INEQUALITIES ON POLYNOMIAL ROOTS

DORU ŞTEFĂNESCU

Abstract. The paper presents a survey of inequalities involving roots of univariate polynomials
with complex coefficients. These allow improvements in the methods of Bernoulli and Graeffe.
Inequalities involving the length of a polynomial are also deduced.

1. Introduction

Let P(X) = adXd + · · · + a1X + a0 be a polynomial with complex coefficients
of degree d � 2 and let z1 , z2 , . . . , zd ∈ C be its roots. The determination of the
roots zj arises frequently in applications. Since the exact computation of the zeros in
function of the coeffients of the polynomial is not possible for general polynomials, for
all practical purposes it is useful to handle efficient methods for estimation. With these
devices there are related various inequalities satisfied by moduli of polynomial zeros.
Bounds for roots were obtained, among other, by Cauchy, Kuniyeda, Fujiwara, Landau
and Montel. Upper and lower bounds can be derived using polynomial sizes defined in
function of the coefficients, such that the norm, the length, the heigth and the measure.
(See [12], [11], [8], [14]).

The methods of D. Bernoulli and of Dandelin–Graeffe give estimates for the largest
absolute values of polynomial roots (see, for example, [7]). The method of Bernoulli
involves inequalities on linear recurrent sequences, derived through an approximation
theorem of Dirichlet [2].

Finally we discuss inequalities on the length of a polynomial divisor. They allow
us to obtain other upper bounds for polynomial roots.

2. Bounds for polynomial roots

If z ∈ C is a root of the polynomial P ∈ C[X] \ C one searches for positive
numbers s0 , r0 such that

s0 � |z| � r0 .

The first significant result was obtained by Cauchy [3]:
THEOREM 2.1. (A.–L. Cauchy, 1829) All the roots of the nonconstant complex

polynomial P(X) = a0 + a1X + · · · + adXd are contained in the disk |z| � ξ , where
ξ is the unique positive solution of the equation

|ad|Xd = |a0| + |a1|X + · · · + |ad−1|Xd−1 . (1)
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Among other estimates for r0 we mention the results of Fujiwara and Kuniyeda:
THEOREM 2.2. (M. Fujiwara, 1926) If λ1, . . . , λd ∈ (0,∞) and

1
λ1

+ · · · + 1
λd

= 1,

then all the roots of the polynomial P are contained in the disk |z| � ξ , where

ξ = max
1�k�d

(
λk

∣∣∣ad−k

ad

∣∣∣)
1
k

.

THEOREM 2.3. (M. Kuniyeda, 1916) If and p, q > 0 are such that 1
p + 1

q = 1 ,

then all the roots of the polynomial P are contained in the disk |z| � ξ , where

ξ =

⎛
⎝1 +

(d−1∑
j=0

∣∣∣∣ aj

ad

∣∣∣∣
p) q

p

⎞
⎠

1
q

.

There exist many other useful results, see, for example, [8] and [14].

3. Dominant roots

A root α ∈ C of the polynomial P ∈ C[X] is called dominant if |α| > |β | for
any other root β .

The computation of dominant roots was considered by Newton (1707) in his
Arithmetica Universalis [17], no. 133–137. His idea was deleloped by Daniel Bernoulli
(1728, [1]), who used linear recurrent sequences for approaching the dominant roots.
The method of Bernoulli was improved by Jacobi (1834, [10]), and another approach
was proposed by Dandelin (1826) and Graeffe (1833), see [9].

3.1. Bernoulli

Daniel Bernoulli (1728, [1]) invented a method for estimating the dominant roots,
based on the study of appropriate linear recurrent sequences.

Linear recurrent sequences

If P(X) = a0Xd + a1Xd−1 + · · ·+ ad a linear recurrent sequence (lrs) associated
to P is a sequence (xn)n∈N that satisfies the relations

a0xn + a1xn−1 + · · · + adxn−d = 0 for all n ∈ N, n � d .
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Newton’s relations

THEOREM 3.1. (I. Newton) Let P ∈ C(X] \ C , P(0) �= 0 ,

P(X) = a0X
d + a1X

d−1 + · · · + ad = a0(X − α1) · · · (X − αd) .

Let (xn) be the linear recurrent associated to the polynomial P and with starting values
x0 , x1 , . . . xd−1 given by

x0 = −a1

a0
, xk−1 = −kak + ak−1a0 + · · · + a1ak−2

a0
for k = 2, 3, . . . , d .

Then
xn = αn+1

1 + αn+1
2 + · · · + αn+1

d for all n ∈ N .

Proof. Consider Newton’s sums

Pk = αk
1 + · · · + αk

d

and the reciprocal polynomial

Q(X) = Xd P(X−1) = adX
d + ad−1X

d−1 + · · · + a0 .

We have

Q(X) = β
(
X − 1

α1

)
· · · (X − 1

αd
) ,

with β = (−1)da0α1 · · ·αd ∈ C \ {0} .

Let f (z) = −Q′(z)/Q(z) and its Taylor series at z = 0

f (z) =
∞∑

n=0

xnz
n .

On the other hand

f (z) = −
d∑

j=1

1

z − α−1
j

=
d∑

j=1

αj

1 − αjz

=
d∑

j=1

( ∞∑
n=0

αn+1
j zn

)
=
∞∑
n=0

⎛
⎝ d∑

j=1

αn+1
j

⎞
⎠ zn .

It follows that

xn =
d∑

j=1

αn+1
j = Pn+1 .

Now we compare the coeffients of zn in both sides of the relation Q(z)f (z) = −Q′(z) ,
i. e.

∞∑
n=0

(a0xn + a1xn−1 + · · · + adxn−d)zn = −
d−1∑
j=0

(j + 1)aj+1z
j
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and we obtain⎧⎨
⎩

a0xk + a1xk−1 + · · · + adxk−d = 0 for k � d ,

a0xk + a1xk−1 + · · · + adxn−d + (k + 1)ak+1 = 0 for k = 0, 1, . . . , d − 1 .
,

which are equivalent to Newton’s relations. It follows that the linear recurrent sequence
(xn)n associated with P and having the initial values

x0 = −a1/a0 , xk−1 = −(kak + ak−1x0 + · · · + a1xk−2)/a0 for k = 2, 3, . . . , d ,

is xn = αn+1
1 + · · · + αn+1

d . �
For another proof see [16].

Theorem 3.1 has applications to the problem of estimating the dominant roots (see
[16]). For obtaining upper bounds it is necessary to consider other linear recurrent
sequences. In [16] such an upper bound is obtained using the linear recurrent sequence
(vn)n associated to P and with initial values

v0 = v1 = · · · = vd−2 = 0, vd−1 = 1 .

Finally these inequalities allow to obtain the absolute value of a dominant root as a limit.

3.1.1. The approximation theorem of Dirichlet

Other bounds for dominant roots can be deduced by Dirichlet’s approximation
theorem.

DEFINITION. The norm of the real number θ is

||θ|| = min{|θ − n| ; n ∈ Z} .

REMARK. Note that ||θ|| is the distance between θ and the nearest integer, with
the convention ||n + 1

2 || = 1
2 . We have

||θ|| = min
{{θ}, 1 − {θ}}

and
||θ1 + θ2|| � ||θ1|| + ||θ2|| for all θ1, θ2 ∈ R ,

||nθ|| � |n| ||θ|| for all n ∈ N, θ ∈ R .

THEOREM 3.2. (Dirichlet) Let θ1, . . . , θk ∈ R , Q � 1 . There exists q ∈ Z such
that 0 � q < (Q + 1)k and ||qθj|| � 1

Q for all j = 1, 2, . . . , k .

Proof. We first assume that Q is an integer. Then we decompose the cube [0, 1]k

into Qk “small” cubes and look to the points

Θr = ({rθ1}, . . . , {rθ1}), r ∈ Z, 0 � r � Qk ,
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where {qθj} is the fractional part of qθj .

There exist two points Θr , Θr′ in the same cube. We have

uj

Q
� {rθj}, {r′θj} � uj + 1

Q
, with 0 � uj < Q .

We put q = |r′ − r| . Therefore q �= 0 , 1 � q < Qk .

On the other hand we have {rθj} = rθj − s , with s = �rθj� ∈ Z and, similarly,
{r′θj} = r′θj − s′ , with s′ ∈ Z . Therefore

||qθj|| = min
n∈Z

{|qθj − n|} � |(r − r′)θj − (s − s′)| = |{rθj} − {r′θj}| � 1
Q

.

so

||qθj|| � 1
Q

for all j = 1, 2, . . . , r .

Note that if Q �∈ Z the theorem is verified with �Q� + 1 instead of Q . Let q ∈ Z

be such that 0 < q <
(�Q� + 1

)k
and ||qθj|| �

(�Q� + 1
)−1

for all j . Therefore
1 � q � (Q + 1)k and

||qθj|| � 1
�Q� + 1

� 1
Q

for all j . �

REMARK. We observe that for k = 1 , then 1 � q � Q .

If k � 2 and Q ∈ Z one can find 1 � q < Qk .

The � in the theorem cannot be improved to strict inequality. In fact, if we take k = 1
and θ1 = Q−1 , then ||θ1 q|| � Q−1 for all 0 < q < Q .

Lower and upper bounds for dominant roots

LEMMA 3.3. If (xn)n is the lrs defined in Theorem 3.1, we have∣∣∣xn

d

∣∣∣1/(n+1)
� |α1| .

Proof. By Newton’s relations we obtain

|xn| �
d∑

i=1

|αi|n+1 � d|α1|n+1 ,

which gives d−1|xn| � |α1|n+1 , therefore |xn/d|1/(n+1) � |α1| . �

COROLLARY 3.4. Let

Xn = max{|x1|1/2, |x2|1/3, . . . , |xn|1/(n+1)}
and

Yn = max{|x1/d|1/2, |x2/d|1/3, . . . , |xn/d|1/(n+1)} .

We have
Xn · d−1/(n+1) � |α1| and Yn � |α1| .
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Another lower bound is described below.

PROPOSITION 3.5. If (un)n is a linear recurrent sequence associated to the
polynomial P , there exists a constant C = C(un) > 0 that depends only on (un)n such
that

|un|1/n · (Cnd−1
)−1/n � |α1| .

Proof. We may write un =
∑s

j=1 Pj(n)αij , where αi1 , . . . , αis are the distinct
roots of the polynomial P and Pj is a polynomial of degree at most mj − 1 , with mj

the multiplicity of αij . Note that deg(Pj) � d − 1 .
Choosing C to be the sum of the absolute values of the coefficients of the polyno-

mials P1 , P2 , . . . , Ps , we get

|un| � C · nd−1 · |α1|n ,

which gives the inequality. �

For obtaining upper bounds for dominant roots one needs a linear recurrent se-
quence (un)n associated to the polynomial P that satisfies the condition∣∣∣∣∣∣∣∣

u0 u1 . . . ud−1

u1 u2 . . . ud
...

...
...

...
ud−1 ud . . . u2d−2

∣∣∣∣∣∣∣∣
�= 0 . (∗ )

PROPOSITION 3.6. If (un)n is a linear recurrent sequence that satisfy the condition
(∗) , there exists a constant C = C(un) > 0 that depends only on (un)n such that

|α1| � C1/n · max{|un|, |un+1|, . . . , |un+d−1|}1/n for all n ∈ N .

Proof. Let (sn)n be a linear recurrent sequence associated with P . By Lemma 3
of [16] there exists a constant C > 0 such that

|sn| � C · max{|un|, |un+1|, . . . , |un+d−1|} for all n ∈ N .

Because
a0αn

1 + a1αn−1
1 + · · · + adαn−d

1 = 0 ,

the sequence (αn
1 )n is a lrs and we find C . �

COROLLARY 3.7. Let (un)n be a linear recurrent sequence that satisfy the con-
dition (∗) . There exist a constant C = C(un) > 0 , K = K(un) that depend only on
(un)n such that

|un|1/n ·
(
Knd−1

)−1/n
�|α1|�C1/n·max{|un|, |un+1|, . . . , |un+d−1|}1/n for all n∈N.

Proof. The right hand–side inequality follows by Proposition 3.6, and the other
inequality by Proposition 3.5. �
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The approach of Jacobi

G. Jacobi (1834, [10]) proposed a modification of Bernoulli’s method.
Let α1 , . . . , αs be the dominant roots of the polynomial P of degree d � 2 .

Instead of Newton’s sums
Sn = αn

1 + · · · + αn
d ,

Jacobi considered the truncated sums

Tn = αn
1 + · · · + αn

s

and the polynomial

T = (X − α1)(X − α2) · · · (X − αs) = Xs + A1X
s−1 + · · · + As .

Eliminating A1 , . . . , As from T = 0 and Newton’s relations

Ts+k + Ts+k−1A1 + · · · + TkAs = 0 for k = n, n + 1, . . . , n + s − 1

leads to the s th degree polynomial equation

Qn,s =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Xs Xs−1 · · · 1

Tn+s Tn+s−1 · · · Tn

...
... . . .

...

Tn+2s−1 Tn+2s−2 · · · Tn+s−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 .

Jacobi then states that, because they have the same order of magnitude, the truncated
sums can be replaced by Newton’s sums in the polynomial equation Qn,s = 0 , obtaining
another polynomial Rn,s . He finally concludes that the roots of Rn,s have the absolute
values approximately equal to those of the dominant roots of P .

Jacobi gives no proof of this rule but it can be proved that his method is valid for
polynomials having only simple dominant roots. A detailed discussion of Jacobi’s rule
is given by Mignotte–Ştefănescu [16]. We present briefly the case of three dominant
roots, namely s = 3 .

REMARK. Jacobi’s rule does not work for polynomials with multiple dominant
roots.

Let us consider, for example,

P = (X − a)3 (X − b)2 with |a| > |b| .
We obtain

Sn = 3an + 2bn

and
Tn = 3an .
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Note that the quadratic equation formed with the truncated sums of Jacobi is the null
equation. Using Newton’s sums we obtain

A0 = −6anbn(a− b)2, A1 = 6anbn(a + b)(a − b)2, A2 = −6an+1bn+1(a − b)2 ,

so
Rn,2(X) = −6anbn(a − b)2 · (X2 − (a + b)X + ab

)
whose roots are a and b . But for infinitely many a and b the absolute values |a| and
|b| are not approximately equal.

But a is a dominant triple root of P , in contradiction with Jacobi’s rule.

However we have the following result.

THEOREM 3.8. Let P be a polynomial with three dominant roots α1 , α2 , α3 .
Then

Qn = Qn,3 = (α1α2α3)n ·
∏
j<i

(αi − αj)2 · (X − α1)(X − α2)(X − αs)

and Qn �= 0 if and only if α1 , α2 and α3 are simple roots.

Proof. Denote by α1 , α2 , . . . , αd the roots of P . We have

|α1| = |α2| = |α3| > |αj| for j � 4 .

Then Jacobi’s polynomial Qn is of degree three and α1 , α2 and α3 are its zeros. It
follows that

Qn = An (X − α1)(X − α2)(X − α3)

and the leading coefficient is

An =

∣∣∣∣∣∣∣∣∣

Tn+2 Tn+1 Tn

Tn+3 Tn+2 Tn+1

Tn+4 Tn+3 Tn+2

∣∣∣∣∣∣∣∣∣
.

We observe that⎛
⎜⎜⎜⎝

Tn+2 Tn+1 Tn

Tn+3 Tn+2 Tn+1

Tn+4 Tn+3 Tn+2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 1 1

α1 α2 α3

α2
1 α2

2 α2
3

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝
αn

1 αn+1
1 αn+2

1

αn
2 αn+1

2 αn+2
2

αn
3 αn+1

3 αn+2
3

⎞
⎟⎟⎟⎠ .

Therefore

An = (α1α2α3)n ·

∣∣∣∣∣∣∣∣∣

1 1 1

α1 α2 α3

α2
1 α2

2 α2
3

∣∣∣∣∣∣∣∣∣

2

= (α1α2α3)n · (α3 − α1)2(α3 − α2)2(α2 − α3)2 .



INEQUALITIES ON POLYNOMIAL ROOTS 343

It also follows that Jacobi’s polynomial Qn is nonzero if and only if α1 , α2 and α3

are distinct. �

COROLLARY 3.9. The rule of Jacobi holds if the polynomial P has only three
simple dominant roots.

Proof. In this case Qn �= 0 and its roots are the dominant roots of P . The corollary
then follows by the theorem of continuity (Weber, [19]) of the roots of a polynomial
with respect to the coefficients. �

3.2. The method of Graeffe

The method of Graeffe was introduced independently by Dandelin (1826), Graeffe
(1833, 1837) and Lobatchevskiı̆ (1834), see [9] for a historical presentation. In the
restricted version there are used the polynomials Fn(X) = ResY

(
P(Y), Y2n − X

)
.

For n = 2 consider

P(x) = a0(x − α1)(x − α2) · · · (x − αd),

(−1)d P(−x) = a0(x + α1)(x + α2) · · · (x + αd),

and
F2(x) := (−1)dF(−x)F(x) = a2

0(x
2 − α2

1 )(x
2 − α2

2 ) · · · (x2 − α2
d ) .

If
|α1| � |α2| � · · · � |αd|

then

|αj| ∼
√√√√ |a(2)

j |
|a(2)

j−1|
.

If we continue the process we find

Fn(x) := a2n−1

0 (x − α2n−1

1 )(x − α2n−1

2 ) · · · (x − α2n−1

d ) =
∑

a(n)
j xd−j.

For example, taking F(x) = 2x3 − 7x2 − 13x + 16 , we have

F(2)(x) = 4x3 + 101x2 + 393x + 256

F(3)(x) = 16x3 + 7057x2 + 102 700x + 65 540

F(4)(x) = 256x3 + 4651 · 104 x2 + 9622 · 106x + 4295 · 106

and the estimates

|α1| =
(

46 510 000
256

)1/8

∼ 4.544

|α2| =
(

9 622 000 000
46 510 000

)1/8

∼ 1.947

|α3| =
(

4 295 000 000
9 622 000 000

)1/8

∼ 0.904



344 DORU ŞTEFĂNESCU

which are very closed to the true values of the roots.
In the general case, the method of Graeffe is based on the study of the sequence

(Pn)n of polynomials associated to P , where

Pn(X) = ResY
(
P(Y), Yn − X

)
.

Let

Pn(X) =
d∑

i=0

a(n)
i Xd−i for all n ∈ N ,

with the convention P1(X) = P(X) =
d∑

i=0

aiX
d−i .

Both approaches use relations between the roots and the coefficients of the polynomial
P . The simplest case is that of a unique dominant root α1 whose absolute value is
“larger enough" than the modules of the other roots. In this case |α1| ∼ |a1/a0| .

Note that if

|α1| � |α2| � · · · � |αd |, we have

|α1| ∼ |α1| ·
∣∣∣1 +

α2

α1
+ · · · + αd

α1

∣∣∣ =
∣∣∣a1

a0

∣∣∣,
|α1α2| ∼ |α1α2| ·

∣∣∣1 +
α1α3

α1α2
+ · · · + αd−1αd

α1α2

∣∣∣ = ∣∣∣a2

a0

∣∣∣
...

so |αj| ∼
∣∣∣ aj

aj−1

∣∣∣ .
We observe that if |α1| > |α2| > · · · > |αd| , then α1 , α2 , . . . , αd are real numbers.

Bounds by Graeffe

Instead of estimating a dominant root of the transformed polynomial Pn , we
estimate a dominant product α1 · · ·αk of roots of the given polynomial P by considering
(α1 · · ·αk)n as a product of roots of Pn (see [15]). Then the approximation theorem of
Dirichlet 3.2 is again invoked.

The next result was implicitely used in [15]:

LEMMA 3.10. Let β1 , β2 , . . . , βd be distinct complex numbers such that

β1 � β2 � · · · � βd .

Then
lim sup

n←∞

∣∣βn
1 + βn

2 + · · · + βn
d

∣∣1/n � |β1| .
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Proof. We have ∣∣βn
1 + βn

2 + · · · + βn
d

∣∣ � d|β1|n ,

hence ∣∣βn
1 + βn

2 + · · · + βn
d

∣∣1/n � d1/n · |β1| ,
which proves the inequality. �

This allows to obtain
COROLLARY 3.11. (Mignotte-Ştefănescu) We have

lim sup
n←∞

∣∣βn
1 + βn

2 + · · · + βn
d

∣∣1/n = |β1| .

Proof. We use Lemma 3.10 and Dirichlet’s theorem, by which

∣∣βn
1 + βn

2 + · · · + βn
d

∣∣1/n �
(

r

2
√

2

)1/n

· |β1| for infinitely many n

with r � d .

This proves the converse inequality. �
The following result is then true:
THEOREM 3.12. (Mignotte–Ştefănescu) If Σn = βn

1 + βn
2 + · · · + βn

d , we have

lim
n←∞ (max{|Σn|, |Σn+1|, . . . , |Σn+d−1|}) = |β1| .

Note that Theorem 3.12 allows the computation of dominant roots by both the
methods of Bernoulli and Graeffe (see [15] and [16]).
Remarks:

1. In practice the method of Graeffe is slower than that of Bernoulli.
2. There exist still open problems for estimating the dominant roots. For example,

let us suppose that a complex polynomial P has exactly four dominant roots α1 , . . . ,
α4 such that α1 , α2 are real and α3 , α4 are complex conjugate. Neither Bernoulli’s
nor Graeffe’s methods gives convenient results.

4. Bounds for the length

If P(X) =
∑d

i=0 aiXi ∈ C[X] , the length of P is L(P) =
∑d

i=0 |ai| . If P divides
Q in C[X] , we obtain estimates of L(P) as functions of L(Q) . The first step is
obtaining inequalities between lengths in the particular case deg(Q/P) = 1 . Then in
the general case it is possiblle to derive inequalities between L(P) and L(Q) involving
the size of the roots of Q . The similar problem for the height H(P) = maxd

i=0 |ai| was
solved by Mignotte [13].

Suppose that P ∈ C[X] and let Q(X) = (X−α)P(X) , with α ∈ C\{0} . Assume
that d = deg(P) � 1 and let

P(X) =
d∑

i=0

aiX
i, Q(X) =

d+1∑
i=0

biX
i .
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LEMMA 4.1. If α ∈ C \ {0} , then

|α|L(P) �
d∑

i=0

( d−i∑
j=0

|α|−j
)
· |bi| .

Proof. We have

bi = ai−1 − αai for all i = 0, . . . , d + 1 ,

with the conventions a−1 = ad+1 = 0 . We obtain

α i ai = α i−1 ai−1 − α i−1 bi,

α i−1 ai−1 = α i−2 ai−2 − α i−2 bi−1,
...

α2 a2 = α a1 − α b2,
α a1 = a0 − b1,

therefore

α i ai = a0 −
i∑

j=1

α j−1bj = −α−1b0 −
i∑

j=1

α j−1bj = −
i∑

j=0

α j−1bj ,

which gives

|α| · |a0| = |b0|,

|α| · |a1| � 1
|α| · |b0| + |b1|,

|α| · |a2| � 1
|α|2 · |b0| + 1

|α| · |b1| + |b2|,
...

|α| · |ad| � 1
|α|d · |b0| + 1

|α|d−1
· |b1| + · · · + |bd| .

By summation we get the result. �

PROPOSITION 4.2. If |α| > 1 , then

(|α| − 1) L(P) �
(
1 − 1

|α|d+1

)
L(Q) .

Proof. By Lemma 4.1, we have

|α| L(P) �
( d∑

j=0

|α|−j
)
·
( d∑

i=0

|bi|
)

� 1 − |α|−d−1

1 − |α|−1
L(Q) ,
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which gives the inequality. �

PROPOSITION 4.3. If 0 < |α| < 1 , then

(1 − |α|) L(P) � (1 − |α|d+1) L(Q) .

Proof. We apply Proposition 4.2 to the reciprocal polynomials P∗ , Q∗ associated
to P , respectively Q . Since Q∗ = (X − 1

α )(−α P∗) , L(P∗) = L(P) and L(Q∗) =
L(Q) , it follows that( 1

|α| − 1
)
· |α|L(P) � (1 − |α|d+1) · L(Q) ,

therefore (1 − |α|) L(P) � (1 − |α|d+1) L(Q) . �

COROLLARY 4.4. We have∣∣1 − |α|∣∣ · L(P) � L(Q) for all α ∈ C .

Proof. For α = 0 we have equality. If |α| > 1 we apply Proposition 4.2, while
for 0 < |α| < 1 we use Proposition 4.3. �
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