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INEQUALITITES FOR CAUCHY MEAN VALUES

LÁSZLÓ LOSONCZI

Abstract. The Cauchy Mean Value Theorem for divided differences (see e.g. [16]) states the
following:

Suppose that x1 � · · · � xn and f (n−1), g(n−1) exist, with g(n−1) �= 0, on [x1, xn] .
Then there is a t ∈ [x1, xn] (moreover t ∈ (x1, xn) if x1 < xn ) such that

[x1, . . . , xn]f
[x1, . . . , xn]g

=
f (n−1)(t)
g(n−1)(t)

where [x1, . . . , xn]f denotes the divided difference of f at the points x1, . . . , xn .

If the function
f (n−1)

g(n−1) is invertible then

t =

(
f (n−1)

g(n−1)

)−1 ( [x1, . . . , xn]f
[x1 , . . . , xn]g

)

is a mean value of x1, . . . , xn . It is called the Cauchy mean of the numbers x1, . . . , xn and will
be denoted by Df ,g(x1, . . . , xn) .

In this survey paper we discuss the equality, homogeneity of Cauchy means and inequalities
of general nature: comparison, Minkowski’s inequality of (homogeneous) Stolarsky’s means and
also the comparison and general comparison of Cauchy means.

1. The definition of Cauchy means

As it is well known, the Cauchy mean value theorem of the differential calculus
states the following.

If f , g are continuous real functions on [x1, x2] which are differentiable in (x1, x2),
and g′(u) �= 0 for u ∈ (x1, x2) then there is a point t ∈ (x1, x2) such that

f ′(t)
g′(t)

=
f (x2) − f (x1)
g(x2) − g(x1)

.

Assuming now that
f ′

g′
is invertible we get

t =
(

f ′

g′

)−1( f (x2) − f (x1)
g(x2) − g(x1)

)
.
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This number t is called the Cauchy mean value of the numbers x1, x2 and will be
denoted by t = Df ,g(x1, x2) .

It is possible to define the Cauchy mean value for several variables. To do so we
need a mean value theorem for divided differences.

For a function f : I → R , I being a real interval, the divided differences of f on
distinct points xi ∈ I are usually defined inductively by

[x1]f := f (x1),

[x1, . . . , xn]f :=
[x1, . . . , xn−1]f − [x2, . . . , xn]f

x1 − xn
(n = 2, 3, . . . )

(see e.g. Aumann and Haupt [4] §3.17, their expression contains an extra factor n − 1
on the right).

This definition must be modified if two or more points of [x1, . . . , xn]f coincide:
if at most r points xi coincide, the definition is then framed on the assumption that f
is (r − 1) -times differentiable on I . In the case n = 2 for example we obtain

[x1, x2]f :=

⎧⎪⎨
⎪⎩

f (x1) − f (x2)
x1 − x2

(x1 �= x2),

f ′(x1) (x1 = x2).

A full definition, as the ratio of two determinants, can be found in Schumaker [41].
Some basic properties of the divided differences are as follows:
1. A divided difference [x1, . . . , xn]f is independent of the order of its arguments

x1, . . . , xn .
2. The second line of the above inductive definition remains valid provided only

that x1 �= xn .
3. A divided difference is a linear functional, i.e. we have

[x1, . . . , xn]af +bg = a[x1, . . . , xn]f + b[x1, . . . , xn]g

for arbitrary constants a, b and arbitrary (suitably differentiable) functions f , g .
4. (Mean value theorem) If f is (n− 1) -times differentiable on I and xi ∈ I (i =

1, . . . , n), then there is a t between the smallest and largest xi (strictly between if the
xi are not all the same) such that

[x1, . . . , xn]f =
f (n−1)(t)
(n − 1)!

.

5. The “Leibniz rule” for divided differences

[x1, . . . , xn]f g =
n∑

i=1

[x1, . . . , xi]f · [xi, . . . , xn]g.

6. The rule of adding an extra point to a divided difference:

[x2, . . . , xn]g = [x1, . . . , xn]h, h(x) := (x − x1)g(x).
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7. Differentiation with respect to a singly-occurring entry results in a repetition of
that entry

d
dxk

[x1, . . . , xn]f = [x1, . . . , xn, xk]f (k = 1, . . . , n).

8. If f (n−1) is continuous then [x1, . . . , xn]f is a continuous function of (x1, . . . , xn) .
9. If f is analytic then [x1, . . . , xn]f is analytic in (x1, . . . , xn) .
10. If f (n−1) is continuous then

[x1, . . . , xn]f =
∫

Sn−1

f (n−1)(t) dμ

where

Sn−1 := {μ = (μ1, . . . ,μn−1) : μk � 0, k = 1, . . . , n − 1 and
n−1∑
k=1

μk � 1 }

is a simplex in R
n−1 and

t = xn +
n−1∑
k=1

μk(xk − xn) =
n−1∑
k=1

μkxk +

(
1 −

n−1∑
k=1

μk

)
xn.

This formula is equivalent to the one given by Steffenson [42], p.17 and it is valid even
if some (or all) of the points x1, . . . , xn coalesce.

The following mean value theorem (the Cauchy mean value theorem for divided
differences) is due to Leach and Sholander [16] (see also Rätz and Russell [35], Páles
[29]).

THEOREM LS. Let x1 � · · · � xn and assume that f (n−1), g(n−1) exist, with
g(n−1)(u) �= 0, on [x1, xn]. Then there is a t ∈ [x1, xn] (moreover t ∈ (x1, xn) if
x1 < xn ) such that

[x1, . . . , xn]f
[x1, . . . , xn]g

=
f (n−1)(t)
g(n−1)(t)

.

Supposing that the function u → f (n−1)(u)
g(n−1)(u)

is invertible we get that

t =
(

f (n−1)

g(n−1)

)−1(
[x1, . . . , xn]f
[x1, . . . , xn]g

)
is a mean value of x1, . . . , xn which, by property 1., is symmetric in its variables. It is
called the Cauchy (or difference ) mean of the numbers x1, . . . , xn and will be denoted
by Df ,g(x1, . . . , xn) . This mean value was first defined and examined by Leach and
Sholander [16] (they called it extended (f , g) mean of x1, . . . , xn ).

To formulate our results easier we introduce some notations. For a real interval I
and for a fixed integer n � 2 let En(I) denote the set of all pairs (f , g) of functions
f , g : I → R satisfying the following conditions:
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• (i) f , g are n -times differentiable on I ,
• (ii) g(n−1)(u) �= 0 for u ∈ I ,

• (iii) the (first) derivative of
f (n−1)

g(n−1) =
f (n)g(n−1) − f (n−1)g(n)(

g(n−1)
)2 is not zero on I .

In the sequel we use the notations

¯f = f (n−1), ḡ = g(n−1), h =
¯f
ḡ

for any pair (f , g) ∈ En(I) where, for the sake of simplicity, we suppressed the
dependence of the functions on n .

We remark that (f , g) ∈ En(I) implies that the functions ḡ (and h′ ) have constant
sign on I . Namely if ḡ (and h′ ) assumed both positive and negative values then by the
intermediate value property of the derivative they assume also zero value somewhere
which contradicts the assumption (ii) (and (iii)). This also implies that h is strictly
monotonic thus invertible. If (f , g) ∈ En(I) then the representation (coming from
property 10.)

Df ,g(x1, . . . , xn) =
(

f (n−1)

g(n−1)

)−1

⎛
⎜⎝
∫

Sn−1

f (n−1)(t) dμ
∫

Sn−1

g(n−1)(t) dμ

⎞
⎟⎠

is valid which shows that Df ,g(x1, x2, . . . , xn) exists for every possible choice of
x1, x2, . . . , xn ∈ I .

As usual Cn(I) denotes the set of all functions f : I → R which have continuous
n th derivative on the interval I.

2. Equality and homogeneity of Cauchy means

The equality problem of Cauchy means is the following: find necessary and
sufficient conditions for the functional equation

Df ,g(x1, x2, . . . , xn) = DF,G(x1, x2, . . . , xn) (x1, x2, . . . , xn ∈ I) (1)

to hold where n � 2 is a fixed integer.
The solution for n � 3 is given by

THEOREM 1. (Losonczi [20]) Suppose that I is a real interval, n � 3 is a fixed
natural number and (f , g), (F, G) ∈ En(I), f , g, F, G ∈ Cn+2(I).

The functional equation (1) holds if and only if there exist constants α, β , γ , δ ∈ R

with αδ − βγ �= 0 such that for all x ∈ I⎧⎨
⎩

f (n−1)(x) = αF(n−1)(x) + βG(n−1)(x)

g(n−1)(x) = γF(n−1)(x) + δG(n−1)(x)
(2)

is satisfied.
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The assumption (f , g) ∈ En(I) may impose further conditions on the constants
α, β , γ , δ which we do not specify here.

If we allow n = 2 only in (1) then we need to assume even stronger differentiability
conditions than in theorem 1 and in addition to (2) we get 32 new families of solutions
(see Losonczi [22]).

The homogeneity equation on R+ = (0,∞) is the functional equation

Df ,g(tx) = tDf ,g(x) (x ∈ R
n
+, t ∈ R+) (3)

expressing the fact the Df ,g is a homogeneous function of first degree.
The solution of (3) is known only for the case n � 3 .

THEOREM 2. (Losonczi [23]) Suppose that n � 3 is a fixed natural number,
(f , g) ∈ En(R+) and f , g ∈ Cn+2(R+).

Then all Cauchy mean values Df ,g satisfying the homogeneity equation (3) are
generated by the functions f , g for which

f (n−1)(t) = tα , g(n−1) = tβ , (t ∈ R+), (4)

f (n−1)(t) = tβ ln t, g(n−1) = tβ , (t ∈ R+) (5)

where α, β ∈ R are arbitrary constants apart from the restrictions α �= β .

The functions (4), (5) generate homogeneous Cauchy means in the two variable
case too (however there may exist other two variable homogeneous Cauchy means).
The two variable means have a very simple form and it is worth to calculate them.
First we find f , g by integration from (4), (5) distinguishing the cases α, β = −1 and
α, β �= −1 and introducing new constants a, b. They are

Df ,g(x, y) = Da,b(x, y) =
(

(xa − ya)b
(xb − yb)a

)1/(a−b)

(ab(a − b) �= 0)

Df ,g(x, y) = Da,b(x, y) =
(

xa − ya

(ln x − ln y)a

)1/(a)

(a �= 0, b = 0)

Df ,g(x, y) = Da,b(x, y) =
(

(ln x − ln y)b
xb − yb

)1/(−b)

(a = 0, b �= 0)

Df ,g(x, y) = Da,b(x, y) = e

(
xa ln(xa/e)−ya ln(ya/e)

(xa−ya )a

)
(a �= 0, a = b)

Df ,g(x, y) = Da,b(x, y) =
√

xy (a = b = 0)

where a, b ∈ R are constants with the restrictions indicated, x �= y and x, y ∈ R+.

The Cauchy mean

Df ,g(x, y) = Da,c(x, y) = e
1
c arc tan p(x)−p(y)

q(x)−q(y) (c �= 0)



354 LÁSZLÓ LOSONCZI

for

x, y ∈ Ic = (e−
π

2|c| , e
π

2|c| )

where
p(x) = xa (−c cos(ln xc) + a sin(ln xc)) (a, c ∈ R, c �= 0)

q(x) = xa (a cos(ln xc) + c sin(ln xc)) (a, c ∈ R, c �= 0).

is also of interest. Although it is not homogeneous in the sense of (3) it satisfies a
generalized homogeneity equation:

Da,c(tx, ty) = tDa,c(x, y)

for all x, y ∈ Ic and for those t′ s for which tx, ty ∈ Ic holds.

3. Inequalities for homogeneous Cauchy means

The Cauchy means Da,b were introduced by Stolarsky [43].
The power mean

Ma(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩
(

xa + ya

2

)1/a

if a �= 0

√
xy if a = 0

with exponent a can be obtained as D2a,a thus D2,1 , D0,0 , and D−2,−1 are the
arithmetic, geometric, and harmonic means respectively. D0,1 and D1,1 are called
logarithmic and identric means, respectively.

Several particular inequalities involving Da,b have been studied, among others,
by Allasia, Giordano and Pečarić [2], Alzer [3], Brenner [5], Brenner and Carlson [6],
Burk [7], Carlson [8], Dodd [11], Leach and Sholander [14], Lin [17], Pittinger [32], [33],
Sándor [36], [37], [38], Seiffert [39], [40], Stolarsky [43], [44], Székely [45]. Neu-
man [25] studied multivariable weighted logarithmic means, Pečarić and Simić [31]
introduced n -dimensional (homogeneous) weighted means (called Stolarsky-Tobey
means), Pearce, Pečarić and Šunde [30] generalized Pólya’s inequality to Stolarsky and
Gini means.

Some of these means have applications in electrostatics [1], [34], in heat conduc-
tions, chemical problems [46] and particular recent interest is the occurrence of these
means in signal processing theory in connection with time-frequency distributions [13].

There are only a few inequalities of general nature for the homogeneous Cauchy
means: the comparison problem and Minkowski’s inequality.

The comparison problem

Da,b(x, y) � Dc,d(x, y) (x, y ∈ R+)

was solved by Leach and Sholander [15]. Páles [27] gave a new proof for this result. In
[28] Páles solved the comparison problem on any subinterval [α, β ] of R+.
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THEOREM 3. (Páles, [28]) Let 0 < α < β < ∞. The inequality

Da,b(x, y) � Dc,d(x, y) (x, y ∈ [α, β ])

holds if and only if the inequalities

a + b � c + d and Da,b(α, β) � Dc,d(α, β)

are satisfied.

On the interval R+ the necessary and sufficient conditions can be formulated in
terms of the constants a, b, c, d. Here we formulate the result of Páles [27] in the more
general form of Czinder and Páles [9].

THEOREM 4. Let a, b, c, d ∈ R . The inequality

Da,b(x, y) � Dc,d(x, y) (x, y ∈ R+)

holds if and only if the conditions

a + b � c + d

and
l(a, b) � l(c, d), e(a, b) � e(c, d)

are satisfied where the functions l, e : R
2 → R are defined by

l(x, y) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x − y
ln x/y

if 0 < xy, x �= y,

x if 0 < xy, x = y,

0 otherwise,

e(x, y) :=

⎧⎨
⎩

|x| − |y|
x − y

if x �= y,

sgnx if x = y.

Concerning Minkowski’s inequality we have

THEOREM 5. (Losonczi-Páles [24]) The Minkowski’s inequality

Da,b(x1 + x2, y1 + y2) � Da,b(x1, y1) + Da,b(x2, y2) (x1, x2, y1, y2 ∈ R+)

holds if and only if
a + b � 3, min{a, b} � 1.

THEOREM 6. (Losonczi-Páles [24]) The inequality

Da,b(x1 + x2, y1 + y2) � Da,b(x1, y1) + Da,b(x2, y2) (x1, x2, y1, y2 ∈ R+)

holds if and only if
a + b � 3, min{a, b} � 1.

Páles and Czinder [9] studied the Minkowski-type inequality

Da1,b1(x1 + x2, y1 + y2) � Da2,b2(x1, y1) + Da3,b3(x2, y2) (x1, x2, y1, y2 ∈ R+)

inequality and its reverse.
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4. Comparison of Cauchy means

The comparison problem for the Cauchy means is the following. Find necessary
and sufficient conditions for the functions f , g, F, G such that the inequality

Df ,g(x1, x2, . . . , xn) � DF,G(x1, x2, . . . , xn) (x1, x2, . . . , xn ∈ I). (6)

holds where n � 2 is a fixed integer.
The solution of this problem is not yet known. There are however necessary

conditions (which are not sufficient) and also sufficient conditions (which are not
necessary). These conditions in the special cases g = G , f = F and h = H coincide,
giving necessary and sufficient conditions.

THEOREM 7. (Losonczi [21]) Suppose that (f , g), (F, G) ∈ En(I) and f , g, F, G ∈
Cn+1(I). Then the inequality

h′′(x)
h′(x)

+ 2
ḡ′(x)
ḡ(x)

� H′′(x)
H′(x)

+ 2
Ḡ′(x)
Ḡ(x)

(x ∈ I) (7)

is necessary for (6) to hold (where the notations introduced at the end of Section 1 were
used).

To conclude (7) it is enough to assume (6) only for the values x1 ∈ [x − ε, x +
ε] ∩ I, x2 = · · · = xn = x for all x ∈ I where ε is a positive number. Due to this we
cannot expect (7) to be sufficient for (6). If however in (7) the inequality is strict (for
a fixed value x ∈ I ) then it can be proved that (6) holds if (x1, x2 . . . , xn) is near to
(x, x, . . . , x) .

THEOREM 8. (Losonczi [21]) Suppose that (f , g), (F, G) ∈ En(I) . Then the
inequality

h(u) − h(v)
h′(v)

ḡ(u)
ḡ(v)

� H(u) − H(v)
H′(v)

Ḡ(u)
Ḡ(v)

(u, v ∈ I) (8)

is sufficient for (6) to hold.

In the special case I = R+,Df ,g = Da,b,DF,G = Dc,d where a, b, c, d are positive
constants with (a − b)(c − d) �= 0 by theorem 4 (6) holds if and only if

a + b � c + d and
a − b

ln a − ln b
� c − d

ln c − ln d
. (9)

The necessary condition (7) is equivalent to

a + b � c + d. (10)

The sufficient condition (8) can easily be written in the form

za − zb

a − b
� zc − zd

c − d
(z ∈ R+).
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This inequality holds if and only if (see e.g. Páles [26], Daróczy-Losonczi [10],
Losonczi [19])

min(a, b) � min(c, d) and max(a, b) � max(c, d). (11)

It is clear that (10) in general is not sufficient for (9), proving that (7) is, in general,
not sufficient for (6).

One can easily check that for a fixed (a, b) the set of points (c, d) satisfying (9) is a
proper subset of the points satisfying (11) (e.g. if a = e, b = 1 and c = 0.9e2, d = 0.9
then (9) is satisfied but (11) is not). Therefore (8) is, in general, not necessary for (6).

The next three theorems give necessary and sufficient conditions for (6) to hold in
the special cases g = G , f = F and h = H . (see [21]).

THEOREM 9. Suppose that (f , g), (F, G) ∈ En(I), f , g, F, G ∈ Cn+1(I) and

g = G.

Then the inequality (6) holds if and only if either the function h is (necessarily strictly)
increasing on I and the function χ defined by

χ(u) := h
(
H−1(u)

)
(u ∈ J := { H(x) | x ∈ I })

is concave on J or the function h is (strictly) decreasing on I and χ is convex on J .

This result can be applied to sharpen Theorems 2 and 3 of Elezović and Pečarić
[12] (where, with our notations, the case g(x) = G(x) = 1 was studied) to necessary
and sufficient conditions for the comparison.

THEOREM 10. Suppose that (f , g), (F, G) ∈ En(I), f , g, F, G ∈ Cn+1(I) further
¯f (x) �= 0 (x ∈ I) and

f = F.

Then the inequality (6) holds if and only if either the function k defined by

k(x) := 1/h(x) =
ḡ(x)
¯f (x)

(x ∈ I)

is (strictly) increasing on I and the function ψ defined by

ψ(u) := k(K−1(u)) (u ∈ J1 := {K(x) | x ∈ I }) where K(x) :=
Ḡ(x)
¯f (x)

, (x ∈ I)

is concave in J1 or k is (strictly) decreasing on I and ψ is convex on J1.

THEOREM 11. Suppose that (f , g), (F, G) ∈ En(I), f , g, F, G ∈ Cn+1(I) and

h = H.

Then the inequality (6) holds if and only if the function defined by

x → ln
∣∣∣ ḡ(x)
Ḡ(x)

∣∣∣ (x ∈ I)

is decreasing on I.
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5. The general comparison problem

The general comparison of three Cauchy means is the inequality

DF1,G1 (k(x1, y1), . . . , k(xn, yn)) � k (DF2,G2(x1, . . . , xn),DF3,G3(y1, . . . , yn)) (12)

where xi ∈ I2, yi ∈ I3 (i = 1, . . . , n), I1, I2, I3 are intervals, k : I2 × I3 → I1 is a given
(comparison) function and (Fi, Gi) ∈ En(Ii) (i = 1, 2, 3).

From (12) we obtain with k(u, v) = u, k(u, v) = u+ v and k(u, v) = uv as special
cases the comparison, subadditivity and Hölder type inequality for Cauchy means.

We can find necessary conditions for (12) in the following way. Let x ∈ I2,
and y ∈ I3 be fixed. Denoting the difference of the right and left side of (12) taken
at x1 = u, x2 = o. ts = xn = x, y1 = v, y2 = · · · = yn = y by Φ(u, v) it follows
that Φ(u, v) � 0 and Φ(x, y) = 0 thus Φ has a minimum at (x, y). Therefore the
inequalities

(∂2
1Φ)(x, y)(∂2

2Φ)(x, y) − (∂1∂2Φ)(x, y)2 � 0, (∂2
1Φ)(x, y) � 0, (∂2

2Φ)(x, y) � 0

are necessary for the generalized comparison (provided that the derivatives here are
continuous).
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[12] N. ELEZOVIĆ AND J. PEČARIĆ, Differential and integral f -means and applications to digamma function,

Math. Ineq. Appl., 3 (2000), 189–196.
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