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A STRENGTHENED CAUCHY–SCHWARZ INEQUALITY

FOR BIDIMENSIONAL SPLINE–WAVELETS

ALESSANDRA DE ROSSI AND LUIGI RODINO

Abstract. Multilevel methods have been widely applied for the approximation of the solutions
of the elliptic partial differential equations in the frame of finite element spaces and, recently,
owing to the development of the wavelet theory, in wavelet spaces. It has been pointed out
that the strengthened Cauchy-Buniakowski-Schwarz inequality is the main tool in the analysis
of multilevel methods. In this paper, results on the strengthened Cauchy-Buniakowski-Schwarz
inequality are reviewed for one dimensional biorthogonal wavelets and, as original contribution,
a theorem is proposed for the bidimensional case, concerning order one spline-wavelets.

1. Introduction

In this paper we present some results about the so-called strengthened Cauchy-
Schwarz inequality for biorthogonal wavelet spaces. The usual Cauchy-Schwarz in-
equality is refined by the strengthened one in the sense that it states the existence of a
constant γ ∈ [0, 1) such that

|(v, w)| � γ ||v|| ||w||
for v ∈ V , w ∈ W , where V , W are linear subspaces of a Hilbert space, with
V∩W = {0} , and γ depends only on V and W , and not on the choice of the functions
v and w . The smallest such quantity γ may be called the cosine of the angle between
the spaces V and W .

Such inequality is a tool in the resolution of elliptic partial differential equations,
because it has an important role in a posteriori error estimation and, therefore, in
the formulation of iterative and adaptive wavelet-based methods (see for example [2],
[7], [3]). The case of multilevel discretization in wavelet spaces has been largely
studied in last years, and the development of wavelet theory has permit to make several
numerical works in this field. We point-out that, in the context of approximation of
partial differential equations, the more suitable wavelet multilevel decomposition is the
biorthogonal one and, in particular, the biorthogonal spline-wavelet decomposition.

So in particular, to obtain results about a posteriori error estimates for adaptive
wavelet-based methods, we have to check in this frame the strengthened Cauchy-
Schwarz inequality. We observe that some proofs of it already exist for finite element
spaces, but the case of wavelet spaces is not yet completely investigated. Since now,
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as far as we know, the only proof existing is a strengthened Cauchy-Schwarz inequality
for general biorthogonal wavelets defined on the real line and on an interval (that is,
for the one-dimensional case) [8]. Some new results for two-dimensional biorthogonal
wavelets will be presented in this paper and in successive works.

The contents are, in short, the following. In section 2, first we recall the concept
of biorthogonal wavelet multilevel decomposition, then the important example of the
biorthogonal spline-wavelet decomposition is briefly examined. In section 3, results
are presented of strengthened Cauchy-Schwarz inequalities for biorthogonal wavelet
spaces. A special emphasis is dedicated to biorthogonal spline-wavelets.

2. Wavelet multilevel decomposition

We first present in short a definition of biorthogonal wavelets, addressed to non
experts.

Let V be a separable Hilbert space equipped with inner product (u, v) and norm
||v|| = (v, v)

1
2 . Take as basic example V = L2(R) , or some other function space on

the real line. We assume that we are given two families {Vj}j∈Z and {Ṽj}j∈Z of closed
and nested subspaces of V . Let ϕ and ϕ̃ be two functions in V such that

Vj =spanV{ϕjk, k ∈ Z} ∀j ∈ Z

Ṽj =spanV{ϕ̃jk, k ∈ Z} ∀j ∈ Z

where
ϕjk(x) =2

j
2ϕ(2jx − k) j, k ∈ Z

ϕ̃jk(x) =2
j
2 ϕ̃(2jx − k) j, k ∈ Z

and
(ϕjk, ϕ̃jk′) = δkk′ j ∈ Z, k, k′ ∈ Z.

The subpaces family {Vj}j∈Z must satisfy the properties

⋃
j∈Z

Vj

V

= V
⋂
j∈Z

Vj = {0}; (2.1)

similar properties must be satisfied by {Ṽj}j∈Z . The functions ϕ and ϕ̃ are named
scaling functions, while the bases {ϕjk}j,k∈Z and {ϕ̃jk}j,k∈Z are called canonical bases
of the multilevel decomposition of V . In fact a function v ∈ V could be approximated
by a function vj ∈ Vj or ṽj ∈ Ṽj for (2.1); vj and ṽj are named j -ths approximations
of v .

Now let us introduce spaces Wj and W̃j for each j ∈ Z such that

Vj+1 = Vj ⊕ Wj Ṽj+1 = Ṽj ⊕ W̃j (2.2)

with the biorthogonality conditions

Vj ⊥ W̃j Ṽj ⊥ Wj;
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moreover, let ψ , ψ̃ be functions such that

Wj =spanV{ψjk, k ∈ Z} ∀j ∈ Z

W̃j =spanV{ψ̃jk, k ∈ Z} ∀j ∈ Z

with
(ψjk, ψ̃j′k′) = δjj′δkk′ ∀j, j′ ∈ Z, ∀k, k′ ∈ Z.

From (2.1), (2.2) we have two decompositions of V :

V =
⊕
j∈Z

Wj =
⊕
j∈Z

W̃j,

which imply that, for each v ∈ V , we can write

v =
∑
j,k∈Z

v̂jkψjk =
∑
j,k∈Z

ˆ̃vjkψ̃jk

where
v̂jk = (v, ψ̃jk) ˆ̃vjk = (v,ψjk).

The bases {ψjk}j,k∈Z and {ψ̃jk}j,k∈Z are called hierarchical bases with respect to the
multilevel decomposition of V . It is obvious from (2.2) that functions vj+1 ∈ Vj+1 and
ṽj+1 ∈ Ṽj+1 could be expressed in the following ways

vj+1 = vj + wj ṽj+1 = ṽj + w̃j

where vj ∈ Vj , wj ∈ Wj , ṽj ∈ Ṽj and w̃j ∈ W̃j ; wj and w̃j are the details needed to
obtain approximations of level j + 1 from the approximations of level j .

The construction of functions ϕ , ϕ̃ , ψ , ψ̃ satisfying simultaneously all the
preceding properties is, of course, a non- trivial task; let us address the reader to, for
example, [5] for full details of the theory.

A fundamental example of biorthogonal wavelet decomposition is given by the
spline-wavelet decomposition of L2(R) . In particular we may consider the spline-
wavelet decomposition of order one, where ϕ(x) = (1 − |x|)+ and ψ(x) is the so
called mexican hat function

ψ(x) = −1
4
ϕ(2x + 1) − 1

2
ϕ(2x) +

3
2
ϕ(2x − 1) − 1

2
ϕ(2x − 2) − 1

4
ϕ(2x − 3).

Beginning from the previous setting we are able to construct a multilevel decomposition
on an interval I of the real line, that is to consider V = L2(I) (see [1] and [4]). To get
a multilevel decomposition on V = L2(R2) or other relevant space on R2 , a way is to
consider a tensorial product of the decompositions of L2(R) . Namely, we can define
in general

Vj(R2
xy) = Vj(Rx) ⊗ Vj(Ry)

and consequently

Wj(R2) = (Vj(Rx) ⊗ Wj(Ry)) ⊕ (Wj(Rx) ⊗ Vj(Ry)) ⊕ (Wj(Rx) ⊗ Wj(Ry)) .
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In particular, we can consider the spline decomposition of order one in R2 , with

Vj(R2
xy) = spanV⊗V{ϕjkk′(x, y) = ϕjk(x)ϕjk′(y), k, k′ ∈ Z}

starting from ϕ(x) = (1 − |x|)+ , and define Wj(R2) consequently in terms of the
mexican hat function ψ(x) (see, for example, [6] or [4]).

3. The strengthened Cauchy-Schwarz inequality for biorthogonal wavelets

We begin by recalling the result of De Rossi [8]. Under general hypotheses on ϕ
and ψ (cf. for example [6]), the strengthened Cauchy-Schwarz inequality was there
proved for one-dimensional biorthogonal wavelets, namely

∃γ ∈ [0, 1) such that |(v, w)| � γ ||v|| ||w||
for all v ∈ Vj(R) and w ∈ Wj(R) , according to the definition of section 2; the
constant γ does not depend on j . Scalar product and norm are in the H1 sense, namely
(v, w) =

∫
v′(x)w′(x)dx ; the method in [8] gives easily the result in L2 with standard

L2 norms also. At this moment, a general proof of the same inequality for wavelets
in the two-dimensional case seems not available in literature. As a first step in this
direction, we begin to present here a result concerning spline-wavelets decomposition
of order one in R2 , defined by tensor product as at the end of section 2.

We shall limit ourselves to estimate γ when w ∈ E3 , the 3 -dimensional vector
subspace of W0(R2) given by

w(x, y) = c1ψ(x)ϕ(y) + c2ϕ(x)ψ(y) + c3ψ(x)ψ(y) (3.1)

and v ∈ F16 , the 16 -dimensional vector subspace of V0(R2) spanned by all the
ϕ0kk′(x, y) whose support has non-empty intersection with the region [−1, 2]× [−1, 2]
including the support of the preceding w(x, y) , namely

v(x, y) =
2∑

k=−1

2∑
k′=−1

ckk′ϕ0k(x)ϕ0k′(y). (3.2)

Let us observe that, in computing (v, w) for w as in (3.1) and a generic v ∈ V0 , only
terms of the form (3.2) actually matter, since (v, w) = 0 for v = ϕ0k(x)ϕ0k′(y) /∈ F16 .

We shall prove:

THEOREM 3.1. Define

γ = sup
|(v, w)|
||v|| ||w|| (3.3)

v running in F16 , w in E3 . Then

0.2536286367 �γ � 0.4168274363 in L2 norm,

0.1740776559 �γ � 0.2729316204 in H1 norm.
(3.4)
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By a change of variables the result can be easily extended to corresponding sub-
spaces of same dimension of Vj(R2) and Wj(R2) . Concerning the general case
v ∈ Vj(R2) , w ∈ Wj(R2) (order one spline-wavelets in R2 ), the lower bounds in
(3.4) keeps obviously valid, whereas we cannot draw any conclusion about the upper
bounds. We think however that the particular case we have treated is representative of
the general situation, namely we expect that (3.4) keeps valid for γ defined by (3.3)
with v ∈ Vj(R2) , w ∈ Wj(R2) .

As for the proof of theorem3.1, in principle it would be possible to obtain γ explic-
itly, by reducing the problem to the computation of a maximum in a finite dimensional
setting; however, due to the high number of variables, this proceeding presents evident
difficulties. Instead, we give here a quick proof of the bounds (3.4), by combining
arguments of functional analysis and some numerical computations, performed with
Maple V Release 6.

Let us begin with the following preliminary result, valid in any Hilbert space V .

LEMMA 3.2. Let v , wj , j = 1, . . . , n , belong to V , write w =
∑n

j=1 wj and
assume there exist non-negative constants γj < 1 , δjh with δjh = δhj , for j = 1, . . . , n ,
h = 1, . . . , n and maxj

∑
h�=j δjh < 1 , such that

|(v, wj)| � γj||v|| ||wj||, j = 1, . . . , n,

|(wj, wh)| � δjh||wj|| ||wh||, j, h = 1, . . . , n.

Then
|(v, w)| � γ ||v|| ||w||

with

γ =

√∑n
j=1 γ 2

j√
1 − maxj

∑
h,h�=j δjh

.

Proof. We have

|(v, w)| �
n∑

j=1

|(v, wj)| �
n∑

j=1

γj||v|| ||wj||

� ||v||
√√√√ n∑

j=1

γ 2
j

√√√√ n∑
j=1

||wj||2.

To get the conclusion, it will be now sufficient to prove that

√
1 − max

j

∑
h,h�=j

δjh

√√√√ n∑
j=1

||wj||2 � ||w||. (3.5)

In fact

||w||2 =
n∑

j=1

||wj||2 +
∑
j,h
h�=j

(wj, wh),
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hence
n∑

j=1

||wj||2 � ||w||2 +
∑
j,h
h�=j

|(wj, wh)|

� ||w||2 +
1
2

∑
j,h
h�=j

2δjh||wj|| ||wh||

� ||w||2 +
1
2

∑
j,h
h�=j

δjh(||wj||2 + ||wh||2)

= ||w||2 +
∑

j

⎛
⎝∑

h,h�=j

δjh||wj||2
⎞
⎠ .

Therefore
n∑

j=1

⎛
⎝1 −

∑
h,h�=j

δjh

⎞
⎠ ||wj||2 � ||w||2

and (3.5) follows. The proof of the lemma is therefore concluded. �
The preceding lemma gives immediately the following two corollaries.

COROLLARY 3.3. Assume in the preceding lemma δjh = 0 for j, h = 1, . . . , n ,
h 	= j , i.e. the wj are orthogonal each other, then in the conclusion

γ =

√√√√ n∑
j=1

γ 2
j .

REMARK. The previous result is sharp in the following sense. Under the orthog-
onality assumption of corollary 3.3, if γj = |(v, wj)|/||v|| ||wj|| , then considering the
orthogonal projection of v on the space spanned by wj :

ṽ =
n∑

j=1

(v, wj)wj

||wj||2

we have

γ =
|(v, ṽ)|
||v|| ||ṽ|| =

√√√√ n∑
j=1

γ 2
j .

COROLLARY 3.4. Assume in the preceding lemma γj � γ̃ < 1/n , δjh � γ̃ < 1/n
for all j = 1, . . . , n , h = 1, . . . , n , h 	= j . Then for γ in the conclusion, we have

γ �
√

nγ̃
1
γ̃ − n + 1

< 1.
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Proof of theorem 3.1. Let us write ϕk(x) = ϕ(x− k) , ψk(x) = ψ(x− k) , k ∈ Z ,
in particular ϕ0 = ϕ , ψ0 = ψ . It will be convenient to introduce an orthogonal basis
in F16 . Namely in L2 norm we shall write

v(x, y) =
2∑

k=−1

2∑
j=−1

ckjϕ�
k(x)ϕ

�
j (y) (3.6)

where ϕ�
−1 = ϕ−1 , ϕ�

1 = ϕ1 and

ϕ�
0 = ϕ0 − 1

4
ϕ−1 − 1

4
ϕ1

ϕ�
2 = ϕ2 − 1

4
ϕ1 +

1
14

ϕ�
0

are orthogonal in L2(R) , assuring by tensor product the orthogonality of ϕ�
jk(x, y) =

ϕ�
j (x)ϕ

�
k(y) in L2(R2) . In H1 norm we have similar orthogonal decomposition with

ϕ�
−1 = ϕ−1 , ϕ�

1 = ϕ1 and

ϕ�
0 = ϕ0 +

1
2
ϕ−1 +

1
2
ϕ1

ϕ�
2 = ϕ2 +

1
2
ϕ1 +

1
2
ϕ�

0.

Let us begin by computing in the one-dimensional case

γ−1 =
|(ϕ�

−1,ψ0)|
||ϕ�

−1|| ||ψ0||
=

{
0.1178511303 in L2

0.08703882800 in H1,

γ0 =
|(ϕ�

0,ψ0)|
||ϕ�

0|| ||ψ0||
=

{
0.1259881577 in L2

0.1230914910 in H1,

γ1 =
|(ϕ�

1,ψ0)|
||ϕ�

1|| ||ψ0||
=

{
0.1178511303 in L2

0.08703882800 in H1,

γ2 =
|(ϕ�

2,ψ0)|
||ϕ�

2|| ||ψ0||
=

{
0.1437939210 in L2

0.0 in H1.

Let us observe that for w1(x, y) = ψ0(x)ψ0(y)

|(ϕ�
jk, w1)|

||ϕ�
jk|| ||w1||

=
|(ϕ�

j ,ψ0)||(ϕ�
k ,ψ0)|

||ϕ�
j || ||ψ0|| ||ϕ�

k|| ||ψ0||
= γjγk.

We now begin to estimate, using corollary 3.3 and taking v ∈ F16 as in (3.6):

|(v, w1)|
||v|| ||w1|| � G1
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with

G1 =

√√√√ 2∑
j=−1

2∑
k=−1

γ 2
j γ 2

k =
2∑

j=−1

γ 2
j .

We have

G1 =
{

0.06432748535 in L2,

0.03030303028 in H1.

Let us consider now w2(x, y) = ψ0(x)ϕ0(y) and observe that in this case

|(ϕ�
jk, w2)|

||ϕ�
jk|| ||w2||

=
|(ϕ�

j ,ψ0)|
||ϕ�

j || ||ψ0||
|(ϕ�

k ,ϕ0)|
||ϕ�

k|| ||ϕ0||
= γjγ̃k

with

γ̃k =
|(ϕ�

k,ϕ0)|
||ϕ�

k || ||ϕ0||
.

Note that by Bessel identity
2∑

k=−1

γ̃ 2
k = 1.

Therefore for v ∈ F16 |(v, w2)|
||v|| ||w2|| � G2

with

G2 =

√√√√ 2∑
j=−1

2∑
k=−1

γ 2
j γ̃ 2

k =

√√√√ 2∑
j=−1

γ 2
j

and then we have

G2 =
{

0.2536286367 in L2,

0.1740776559 in H1.

In the same way we argue on w3(x, y) = ϕ0(x)ψ0(y) obtaining the bound

G3 = G2.

At this moment we compute

δ12 =
|(w1, w2)|
||w1|| ||w2|| =

|(ψ0,ϕ0)|
||ϕ0|| ||ψ0|| =

{
0.1178511303 in L2

0.08703882796 in H1,

δ13 = δ12,

δ23 =
|(w2, w3)|
||w2|| ||w3|| =

( |(ψ0,ϕ0)|
||ϕ0|| ||ψ0||

)2

= (δ12)2.

We finally consider (v, w) with v ∈ F16 and w = c1w1 + c2w2 + c3w3 ∈ E3 as before.
Since G1 , G2 , G3 , δ12 , δ13 , δ23 are estimated by 1/3 , we may apply corollary 3.4
with n = 3 . More precisely from lemma 3.2 we obtain the values of γ :

γ =

√
G2

1 + G2
2 + G2

3√
1 − 2δ12

=
{

0.4168274363 in L2

0.2729316204 in H1.
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This gives the upper bounds in theorem 3.1. To get the lower bounds, we fix w = w2

and apply the remark after corollary 3.3 to the projection of w2 on F16 ; we obtain then
the values corresponding to G2 . �
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