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MULTIVARIABLE MIXED MEANS AND INEQUALITIES

OF HARDY AND LEVIN–COCHRAN–LEE TYPE

ALEKSANDRA ČIŽMEŠIJA AND JOSIP PEČARIĆ

Abstract. We consider integral power means of arbitrary real order, taken over cells in Rn , and
their dual means. We establish related mixed-means inequalities and then apply obtained results
to derive multivariable analogues and some new generalizations of Hardy and Levin-Cochran-
Lee type inequalities. Moreover, we prove the constant factors involved in the right-hand sides
of these relations to be the best possible, that is, they cannot be replaced with smaller constants.
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[15] B. MOND AND J. PEČARIĆ, A Mixed means Inequality, Austral. Math. Soc. Gazette, 23 (1996), No. 2,

67–70.
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