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MULTIVARIABLE MIXED MEANS AND INEQUALITIES

OF HARDY AND LEVIN–COCHRAN–LEE TYPE

ALEKSANDRA ČIŽMEŠIJA AND JOSIP PEČARIĆ

Abstract. We consider integral power means of arbitrary real order, taken over cells in Rn , and
their dual means. We establish related mixed-means inequalities and then apply obtained results
to derive multivariable analogues and some new generalizations of Hardy and Levin-Cochran-
Lee type inequalities. Moreover, we prove the constant factors involved in the right-hand sides
of these relations to be the best possible, that is, they cannot be replaced with smaller constants.

1. Introduction

In 1928, G. H. Hardy proved one of the most important classical one-dimensional
integral inequalities (cf. [7], or [14]):

THEOREM A. Let p, k ∈ R , p > 1 and k �= 1 . Suppose f is a non-negative

measurable function such that x1− k
p f ∈ Lp(0,∞) , and the function F is defined on

〈 0,∞〉 by

F(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ x

0
f (t)dt, k > 1,

∫ ∞

x
f (t)dt, k < 1.

Then ∫ ∞

0
x−kFp(x)dx <

(
p

|k − 1|
)p ∫ ∞

0
xp−kf p(x)dx, (1)

unless f ≡ 0 . The constant
(

p
|k−1|

)p
is the best possible.

Besides the famous Hardy’s inequality (1), we also need to consider a pair of
one-dimensional weighted exponential integral inequalities, closely related to (1), but
discovered more than fifty years later. They are given in

THEOREM B. Let α, γ ∈ R , α �= 0 , and f be a positive measurable function on
〈 0,∞〉 such that

∫∞
0 xγ−1f (x)dx < ∞ . Then the inequalities∫ ∞

0
xγ−1 exp

[
α
xα

∫ x

0
tα−1 log f (t)dt

]
dx � e

γ
α

∫ ∞

0
xγ−1f (x)dx, (2)
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for α > 0 , and∫ ∞

0
xγ−1 exp

[
− α

xα

∫ ∞

x
tα−1 log f (t)dt

]
dx � e

γ
α

∫ ∞

0
xγ−1f (x)dx, (3)

for α < 0 , hold. The constant e
γ
α is the best possible for both inequalities.

Inequality (2) is due to J. A. Cochran and C.-S. Lee, [2], while inequality (3)
represents its dual result, proved by E. R. Love in [12] (see also [14] for both results).
However, it is not widely known that (2) is only a special case of a more general
inequality of V. Levin, published in 1938 in his unnoticed paper [11], written in Russian.
Because of this reason, inequalities (2) and (3) will be called the Levin-Cochran-Lee
inequalities.

Although classical, inequalities (1), (2) and (3) were during the last decade gener-
alized inmany differentways by numerousmathematicians. One possible generalization
of Theorem A and Theorem B is to derive their various multivariable analogues. In this
paper we will generalize these theorems to n -cells, that is, we will obtain inequalities
with integrals taken over axis-parallel rectangular blocks in Rn .

Before presenting our idea, it is necessary to introduce some notation. For two
vectors c = (c1, . . . , cn), d = (d1, . . . , dn) ∈ Rn we define the vector c · d by

c · d = (c1d1, . . . , cndn).

We also write c � d (or, equivalently, d 	 c ) if componentwise ci < di , i =
1, . . . , n . In particular, if we denote 0 = (0, . . . , 0), 1 = (1, . . . , 1) ∈ Rn , then cases
ci > 0 and di > 1 , i = 1, . . . , n , can be written as c 	 0 and d 	 1 respectively.

Further, for vectors c = (c1, . . . , cn) 	 0 and � = (α1, . . . ,αn) ∈ Rn , let
c� =

∏n
i=1 cαi

i . Of course, c1 =
∏n

i=1 ci and c−1 =
∏n

i=1
1
ci

. On the other hand, if

c ∈ Rn is such that ci �= 0 , i = 1, . . . , n , we denote 1
c =

(
1
c1

, . . . , 1
cn

)
.

We also introduce a notation for some special sets. For arbitrary c, d ∈ Rn ,
c � d , a subset Rc,d ⊂ Rn let be defined by

Rc,d = {(x1, . . . , xn) ∈ Rn : ci < xi < di, i = 1, . . . , n}.
Similarly, if d ∈ Rn , let

Rd,∞ = {(x1, . . . , xn) ∈ Rn : di < xi < ∞, i = 1, . . . , n},
and finally, let

R = R0,∞ = {(x1, . . . , xn) ∈ Rn : 0 < xi < ∞, i = 1, . . . , n}.
Since throughout this paper all integrals will be taken over these sets, by

∫
Rc,d

u(z)dz

and
∫

R u(z)dz we denote n -fold integrals

∫ d1

c1

· · ·
∫ dn

cn

u(z1, . . . , zn)dzn . . . dz1 and
∫ ∞

0
· · ·

∫ ∞

0
u(z1, . . . , zn)dzn . . . dz1.
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The first multivariable version of Hardy’s inequality was given by B. G. Pachpatte
in [19]. Using Fubini’s theorem and Jensen’s inequality, he proved the next theorem.

THEOREM C. Let p ∈ R , p > 1 , and let f ∈ Lp(R) be a non-negative function.
If the function F is defined on R by

F(x) =
∫

R0,x

f (y)dy,

then ∫
R
x−p1Fp(x)dx <

(
p

p − 1

)np ∫
R
f p(x)dx,

unless f ≡ 0 . The constant
(

p
p−1

)np
is the best possible.

Motivated by Pachpatte’s result, in this paper we generalize Theorem C to obtain
n -variable Hardy’s inequality which is a natural generalization of Theorem A. We also
derive a multivariable version of Theorem B of the same type and establish n -variable
Levin-Cochran-Lee type inequalities. Moreover, we prove that the constants obtained
on the right-hand sides of these inequalities are the best possible, that is, none of them
can be replaced with a smaller constant factor.

Furthermore, since the outer integrals on the both sides of derived multivariable
relations are taken over R , here we also investigate inequalities of the same type, with
the outer integrals taken over R0,b or Rb,∞ . We show that in that case Hardy and
Levin-Cochran-Lee type inequalities can be improved by providing sharp smaller upper
bounds for their left-hand sides.

A technique that will be used in the proofs consists of introducing two types of
multivariable integral means of arbitrary real order, over Rc,d and Rd,∞ , with power
weights, and proving the corresponding mixed (r, s) -means inequalities. All desired
results will be elegantly obtained as limit cases of related mixed-means inequalities.

The idea of using mixed means in deriving Hardy and Levin-Cochran-Lee type
inequalities has already been applied to one-dimensional integrals, finite and infinite
series (cf. [3] and [5]), and to integrals over balls in Rn centered at the origin (cf. [4]
and [6]).

Although the mixed-means inequalities will be used here only as a technical help
in proving the main theorems, they are interesting in their own right. Their different
discrete and integral variants were investigated very recently (cf. [1], [3], [4], [8], [9],
[10], [13], [15], [16], [17], or [20]).

The analysis used in the proofs is mostly based on classical real analysis, on the
well-known Minkowski’s and Jensen’s inequality for integrals, and on the properties of
integral means (cf. [7]).

2. Multivariable integral means and related inequalities for mixed means

We start by introducing multivariable integral power means over n -cells and their
natural dual means. Let �, c, d ∈ R be such that c � d , and let f be a non-negative
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measurable function on R . For r ∈ R , r �= 0 , as in [7], we define the integral mean of
order r , with the power weight, of f , M[r](f ; c, d,�) , by

M[r](f ; c, d,�) =

[
�

1(d − c)−�
∫

Rc,d

(x − c)�−1f r(x)dx

] 1
r

, (4)

with the convention that M[r](f ; c, d,�) = 0 if r < 0 and f vanishes on a subset of
Rc,d of positive measure. Especially, if f is a positive function, by

G(f ; c, d,�) = M[0](f ; c, d,�)

= exp

(
�

1(d − c)−�
∫

Rc,d

(x − c)�−1 log f (x)dx

)
(5)

we denote its geometric mean over Rc,d .
These means have the further properties (cf. [7]):

M[r](f ; c, d,�) � M[s](f ; c, d,�), for r, s ∈ R, r < s, (6)

and

lim
r→0−

M[r](f ; c, d,�) = lim
r→0+

M[r](f ; c, d,�) = G(f ; c, d,�). (7)

The means defined by (4) and (5) naturally generate their dual means. Let d,� ∈
Rn be such that d 	 0 and � � 0 . If f is a non-negative measurable function on R ,
for r ∈ R , r �= 0 , the relation

M[r]
∗ (f ; d,�) =

[
(−�)1d−�

∫
Rd,∞

x�−1f r(x)dx

] 1
r

(8)

defines the dual mean of order r of f . We set M[r]
∗ (f ; d,�) = 0 if r < 0 and f (x) = 0

on a subset of Rd,∞ of positive measure. Finally, for a positive function f , the relation

G∗(f ; d,�) = M[0]
∗ (f ; d,�) = exp

(
(−�)1d−�

∫
Rd,∞

x�−1 log f (x)dx

)
(9)

defines the dual geometric mean of f .
The main properties of dual means (8) and (9) are similar to those of means (4)

and (5):

M[r]
∗ (f ; d,�) � M[s]

∗ (f ; d,�), for r, s ∈ R, r < s, (10)

and

lim
r→0−

M[r]
∗ (f ; d,�) = lim

r→0+
M[r]

∗ (f ; d,�) = G∗(f ; d,�). (11)

Now we state the basic result of this paper.
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THEOREM 1. Let f be a non-negative measurable function on R and r, s ∈ R ,
a, b ∈ R be such that r, s �= 0 , r < s , and a � b . If �,� ∈ Rn are arbitrary, then

⎧⎨
⎩(b − a)−�

∫
Ra,b

(x − a)�−1

[
(x − a)−�

∫
Ra,x

(t − a)�−1f s(t)dt

] r
s

dx

⎫⎬
⎭

1
r

�

⎧⎨
⎩(b − a)−�

∫
Ra,b

(x − a)�−1

[
(x − a)−�

∫
Ra,x

(t − a)�−1f r(t)dt

] s
r

dx

⎫⎬
⎭

1
s

.

(12)

Equality holds if and only if f is of the form

f (a + u · (x − a)) = f 1(u) · f 2(x), u ∈ R0,1, x ∈ Ra,b. (13)

Proof. Using the change t = a + u · (x − a) of the independent variable in the
inner integral, the left-hand side of (12) becomes

⎧⎨
⎩(b − a)−�

∫
Ra,b

(x − a)�−1

[∫
R0,1

u�−1f s(a + u · (x − a))du

] r
s

dx

⎫⎬
⎭

1
r

, (14)

since the Jacobian of the transformation is equal to | ∂ti
∂uj

| = (x − a)1 . Further, by

applying Minkowski’s integral inequality, we have that (14) is greater than or equal to

⎧⎨
⎩

∫
R0,1

u�−1

[
(b − a)−�

∫
Ra,b

(x − a)�−1f r(a + u · (x − a))dx

] s
r

du

⎫⎬
⎭

1
s

. (15)

Now, put a + u · (x− a) = t back and denote ũ = a + u · (b− a) . Since | ∂xi
∂tj
| = u−1 ,

the term (15) is equal to

⎧⎨
⎩

∫
R0,1

u�−1

[
(b − a)−�u−�

∫
Ra,ũ

(t − a)�−1f r(t)dt

] s
r

du

⎫⎬
⎭

1
s

=

⎧⎨
⎩(b − a)−�

∫
Ra,b

(x − a)�−1

[
(x − a)−�

∫
Ra,x
(t − a)�−1f r(t)dt

] s
r

dx

⎫⎬
⎭

1
s

,

that is, the right-hand side of inequality (12). The last equality is due to the substitution
x = a + u · (b − a) .

It is obvious that the equality in (12) holds if and only if it occurs in Minkowski’s
inequality, that is, if and only if the function f fulfills the condition (13). �

The dual inequality to (12) is stated in the following theorem.
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THEOREM 2. Let �,� ∈ Rn , b ∈ R , and let f be a non-negative measurable
function on R . If r, s ∈ R are such that r, s �= 0 and r < s , then⎧⎨

⎩b−�
∫

Rb,∞
x�−1

[
x−�

∫
Rx,∞

t�−1f s(t)dt

] r
s

dx

⎫⎬
⎭

1
r

�

⎧⎨
⎩b−�

∫
Rb,∞

x�−1

[
x−�

∫
Rx,∞

t�−1f r(t)dt

] s
r

dx

⎫⎬
⎭

1
s

. (16)

Proof. Define the function g by g(x) = f
(

1
x

)
, x ∈ R . If we, instead to f , a ,

b , � , � , apply Theorem 1 to g , 0 , 1
b , −� , −� respectively, (12) can be written as⎧⎪⎨

⎪⎩b−�
∫

R
0, 1b

u−�−1

[
u�

∫
R0,u

v−�−1gs(v)dv

] r
s

du

⎫⎪⎬
⎪⎭

1
r

�

⎧⎪⎨
⎪⎩b−�

∫
R
0, 1b

u−�−1

[
u�

∫
R0,u

v−�−1gr(v)dv

] s
r

du

⎫⎪⎬
⎪⎭

1
s

. (17)

Inequality (16) now easily follows by using the substitution t = 1
v in the inner integrals,

and then x = 1
u in the outer integrals on the both sides of (17). �

Note that the parameter � ∈ Rn in Theorem 1 and Theorem 2 was arbitrary. Fur-
thermore, the previous results avoided cases that include geometric and dual geometric
mean, that is, the cases where r = 0 or s = 0 . These cases will be treated in the next
two theorems, but this time with some constraints on � .

THEOREM 3. Let f : R → R be a positive measurable function. If a, b,� ∈ R
and � ∈ Rn are such that a � b , then the inequality{

(b − a)−�
∫

Ra,b

(x − a)�−1

[
exp

(
�

1(x − a)−�
∫

Ra,x
(t − a)�−1 log f (t)dt

)]s

dx

} 1
s

� exp

⎧⎨
⎩�

1(b − a)−�
∫

Ra,b

(x − a)�−1 log

[
(x − a)−�

∫
Ra,x

(t − a)�−1f s(t)dt

] 1
s

dx

⎫⎬
⎭

(18)

holds for all s ∈ R , s > 0 .

Proof. For arbitrary 0 < r < s , apply Theorem 1 to the function �
1
r 1f instead of

f , and denote

h(x) =

[
(x − a)−�

∫
Ra,x

(t − a)�−1f s(t)dt

] 1
s

, x ∈ R.
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Using (4), inequality (12) becomes

{
(b − a)−�

∫
Ra,b

(x − a)�−1
[
M[r](f ; a, x,�)

]s
dx

} 1
s

� M[r](h; a, b,�). (19)

The definition and the properties (6) and (7) of means M imply that the sequence(
M[r](f ; a, x,�)

)
is non-negative and monotonically converges to the geometric mean

G(f ; a, x,�) , as r decreases to 0 . Hence, by Lebesgue’s monotone convergence
theorem, the limit of the left-hand side of (19), as r↘ 0 , is equal to

{
(b − a)−�

∫
Ra,b

(x − a)�−1 [G(f ; a, x,�)]s dx

} 1
s

.

Since (7) also implies that limr↘0 M[r](h; a, b,�) = G(h; a, b,�) , the inequality (18)
holds by taking limr↘0 of (19). �

The same analysis can be used to prove the dual result of Theorem 3.

THEOREM 4. Let b,�,� ∈ Rn be such that b 	 0 , � � 0 , and let s ∈ R ,
s > 0 . If f is a positive measurable function on R , then

{
b−�

∫
Rb,∞

x�−1

[
exp

(
(−�)1x−�

∫
Rx,∞

t�−1 log f (t)dt

)]s

dx

} 1
s

� exp

⎧⎨
⎩(−�)1b−�

∫
Rb,∞

x�−1 log

[
x−�

∫
Rx,∞

t�−1f s(t)dt

] 1
s

dx

⎫⎬
⎭ . (20)

Proof. Inequality (20) follows from the definition and properties of means M∗ , by
using the same tools as in the proof of the previous theorem, if Theorem 1 is rewritten

for 0 < r < s , � � 0 , and the function (−�)
1
r 1 f instead of f . �

The main result of this section are themultivariable mixed (r, s) -means inequalities
for means M and their dual means M∗ .

THEOREM 5. Let �,� ∈ R and a, b ∈ Rn be such that a � b . If f : R → R is
a positive measurable function, then the inequality

M[s]
(
M[r](f ; a, x,�); a, b,�

)
� M[r]

(
M[s](f ; a, x,�); a, b,�

)
(21)

holds for all r, s ∈ R , r < s .

Proof. Directly from Theorem 1, by replacing the function f with �
1
r 1
�

1
s 1f , and

using the same analysis as in the proof of Theorem 3. �

We conclude this section with mixed-means inequalities for dual means M∗ .
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THEOREM 6. Let b ∈ R and �,� ∈ Rn be such that �,� � 0 . If f : R → R is
a positive measurable function, then the inequality

M[s]
∗

(
M[r]

∗ (f ; x,�); b,�
)

� M[r]
∗

(
M[s]

∗ (f ; x,�); b,�
)

(22)

holds for all r, s ∈ R , r < s .

Proof. If r, s �= 0 , inequality (22) follows immediately from Theorem 2, applied

to the function (−�)
1
r 1 (−�)

1
s 1 f . In cases where 0 = r < s or r < s = 0 , (22) is

obtained by using (10), (11) and Lebesgue’s monotone convergence theorem, as in the
proof of Theorem 4. �

If r, s �= 0 , it is easy to see that inequalities (21) and (22) hold also for non-negative
functions.

3. Multivariable Hardy’s inequality

Mixed means and related results, established in the previous section, can be used
as an approach to different integral inequalities. In this section we will apply relations
(12) and (16) to prove a natural multivariable analogue of Theorem A, and also to
obtain some of its new sharp generalizations.
First, we need to prove the following two technical lemmas.

LEMMA 1. If (bn)n∈N is a strictly increasing sequence of non-negative real
numbers such that limn→∞ bn = 1 , then for each ε ∈ 〈 0, 1− b1〉 there exists N0 ∈ N
such that the inequality

N∑
n=1

bn

n
> (1 − ε)

N∑
n=1

1
n

holds for all N ∈ N , N � N0 .

Proof. Let ε ∈ 〈 0, 1−b1〉 be arbitrary. Since b1 < 1−ε and bn ↗ 1 , there exists
a number n0 = max{n ∈ N : bn � 1− ε} . Hence, 1−b1− ε > · · · > 1−bn0 − ε � 0
and

∑n0

n=1(1 − bn − ε) 1
n > 0 . Moreover, if δ = 1+ε−bn0+1

2 , then ε − δ > 0 , and

b1 < · · · < bn0 � 1 − ε < 1 − δ < bn0+1 < bn0+2 < · · · < 1. (23)

Finally, since the series
∑∞

n=n0+1
1
n is divergent, there exists N0 ∈ N such that

N∑
n=n0+1

1
n

>
1

ε − δ

n0∑
n=1

(1 − bn − ε)
1
n
, N � N0,

or, equivalently,

(1 − ε)
N∑

n=1

1
n

<

n0∑
n=1

bn

n
+

N∑
n=n0+1

(1 − δ)
1
n
, N � N0.
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Considering (23), the right-hand side of the last inequality is less than
n0∑

n=1

bn

n
+

N∑
n=n0+1

bn

n
=

N∑
n=1

bn

n
,

so the proof is completed. �

LEMMA 2. Let k, p ∈ R be such that k, p > 1 , and let N ∈ N be arbitrary. If

the function fN is defined on 〈 0,∞〉 by fN(x) = x
k−1

p −1χ[1,N+1](x) , then

(i)
∫ ∞

0
xp−kf p

N(x)dx <

N∑
n=1

1
n

;

(ii)
∫ ∞

0
x−k

[∫ x

0
f N(t)dt

]p

dx >

(
p

k − 1

)p N∑
n=1

(
n

n + 1

)k (
1 − n

1−k
p

)p 1
n

.

Proof. Observe that
∑N

n=1
1
n is an upper Darboux sum for the function x �→ 1

x on
[1, N + 1] . Therefore, ∫ ∞

0
xp−kf p

N(x)dx =
∫ N+1

1

1
x

dx <
N∑

n=1

1
n
,

so (i) is proved. Inequality (ii) is obtained by a straightforward computation:∫ ∞

0
x−k

[∫ x

0
f N(t)dt

]p

dx >

∫ N+1

1
x−k

[∫ x

0
f N(t)dt

]p

dx

=
∫ N+1

1
x−k

[∫ x

1
t

k−1
p −1dt

]p

dx �
N∑

n=1

∫ n+1

n
x−k

[∫ n

1
t

k−1
p −1dt

]p

dx

=
(

p
k − 1

)p N∑
n=1

(
n

k−1
p − 1

)p
∫ n+1

n
x−kdx

�
(

p
k − 1

)p N∑
n=1

(
n

k−1
p − 1

)p 1
(n + 1)k

=
(

p
k − 1

)p N∑
n=1

(
n

n + 1

)k (
1 − n

1−k
p

)p 1
n

. �

In the next theorem we prove the multivariable Hardy’s inequality.

THEOREM 7. Suppose p ∈ R , p > 1 , and k ∈ Rn , k 	 1 or k � 1 . If f is

a non-negative measurable function such that x1− 1
p kf ∈ Lp(R) , and the function F is

defined on R by

F(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
R0,x

f (t)dt, k 	 1,

∫
Rx,∞

f (t)dt, k � 1,

(24)
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then ∫
R
x−kFp(x)dx �

[
pn · ∣∣(k − 1)−1

∣∣]p
∫

R
xp1−kf p(x)dx. (25)

The constant
[
pn · ∣∣(k − 1)−1

∣∣]p
is the best possible.

Proof. Consider the case k 	 1 first. If a = 0 , arbitrary b ∈ R , r = 1 ,
s = p > 1 , � = 1 and � = (p + 1)1 − k are chosen as parameters in Theorem 1,
inequality (12) can be written in the form

∫
R0,b

x−kFp(x)dx � b1−k

⎧⎨
⎩

∫
R0,b

x
1
p (k−1)−1

[∫
R0,x

tp1−kf p(t)dt

] 1
p

dx

⎫⎬
⎭

p

. (26)

Since

Ib =
∫

R0,b

tp1−kf p(t)dt �
∫

R0,x

tp1−kf p(t)dt, x ∈ R0,b,

the right-hand side of (26) is not greater than

b1−k

[∫
R0,b

x
1
p (k−1)−1dx

]p

· Ib = b1−k ·
{

b
1
p (k−1) ·

[
1
p
(k − 1)

]−1
}p

· Ib

=
[
pn · (k − 1)−1]p· Ib .

Hence, ∫
R0,b

x−kFp(x)dx �
[
pn · (k − 1)−1]p

∫
R0,b

tp1−kf p(t)dt, (27)

so (25) holds by taking limb→∞ (that is, bi → ∞ , i = 1, . . . , n ).
Now we prove that the constant

[
pn · (k − 1)−1

]p
is the best possible for (25).

Let ε ∈ 〈 0, 1〉 be arbitrary and (f N)N∈N be the sequence of functions on R , defined

by f N(x) =
∏n

i=1 f i,N(xi) , where f i,N(x) = x
ki−1

p −1χ[1,N+1](x) , x > 0 . Using Fubini’s
theorem and Lemma 2, (ii), the left-hand side of inequality (25), rewritten for the
function f N , is equal to

L =
∫

R
x−k

[∫
R0,x

f N(t)dt

]p

dx =
n∏

i=1

∫ ∞

0
x−ki
i

[∫ xi

0
f i,N(ti)dti

]p

dxi

�
[
pn · (k − 1)−1]p

n∏
i=1

[
N∑

l=1

(
l

l + 1

)ki (
1 − l

1−ki
p

)p 1
l

]
. (28)

Obviously, the sequence
(
b(i)

l

)
l∈N

, where

b(i)
l =

(
l

l + 1

)ki (
1 − l

1−ki
p

)p

,
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fulfills the conditions of Lemma 1. Therefore, for any i = 1, . . . n there exists Ni =
Ni(ε) ∈ N such that

N∑
l=1

(
l

l + 1

)ki (
1 − l

1−ki
p

)p 1
l

> (1 − ε)
N∑

l=1

1
l
, N � Ni.

Finally, if N = N(ε) � max {N1, . . . , Nn} , then using Lemma 2, (i), and Fubini’s
theorem, the second row in (28) is greater than

(1 − ε)n
[
pn · (k − 1)−1]p

(
N∑

l=1

1
l

)n

> (1 − ε)n
[
pn · (k − 1)−1]p

n∏
i=1

[∫ ∞

0
xp−ki
i f p

i,N(xi)dxi

]

= (1 − ε)n
[
pn · (k − 1)−1]p

∫
R
xp1−kf p

N(x)dx. (29)

By R denote the right-hand side of (25), that is, let

R =
[
pn · (k − 1)−1]p

∫
R
xp1−kf p

N(x)dx .

Combining (25), (28) and (29), we obtain

(1 − ε)nR < L � R,

that proves the desired result.
For the case k � 1 , inequality (25) is derived in the similar way. This time, by

starting from (16), with r = 1 , s = p > 1 , � = 1 , � = (p + 1)1 − k and arbitrary
b ∈ R as parameters, we obtain the relation

∫
Rb,∞

x−kFp(x)dx � b1−k

⎧⎨
⎩

∫
Rb,∞

x
1
p (k−1)−1

[∫
Rx,∞

tp1−kf p(t)dt

] 1
p

dx

⎫⎬
⎭

p

. (30)

By making an analogous estimate to the one in the previous case, we proceed to∫
Rb,∞

x−kFp(x)dx �
[
pn · (1 − k)−1]p

∫
Rb,∞

tp1−kf p(t)dt, (31)

so (25) holds by taking limb→0 .
Observe that the pair of inequalities in (25) (for k 	 1 and k � 1 ) are mutually

equivalent, since writing one of them for 2 · 1 − k and x−2·1f
(

1
x

)
, instead of k and

f , and then substituting z = 1
t and y = 1

x on its left-hand side, and y = 1
x on its

right-hand side, we obtain the other inequality of the pair. Therefore,
[
pn · (1 − k)−1

]p

is the best possible constant for the case k � 1 . �
It is easy to see that generality of (25) will not be increased if the parameter � is

left to be arbitrary, since the function f can always be replaced with x�−1f .
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Now, let us take a closer look to inequalities (27) and (31), obtained in the proof of
Theorem 7. Both of them are of the same type as Hardy’s inequality (25), but with one
difference: the outer integrals on their both sides, instead of being over R , are taken
over its subsets R0,b or Rb,∞ . By a careful analysis of the proof of Theorem 7, it is
not hard to improve these results by providing smaller upper bounds for their left-hand
sides. Moreover, it will be shown that obtained new inequalities are sharp, that is, the
constant factor

[
pn · ∣∣(k − 1)−1

∣∣]p
is still the best possible.

These improvements are given in the following theorem.

THEOREM 8. Let p ∈ R , b ∈ R , and k ∈ Rn be such that p > 1 , and k 	 1 or
k � 1 . Suppose f is a non-negative measurable function, the function F is defined
by (24), and the function w is defined on R by

w(x; p, k, b) =
n∏

i=1

⎡
⎣1 −

(
xi

bi

) ki−1
p

⎤
⎦ .

(i) If k 	 1 and 0 <
∫

R0,b
xp1−kf p(x)dx < ∞ , then∫

R0,b

x−kFp(x)dx <
[
pn · (k − 1)−1]p

∫
R0,b

w(x, p, k, b)xp1−kf p(x)dx. (32)

(ii) If k � 1 and 0 <
∫

Rb,∞
xp1−kf p(x)dx < ∞ , then∫

Rb,∞
x−kFp(x)dx <

[
pn · (1 − k)−1]p

∫
Rb,∞

w(x, p, k, b)xp1−kf p(x)dx. (33)

The constant
[
pn · ∣∣(k − 1)−1

∣∣]p
is the best possible for both inequalities.

Proof. First, we prove (32). As in the proof of Theorem 7, we start from the
relation (26). Denote

Ab =
∫

R0,b

x
1
p (k−1)−1dx = pn · (k − 1)−1 · b 1

p (k−1).

The right-hand side of (26) is then equal to

[
pn · (k − 1)−1]p

⎧⎨
⎩ 1

Ab

∫
R0,b

x
1
p (k−1)−1

[∫
R0,x

tp1−kf p(t)dt

] 1
p

dx

⎫⎬
⎭

p

<
[
pn · (k − 1)−1]p · 1

Ab

∫
R0,b

x
1
p (k−1)−1

∫
R0,x

tp1−kf p(t)dtdx

=
[
pn · (k − 1)−1]p−1

b
1
p (1−k)

∫
R0,b

x
1
p (k−1)−1

∫
R0,x

tp1−kf p(t)dtdx

=
[
pn · (k − 1)−1]p−1

b
1
p (1−k)

∫
R0,b

tp1−kf p(t)
∫

Rt,b

x
1
p (k−1)−1dxdt

=
[
pn · (k − 1)−1]p

∫
R0,b

w(t; p, k, b)tp1−kf p(t)dt, (34)
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so (32) is proved. Note that 0 < w(t; p, k, b) < 1 , t ∈ R0,b . The inequality in the
second row of (34) is obtained by using Jensen’s inequality, while the equality in the
fourth row of (34) is a consequence of Fubini’s theorem. Owing to the conditions on f
from the statement of the theorem, the inequality sign in (34) is strict.

Now we prove that the constant C =
[
pn · (k − 1)−1

]p
is the best possible for

inequality (32). If it is not true, then there exists a smaller constant D , 0 < D < C ,
such that ∫

R0,b

x−kFp(x)dx < D
∫

R0,b

w(x, p, k, b)xp1−kf p(x)dx. (35)

Since limε→0

{
pn · [k + (ε − 1)1]−1

}p
= C , there exists a small number ε > 0

such that 0 < D <
{

pn · [k + (ε − 1)1]−1
}p

< C . Define the function f ε by

f ε(x) = x
1
p [k+(ε−1)1]−1 , x ∈ R0,b . Then we have∫

R0,b

w(x, p, k, b)xp1−kf p
ε (x)dx �

∫
R0,b

xp1−kf p
ε (x)dx

=
n∏

i=1

∫ bi

0
xε−1
i dxi =

bε1

εn
,

and therefore∫
R0,b

x−k

(∫
R0,x

f ε(t)dt

)p

dx =
{

pn · [k + (ε − 1)1]−1
}p n∏

i=1

∫ bi

0
xε−1
i dxi

=
{

pn · [k + (ε − 1)1]−1
}p bε1

εn
> D · bε1

εn

� D
∫

R0,b

w(x, p, k, b)xp1−kf p
ε (x)dx.

This contradicts (35), so C is the best possible constant for (32).
The proof of (33) is similar, but this time we start from (30), and then use

Jensen’s inequality and Fubini’s theorem. To prove that
[
pn · (1 − k)−1

]p
is the best

possible constant factor for (33), it suffices to consider the function gε , defined by

gε(x) = x
1
p [k−(ε+1)1]−1 , x ∈ Rb,∞ . �

4. Levin-Cochran-Lee inequalities for multivariable functions

Theorem 3 and Theorem 4 can be used to derive n -variable Levin-Cochran-Lee
type inequalities, a natural multivariable analogue of Theorem B. In this section we
also establish some new generalizations of these inequalities, of the same type as the
improvements (32) and (33) of (25), derived in the previous section. Moreover, we
discuss the best possible constants for obtained inequalities.
First, we need to prove the next lemma.
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LEMMA 3. Let α, γ , ε ∈ R , α, ε > 0 . If the function f ε is defined on 〈 0,∞〉
by

f ε(x) =

⎧⎨
⎩

αe−
γ
α xαε−γ , 0 < x < 1,

αe−
γ
α x−αε−γ , x � 1,

then:

(i)
∫ ∞

0
xγ−1 exp

[
α
xα

∫ x

0
tα−1 log f ε(t)dt

]
dx � 2

ε
· e−ε ;

(ii)
∫ ∞

0
tγ−1f ε(t)dt =

2
ε
· e− γ

α .

Proof. Elementary calculus and the estimate e−
2ε
xα > e−2ε , x > 1 , give the

following: ∫ ∞

0
xγ−1 exp

[
α
xα

∫ x

0
tα−1 log f ε(t)dt

]
dx

=
∫ 1

0
xγ−1 exp

[
α
xα

∫ x

0
tα−1 log

(
αe−

γ
α xαε−γ

)
dt

]
dx

+
∫ ∞

1
xγ−1 exp

{
α
xα

[∫ 1

0
tα−1 log

(
αe−

γ
α xαε−γ

)
dt

+
∫ x

1
tα−1 log

(
αe−

γ
α x−αε−γ

)
dt

]}
dx

= α

(
e−ε

∫ 1

0
xαε−1dx + eε

∫ ∞

1
x−αε−1e−

2ε
xα dx

)

� αe−ε

(∫ 1

0
xαε−1dx +

∫ ∞

1
x−αε−1dx

)
=

2
ε
· e−ε ,

that is, (i), and

∫ ∞

0
tγ−1f ε(t)dt = αe−

γ
α

(∫ 1

0
xαε−1dx +

∫ ∞

1
x−αε−1dx

)
=

2
ε
· e− γ

α ,

that is, (ii). �

Now we prove the multivariable Levin-Cochran-Lee type inequalities.

THEOREM 9. Let �,� ∈ Rn and f be a positive measurable function on R such
that

∫
R t�−1f (t)dt < ∞ . Then the inequalities

∫
R
x�−1 exp

[
�

1x−�
∫

R0,x

t�−1 log f (t)dt

]
dx � exp

(
n∑

i=1

γi
αi

)∫
R
x�−1f (x)dx, (36)
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for � 	 0 , and

∫
R
x�−1 exp

[
(−�)1x−�

∫
Rx,∞
t�−1 log f (t)dt

]
dx � exp

(
n∑

i=1

γi
αi

)∫
R
x�−1f (x)dx,

(37)
for � � 0 , hold. The constant exp

(∑n
i=1

γi
αi

)
is the best possible for both inequalities.

Proof. First, we prove (36). By putting s = 1 , a = 0 and arbitrary b ∈ R in
Theorem 3 as parameters, inequality (18) becomes

∫
R0,b

x�−1 exp

[
�

1x−�
∫

R0,x

t�−1 log f (t)dt

]
dx

� exp

{
logb� + �

1b−�
∫

R0,b

x�−1 log

[
x−�

∫
R0,x

t�−1f (t)dt

]
dx

}
. (38)

Considering relations

Jb =
∫

R0,b

t�−1f (t)dt �
∫

R0,x

t�−1f (t)dt, x ∈ R0,b ,

and ∫
R0,b

x�−1 log xj dx =
(

log bj − 1
αj

)
�
−1b�, j = 1, . . . , n , (39)

the second row of (38) is not greater than

exp

{
logb� + �

1b−�
[
log Jb ·

∫
R0,b

x�−1dx −
∫

R0,b

x�−1 log x�dx

]}

= exp

⎧⎨
⎩

n∑
i=1

γi log bi + log Jb − �
1b−�

n∑
j=1

γj
∫

R0,b

x�−1 log xj dx

⎫⎬
⎭

= Jb · exp

⎛
⎝ n∑

j=1

γj
αj

⎞
⎠ .

Inequality (36) now follows by taking limb→∞ . The other inequality, (37), is derived
from Theorem 4 by the same technique, choosing s = 1 in (20) as parameter and taking
limb→0 .

To find out that exp
(∑n

i=1
γi
αi

)
is the best possible constant for both inequalities,

for any ε > 0 we define the function f ε on R by f ε(x) =
∏n

i=1 f i,ε(xi) , where

f i,ε(x) =

⎧⎪⎨
⎪⎩

αie
− γi

αi xαiε−γi , 0 < x < 1,

αie
− γi

αi x−αiε−γi , x � 1.
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By Lemma 3 and Fubini’s theorem, the left-hand side of inequality (36), rewritten for
f ε , is equal to

Lε =
∫

R
x�−1 exp

[
�

1x−�
∫

R0,x

t�−1 log f ε(t)dt

]
dx

=
n∏

i=1

∫ ∞

0
xγi−1
i exp

[
αi

xαi
i

∫ xi

0
tαi−1
i log f i,ε(ti)dti

]
dxi �

(
2
ε
e−ε

)n

,

while on the right-hand side we have

Rε = exp

(
n∑

i=1

γi
αi

)∫
R
t�−1f ε(t)dt =

n∏
i=1

[
e
γi
αi

∫ ∞

0
xγi−1
i f i,ε(xi)dxi

]
=

(
2
ε

)n

.

Thus,

1 � Rε

Lε
� enε → 1, as ε → 0,

so the constant exp
(∑n

j=1
γj
αj

)
is the best possible for (36). On the other hand, the

proof that the same constant is the best possible for (37) is similar, if the functions

f i,ε(x) =

⎧⎪⎨
⎪⎩

−αie
− γi

αi x−αiε−γi , 0 < x < 1,

−αie
− γi

αi xαiε−γi , x � 1

are considered. �
We conclude this paper with the following result.

THEOREM 10. Let b ∈ R and �,� ∈ Rn be such that � 	 0 or � � 0 .
Suppose f is a positive measurable function on R and the function h is defined by

h(x; b,�) =
n∏

i=1

[
1 −

(
xi

bi

)αi]
, x ∈ R .

(i) If � 	 0 and 0 <
∫

R0,b
x�−1f (x)dx < ∞ , then

∫
R0,b

x�−1 exp

[
�

1x−�
∫

R0,x

t�−1 log f (t)dt

]
dx

< exp

(
n∑

i=1

γi
αi

)∫
R0,b

h(x; b,�)x�−1f (x)dx. (40)

(ii) If � � 0 and 0 <
∫

Rb,∞
x�−1f (x)dx < ∞ , then

∫
Rb,∞

x�−1 exp

[
(−�)1x−�

∫
Rx,∞

t�−1 log f (t)dt

]
dx

< exp

(
n∑

i=1

γi
αi

)∫
Rb,∞

h(x; b,�)x�−1f (x)dx. (41)
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The constant exp
(∑n

i=1
γi
αi

)
is the best possible for both inequalities.

Proof. First, let � 	 0 . As in the proof of Theorem 9, we start from (38).
Considering (39), the right-hand side of (38) is equal to

exp

{
logb� + �

1b−�
∫

R0,b

x�−1 log
(
x−�

)
dx

+ �
1b−�

∫
R0,b

x�−1 log

[∫
R0,x

t�−1f (t)dt

]
dx

}

= exp

⎧⎨
⎩logb� − �

1b−�
n∑

j=1

γj
∫

R0,b

x�−1 log xj dx

+ �
1b−�

∫
R0,b

x�−1 log

[∫
R0,x

t�−1f (t)dt

]
dx

}

= exp

⎛
⎝ n∑

j=1

γj
αj

⎞
⎠ exp

{
�

1b−�
∫

R0,b

x�−1 log

[∫
R0,x

t�−1f (t)dt

]
dx

}

< exp

⎛
⎝ n∑

j=1

γj
αj

⎞
⎠�

1b−�
∫

R0,b

x�−1
∫

R0,x

t�−1f (t)dtdx

= exp

⎛
⎝ n∑

j=1

γj
αj

⎞
⎠�

1b−�
∫

R0,b

t�−1f (t)
∫

Rt,b

x�−1dxdt

= exp

⎛
⎝ n∑

j=1

γj
αj

⎞
⎠∫

R0,b

h(t; b,�)t�−1f (t)dt, (42)

so (40) is proved. Inequality (42) was obtained by Jensen’s inequality and Fubini’s
theorem. Note that under the conditions of the theorem the inequality sign in (42) is
strict.

The dual inequality (41) can be derived from the proof of Theorem 9 by the same
technique.

It is only left to prove that the constant factor exp
(∑n

j=1
γj
αj

)
is the best possible

for inequalities (40) and (41). Consider � 	 0 first. For any ε > 0 and the function

f ε defined on R0,b by f ε(x) = �
1 exp

(
−∑n

j=1
γj
αj

)
xε�−� , the left-hand side of (40)

is equal to

Lε =
∫

R0,b

x�−1 exp

[
�

1x−�
∫

R0,x

t�−1 log f ε(t)dt

]
dx
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=
∫

R0,b

x�−1 exp

⎧⎨
⎩�

1x−� log

⎡
⎣�1 exp

⎛
⎝−

n∑
j=1

γj
αj

⎞
⎠

⎤
⎦∫

R0,x

t�−1dt

+ �
1x−�

∫
R0,x

t�−1 log
(
tε�−�

)
dt

}
dx

= �
1e−nε

∫
R0,b

xε�−1dx =
bε�

εn
· e−nε ,

while on the right-hand side of that relation we have

Rε = exp

(
n∑

i=1

γi
αi

)∫
R0,b

h(x; b,�)x�−1f ε(x)dx

� exp

(
n∑

i=1

γi
αi

)∫
R0,b

x�−1f ε(x)dx = �
1
∫

R0,b

xε�−1dx =
bε�

εn
.

Hence,

1 � Rε

Lε
� enε → 1, [ as ] ε → 0,

so the constant from the statement of the theorem is the best possible.
To prove that the same constant is the best possible for (41), consider the function

f ε defined on Rb,∞ by f ε(x) = (−�)1 exp
(
−∑n

j=1
γj
αj

)
xε�−� . �
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[4] A. ČIŽMEŠIJA, J. PEČARIĆ AND I. PERIĆ, Mixed means and inequalities of Hardy and Levin-Cochran-Lee
type for multidimensional balls, Proc. Amer. Math. Soc. 128, No. 9 (2000), 2543–2552.
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