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APPROXIMATING CSISZÁR f –DIVERGENCE BY THE USE

OF TAYLOR’S FORMULA WITH INTEGRAL REMAINDER
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Abstract. Some approximations of the Csiszár f − divergence by the use of Taylor’s formula and
perturbed Taylor’s formula and some applications for Kullback-Leibler distance are given.
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[43] I. CSISZÁR, A note on Jensen’s inequality, Studia Sci. Math. Hung., 1 (1966), 185–188.
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