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GENERALISED TRAPEZOIDAL RULES WITH ERROR

INVOLVING BOUNDS OF THE nTH DERIVATIVE

P. CERONE

Abstract. Inequalities obtained for the generalised trapezoidal rules in terms of the upper and
lower bounds of the n th derivative of the integrand. The Hayashi inequality, or more appro-
priately an inequality due to Steffensen, is utilised to procure the results which contain earlier
expressions as particular cases.

1. Introduction

Using Hayashi’s inequality (see [6, pp. 311-312]) Cerone and Dragomir [2] ob-
tained the following result for the trapezoidal rule where the bound is in terms of the
upper and lower bound of the first derivative.

THEOREM 1. Let f : I ⊆ R → R be a differentiable mapping on I̊ (I̊ is the
interior of I ) and [a, b] ⊂ I̊ with M = sup

x∈[a,b]
f ′ (x) < ∞ , m = inf

x∈[a,b]
f ′ (x) > −∞ and

M > m. If f ′ is integrable on [a, b] , then the following inequalities hold:∣∣∣∣∣
∫ b

a
f (x) dx − b − a

2
[f (a) + f (b)]

∣∣∣∣∣ � (b − a)2

2 (M − m)
(S − m) (M − S) (1.1)

� M − m
2

(
b − a

2

)2

, (1.2)

where S = f (b)−f (a)
b−a .

The result (1.1) was also obtained previously in a similar fashion by Agarwal and
Dragomir [2] however, their formulation did not reveal (1.2). A prior result obtained by
Iyengar [4] (see also [7, p. 471]) is recovered if we take in (1.1): m = −M .

Cerone and Dragomir [2] also obtained non-symmetric bounds for a generalised
trapezoidal rule.

THEOREM 2. Let f satisfy the conditions of Theorem 1, then the following result
holds

βL �
∫ b

a
f (x) dx − (b − a)

[(
θ − a
b − a

)
f (a) +

(
b − θ
b − a

)
f (b)

]
� βU , (1.3)
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where

βU =
(b − a)2

2 (M − m)
[S (2γU − S)− mM] ,

βL =
(b − a)2

2 (M − m)
[S (S − 2γL) + mM] ,

γU =
(
θ − a
b − a

)
M +

(
b − θ
b − a

)
m, γL = M + m − γU,

where S = f (b)−f (a)
b−a .

Milovanović and Pečarić [5] proved the following specialization of a more general
result in which f (n−1) satisfy the Lipschitz condition.

THEOREM 3. Let the function f : [a, b] → R have a continuous derivative of
order n − 1 and

∣∣f (n) (x)
∣∣ � M for x ∈ (a, b) .

If f (k) (a) = f (k) (b) = 0 (k = 1, 2, . . . , n − 1) , then the inequality∣∣∣∣∣
∫ b

a
f (x) dx − b − a

2
(f (a) + f (b))

∣∣∣∣∣ � M (b − a)n+1

(n + 1)!

[
ζn+1 − q

2

(
1 +

n
2ζ

− 1

)]

holds, where

ζ satisfies ζn − (1 − ζ)n = q :=
n!

M (b − a)n (f (b) − f (a)) .

In this paper generalised trapezoidal type rules involving a parameter θ are ob-
tained in assuming that the n th derivative is bounded both above and below. Further,
the restrictive assumption of vanishing lower order derivatives at the end points is not
made in the current work. Some of the results are compared with those obtained in Qi
[8] where a Taylor approach is utilised. An expression involving function and derivative
evaluation at three points is also given.

2. Integral inequalities

The following theorem due to Hayashi [6, pp. 311-312] will be required and thus
it is stated for convenience.

THEOREM 4. Let h : [a, b] → R be a nonincreasing mapping on [a, b] and
g : [a, b] → R an integrable mapping on [a, b] with

0 � g (x) � A, for all x ∈ [a, b] ,

then

A
∫ b

b−λ
h (x) dx �

∫ b

a
h (x) g (x) dx � A

∫ a+λ

a
h (x) dx, (2.1)

where

λ =
1
A

∫ b

a
g (x) dx.
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Theorem 4 is attributed to be a generalisation of Steffensen’s inequality [6, p.
311-312] obtained by taking A = 1 in the above theorem. Inspection of the original
paper of Steffensen [9] reveals that the more general situation depicted by the following
theorem was also treated.

THEOREM 5. Let h : [a, b] → R be a nonincreasing mapping on [a, b] and
g : [a, b] → R be an integrable mapping on [a, b] with

φ � g (x) � Φ, for all x ∈ [a, b] ,

then

φ ·
∫ b−λ

a
h (x) dx + Φ

∫ b

b−λ
h (x) dx (2.2)

�
∫ b

a
h (x) g (x) dx � Φ ·

∫ a+λ

a
h (x) dx + φ

∫ b

a+λ
h (x) dx,

where

λ =
∫ b

a
G (x) dx, G (x) =

g (x) − φ
Φ− φ

, Φ �= φ. (2.3)

REMARK 1. We note that result (2.2) may be obtained upon simplification and
using Steffensen’s more well known result that∫ b

b−λ
h (x) dx �

∫ b

a
h (x) G (x) dx �

∫ a+λ

a
h (x) dx, (2.4)

where λ is as given by (2.3) and 0 � G (x) � 1 . Contrarily, if we take φ = 0 and
Φ = 1 we obtain (2.4 ) from (2.2). Also, if we take φ = 0 in (2.2) then the Hayashi
result (2.1) is seen to be included.

Equation (2.4) has the pleasant interpretation, as noted by Steffensen, that if we
divide by λ then

1
λ

∫ b

b−λ
h (x) dx �

∫ b
a G (x) h (x) dx∫ b

a G (x) dx
� 1

λ

∫ a+λ

a
h (x) dx.

Thus, the weighted integral mean of h (x) is bounded by the integral means over the
end intervals of length λ , the total weight.

Further, it should be stated here that discrete versions of (2.2) and (2.4) were also
treated in Steffensen [9].

The following theorem gives trapezoid type rules using the above results.

THEOREM 6. Let f : I ⊆ R → R and f (n−1) be absolutely continuous on I̊ (I̊ is the
interior of I ) and [a, b] ⊂ I̊ with m = inf

x∈[a,b]
f (n) (x) > −∞ , M = sup

x∈[a,b]
f (n) (x) < ∞

and M > m. If f (n) is integrable on [a, b] , then the following inequalities hold∣∣∣∣∣
∫ b

a
f (x) dx − Tn (θ; a, b) − Pn (θ; a, b)

∣∣∣∣∣ � Q−
n (θ; a, b) , (2.5)
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where

Tn (θ; a, b) =
n∑

k=1

(θ − a)k f (k−1) (a) + (−1)k−1 (b − θ)k f (k−1) (b)
k!

, (2.6)

Pn (θ; a, b) = − m
(n + 1)!

[
(θ − a)n+1 + (−1)n (b − θ)n+1

]
+ Q+

n (θ; a, b) , (2.7)

with

2 (n + 1)!
M − m

Q±
n (θ; a, b) (2.8)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n+1∑
j=1

(−1)j−1 (n+1
j

) (
λ 0

n

)j
[
(θ − a)n+1−j ± (−1)n (b − θ)n+1−j

]
, n odd,

n+1∑
j=1

(−1)j−1 (n+1
j

) [
(λ a

n )j (θ − a)n+1−j + (−1)n (
λ b

n

)j (b − θ)n+1−j
]

±
[
(λ a

n )n+1 + (−1)n (
λ b

n

)n+1
]
, n even

and

λ 0
n = λn (a, b) , λ a

n = λn (a, θ) , λ b
n = λn (θ, b) , (2.9)

where

λn (a, b) =
b − a
M − m

(Sn−1 (a, b)− m) (2.10)

and

Sn−1 (a, b) =
f (n−1) (b) − f (n−1) (a)

b − a
. (2.11)

Proof. Let h (x) = (θ−x)n

n! , θ ∈ [a, b] and g (x) = f (n) (x) − m . Assume for the
time being that n is odd, then h (x) is a nonincreasing function and so from Hayashi’s
inequality

Lo � In � Uo, (2.12)

where

In = In (θ; a, b) =
∫ b

a

(θ − x)n

n!

(
f (n) (x) − m

)
dx,

λn (a, b) =
1

M − m

∫ b

a

(
f (n) (x) − m

)
dx = λ 0

n (for n odd)

and

Lo = W
(
b − λ 0

n , b
)
, Uo = W

(
a, a + λ 0

n

)
with

W (l, u) = (M − m)
∫ u

l
h (x) dx = (M − m)

∫ u

l

(θ − x)n

n!
dx.
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In a straightforward fashion, the above expressions may be simplified to give

In (θ; a, b) =
∫ b

a
f (x) dx − Tn (θ; a, b) (2.13)

+
m

(n + 1)!

[
(θ − a)n+1 + (−1)n (b − θ)n+1

]
,

where λ 0
n is as given by (2.11) and (2.10), and

W (l, u) =
M − m
(n + 1)!

[
(θ − l)n+1 − (θ − u)n+1

]
(2.14)

with

Lo =
M − m
(n + 1)!

[(
θ − (

b − λ 0
n

))n+1 − (θ − b)n+1
]

(2.15)

and

Uo =
M − m
(n + 1)!

[
(θ − a)n+1 − (

θ − (
a + λ 0

n

))n+1
]
. (2.16)

Further, it may be noticed from (2.12) that∣∣∣∣In − Uo + Lo

2

∣∣∣∣ � Uo − Lo

2
, (2.17)

where

Uo ± Lo

2
=

M − m
2 (n + 1)!

n+1∑
j=1

(−1)j−1
(

n + 1
j

)
(2.18)

× (
λ 0

n

)j
[
(θ − a)n+1−j ± (−1)n (b − θ)n+1−j

]
Combining (2.13), (2.17) and (2.18) produces the results (2.5) – (2.11) for n , odd.

Now, for the situation in which n is even. It should be noted that the inequality
(2.1) is reversed for h (x) nondecreasing and so for n even (θ−x)n

n! is nonincreasing
for x ∈ [a, θ] and nondecreasing for x ∈ (θ, b] . Let a superscript of a or b represent
these intervals.

Then on the interval [a, θ] we have

La � Ia
n � Ua, (2.19)

where

Ia
n = In (θ; a, θ) ,

La = W (θ − λ a
n , θ) , Ua = W (a, a + λ a

n )

with

λ a
n = λn (a, θ) =

θ − a
M − m

(Sn−1 (a, θ) − m) .

Similarly, on (θ, b] we have
Lb � Ib

n � Ub, (2.20)
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where

Ib
n = In (θ; θ, b) ,

Lb = W
(
θ, θ + λ b

n

)
, Ub = W

(
b − λ b

n , b
)

with

λ b
n = λn (θ, b) =

b − θ
M − m

(Sn−1 (θ, b) − m) .

Thus, combining (2.19) and (2.20) gives

Le � In � Ue, (2.21)

where

In = Ia
n + Ib

n (2.22)

Le = La + Lb,

Ue = Ua + Ub.

That is, In is as given by (2.10) and, on using (2.14),

Le = W (θ − λ a
n , θ) + W

(
θ, θ + λ b

n

)
(2.23)

=
M − m
(n + 1)!

[
(λ a

n )n+1 + (−1)n (
λ b

n

)n+1
]

and

Ue = W (a, a + λ a
n ) + W

(
b − λ b

n , b
)

(2.24)

=
M − m
(n + 1)!

n+1∑
j=1

(−1)j−1
(

n + 1
j

)

×
[
(λ a

n )j (θ − a)n+1−j + (−1)n (
λ b

n

)j
(b − θ)n+1−j

]
.

Further, from (2.17), we have∣∣∣∣In − Ue + Le

2

∣∣∣∣ � Ue − Le

2
, (2.25)

where
Ue ± Le

2
(2.26)

=
M − m

2 (n + 1)!

⎧⎨
⎩

n+1∑
j=1

(−1)j−1
(

n + 1
j

)[
(λ a

n )j (θ − a)n+1−j

+ (−1)n (
λ b

n

)j
(b − θ)n+1−j

]
±

[
(λ a

n )n+1 + (−1)n (
λ b

n

)n+1
]}

.

Combining (2.13), (2.25) and (2.26) produces the results (2.6) – (2.11) for n even and
thus the theorem is now completely proved. �

We may use Steffensen’s inequality (2.2) with g (x) = f (n) (x) and h (x) = (θ−x)n

n1
to prove the above theorem. This will not be pursued here though.
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COROLLARY 1. Let the conditions of Theorem 6 be valid. Then

L − R �
∫ b

a
f (x) dx − Tn (θ; a, b) � U − R (2.27)

holds, where Tn (θ; a, b) is as given by (2.6),

(n + 1)!
m

R = (θ − a)n+1 + (−1)n (b − θ)n+1
, (2.28)

(n + 1)!
M − m

L =

{
(−1)n+1

[(
b − θ − λ 0

n

)n+1 − (b − θ)n+1
]
, n odd,

(λ a
n )n+1 + (−1)n (

λ b
n

)n+1
, n even

(2.29)

and

(n + 1)!
M − m

U =

⎧⎪⎨
⎪⎩

(θ − a)n+1 − (
θ − a − λ 0

n

)n+1
, n odd,

(θ − a)n+1 − (θ − a − λ a
n )n+1

+ (−1)n+1
[(

b − θ − λ b
n

)n+1 − (b − θ)n+1
]
, n even

(2.30)

with

λ 0
n =

b − a
M − m

(Sn−1 (a, b) − m) ,

λ a
n =

θ − a
M − m

(Sn−1 (a, θ) − m) ,

λ b
n =

b − θ
M − m

(Sn−1 (θ, b) − m) ,

and

Sn−1 (a, b) =
f (n−1) (b) − f (n−1) (a)

b − a
.

Proof. The corollary follows readily from the results of Theorem 6. From (2.12),
(2.13) and (2.21) we obtain the lower bound as stated on using (2.15) and (2.23) and
the stated upper bound results from (2.16) and (2.24) on utilising (2.14). �

REMARK 2. It should be noticed that U > 0 and L > 0 since 0 < λ 0
n < b − a ,

0 < λ a
n < θ − a and 0 < λ b

n < b − θ as 0 <
Sn−1(a,b)−m

M−m < 1. Further, R > 0 for n

even or for θ > a+b
2 and n odd. Now, R < 0 for θ < a+b

2 and n odd.

REMARK 3. Corollary 1 gives non symmetric bounds for the generalised trape-
zoidal rule Tn (θ; a, b) as defined by (2.6) while Theorem 4 gives symmetric bounds
for a perturbed trapezoidal rule. The bounds involve the upper and lower bounds M
and m of f (n) (x) , x ∈ [a, b] and some arbitrary point θ ∈ [a, b] . If θ is taken to be
at the midpoint, that is, θ = a+b

2 , some simplification occurs. In particular, for n odd,
Pn

(
a+b
2 ; a, b

)
= 0 and so there is no perturbation. For n odd and θ = a+b

2 then R = 0
in (2.28).
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REMARK 4. If n = 1 in Theorem 6, then we recapture Theorem 1 on taking
θ = a+b

2 . Further, Theorem 2 is reproduced from Corollary 1 on taking n = 1 . Thus,
the results of this section are an extension of the work of Cerone and Dragomir [2] to
involve bounds for the generalised trapezoidal rule in terms of bounds on f (n) .
If n = 1 in (2.5) then ∣∣∣∣∣

∫ b

a
f (x) dx − [(θ − a) f (a) + (b − θ) f (b)]

− (b − a) [S0 (a, b) − m]
(
θ − a + b

2

)∣∣∣∣
� (b − a)2

2 (M − m)
(S0 (a, b) − m) (M − S0 (a, b)) .

Now, using the definition of S0 (a, b) = f (b)−f (a)
b−a , then the above result may be simpli-

fied to ∣∣∣∣∣
∫ b

a
f (x) dx − b − a

2
[f (a) + f (b)] + m (b − a)

(
θ − a + b

2

)∣∣∣∣∣
� (b − a)2

2 (M − m)
(S0 (a, b)− m) (M − S0 (a, b)) .

It may be noticed that the above result is a perturbed formula which has the same bounds
(1.1) independent of θ. Further, the perturbation vanishes if θ = a+b

2 .

REMARK 5. In [8], Feng Qi obtains in our notation using a Taylor series approach

QL �
∫ b

a
f (x) dx − Tn (θ; a, b) � QU, (2.31)

where, if we define

Q (u, v) := u
(θ − a)n+1

(n + 1)!
+ (−1)n v

(b − θ)n+1

(n + 1)!
, (2.32)

then

QL =

⎧⎨
⎩

Q (m, m) , n even

Q (m, M) , n odd
(2.33)

and

QU =

⎧⎨
⎩

Q (M, M) , n even

Q (M, m) , n odd.
(2.34)

Here, as in the rest of the paper, m � f (n) (x) � M , x ∈ [a, b] .
It is interesting, although difficult, to compare (2.31) with (2.27). The difficulty

arises from the fact that the λn ’s are not known explicitly, althoughwe have their bounds
as discussed in Remark 2. We note that R as defined in (2.28) is equivalent to Q (m, m)
which is the lower bound in (2.31) for n even.
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LEMMA 1. Let CU = U − R and CL = L− R where R, L and U are as defined
in (2.28) – (2.30). Further, let QL and QU be as defined by (2.33) and (2.34). Consider
DU := CU − QU and DL := CL − QL , then we have

DU � 0 for

⎧⎨
⎩

n even and M � (1 + 2κ)m
and,

n odd and θ � a+b
2 or M � [1 + 2ψ (θ − a)] m

(2.35)

and

DL � 0 for

⎧⎨
⎩

n even and M � (1 + 2χ)m
and,

n odd and θ � a+b
2 or M � [1 + 2ψ (b − θ)] m,

(2.36)

where

κ =
(θ − a)n+1 + (b − θ)n+1

(θ − a − λ a
n )n+1 + (b − θ − λ b

n )n+1 , (2.37)

χ =
(θ − a)n+1 + (b − θ)n+1

(λ a
n )n+1 + (λ b

n )n+1 and

ψ (x) =
(b − θ)n+1 − (a − θ)n+1

(x − λ 0
n )n+1 .

Here λn ’s are as given by (2.9) and (2.10).
The inequalities are reversed if the conditions do not hold.

Proof. We shall consider the upper bound first and use a superscript of e and o
to denote n to be either even or odd respectively. Then from (2.28), (2.30) and (2.34)

(n + 1)!De
U

= (M − m)
[
(θ − a)n+1 − (θ − a − λ a

n )n+1 + (b − θ)n+1 − (
b − θ − λ b

n

)n+1
]

−m
[
(θ − a)n+1 + (b − θ)n+1

]
− M (θ − a)n+1 − M (b − θ)n+1

= − (M − m)
[
(θ − a − λ a

n )n+1 +
(
b − θ − λ b

n

)n+1
]

−2m
[
(θ − a)n+1 + (b − θ)n+1

]
� 0 for M � (1 + 2κ)m,

where κ is as defined in (2.37).
Further,

(n + 1)!Do
U = (M − m)

[
(θ − a)n+1 − (θ − a − λ a

n )n+1
]

−m
[
(θ − a)n+1 − (b − θ)n+1

]
− M (θ − a)n+1 + m (b − θ)n+1

= 2m
[
(b − θ)n+1 − (θ − a)n+1

]
− (M − m) (θ − a − λ o

n )n+1

� 0 for θ � a + b
2

or M � [1 + 2ψ (θ − a)] m,
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where ψ (·) is defined in (2.37). Thus, the result (2.35) is now completely demonstrated
for both even and odd n .

Now for the lower bounds. From (2.28), (2.29) and (2.33)

(n + 1)!De
L = (M − m)

[
(λ a

n )n+1 +
(
λ b

n

)n+1
]
− 2m

[
(θ − a)n+1 + (b − θ)n+1

]
� 0 for M � (1 + 2χ)m,

where χ is as defined in (2.37).
Further,

(n + 1)!Do
L = (M − m)

[(
b − θ − λ 0

n

)n+1 − (b − θ)n+1
]

−m
[
(θ − a)n+1 − (b − θ)n+1

]
− m (θ − a)n+1 + M (b − θ)n+1

= (M − m) (b − θ − λ o
n )n+1 + 2m

[
(b − θ)n+1 − (a − θ)n+1

]
� 0 for θ � a + b

2
or M � [1 + 2ψ (b − a)] m,

where ψ (·) is defined in (2.37). If the conditions hold then the inequalities (2.35) and
(2.36) are valid and the bounds of Corollary 1 are tighter than those of (2.31). The
opposite is true otherwise. �

REMARK 6. If n is odd and θ = a+b
2 , then (2.35) and (2.36) hold and the results

of Corollary 1 provide tighter bounds than those from (2.31) – (2.34).

The following produces a three point rule where evaluation of the function and its
derivatives occurs at a, ξ and b.

COROLLARY 2. Let the conditions of Theorem 6 still be valid and let α < ξ < β
with α, ξ , β ∈ [a, b] , then∣∣∣∣∣

∫ b

a
f (x) dx − Tn (a,α, ξ , β , b)− Pn (a,α, ξ , β , b)

∣∣∣∣∣ (2.38)

� Q−
n (a,α, ξ , β , b) ,

where

Tn (a,α, ξ , β , b)
= Tn (α; a, ξ) + Tn (β ; ξ , b)

=
n∑

k=1

⎡
⎣(α − a)k f (k−1) (a) +

[
(β − ξ)k + (−1)k−1 (ξ − α)k

]
f (k−1) (ξ)

k!

+
(−1)k (β − ξ)k f (k−1) (b)

k!

]
,

Pn (a,α, ξ , β , b) = Pn (α; a, ξ) + Pn (β ; ξ , b)
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and
Q−

n (a,α, ξ , β , b) = Q−
n (α; a, ξ) + Q−

n (β ; ξ , b)

with Tn (θ; a, b) , Pn (θ; a, b) and Qn (θ; a, b) being as defined in (2.6) – (2.8) respec-
tively.

Proof. Applying Theorem 6 on [a, ξ ] with a � α � ξ we obtain∣∣∣∣∣
∫ ξ

a
f (x) dx − Tn (α; a, ξ) − Pn (α; a, ξ)

∣∣∣∣∣ � Q−
n (α; a, ξ) . (2.39)

Similarly, an application on [ξ , b] with ξ � β < b produces∣∣∣∣∣
∫ b

ξ
f (x) dx − Tn (β ; ξ , b) − Pn (β ; ξ , b)

∣∣∣∣∣ � Q−
n (β ; ξ , b) . (2.40)

Adding (2.39) and (2.40) produces (2.38). �

REMARK 7. It should be emphasized that the upper and lower bounds may
be expressed in terms of W (l, u) as defined in (2.14). Thus, for example, the first
representation in (2.23) and (2.24) would be favoured over the second representations
which give the results in terms of θ − a and b − θ .

Following this approach, the following corollary results.

COROLLARY 3. Let the conditions of Theorem 6 hold, then∣∣∣∣∣
∫ b

a
f (x) dx − Tn (θ; a, b)− Pn (θ; a, b)

∣∣∣∣∣ � U − L
2

, (2.41)

where Tn (θ; a, b) is as given by (2.6) and

Pn (θ; a, b) = −M − m
m

W (a, b) +
U + L

2

with, from (2.14)

(n + 1)!W (l, u) = (M − m)
[
(θ − l)n+1 + (−1)n (u − θ)n+1

]
. (2.42)

Here, U±L
2 is given by

Ue ± Le

2
(2.43)

=
1
2

{
W (a, a + λ a

n ) + W
(
b − λ b

n , b
)± [

W (θ − λ a
n , θ) + W

(
θ, θ + λ b

n

)]}
or

Uo ± Lo

2
=

W (a, a + λ a
n ) ± W

(
b − λ b

n , b
)

2
, (2.44)
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depending on whether n is even or odd respectively.

Proof. The proof follows directly from that of Theorem 6. For n odd, then from
(2.13) and (2.17), L0 and U0 may be expressed in terms of W (l, u) as given by
(2.42) to produce (2.44) from (2.15) and (2.16). Similarly, for n even using the first
representation in (2.23) and (2.24) in terms of W (l, u) gives (2.43). The result follows
on noting that

In − U + L
2

=
∫ b

a
f (x) dx − Tn (θ; a, b) − Pn (θ; a, b) . �
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