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CHOQUET THEORY FOR SIGNED MEASURES

CONSTANTIN P. NICULESCU

Abstract. We introduce the notion of barycenter for a class of non-necessarily positive Radon
measures and prove on this basis several inequalities which extend classical results such as
Steffensen’s inequality, Fink’s version of the Hermite-Hadamard inequality, Fuchs ’extension of
the majorization inequality of Hardy-Littlewood-Polýa etc.

A classical result in Real Analysis is the Hermite-Hadamard inequality, which
gives us an estimate of the mean value of a continuous convex function. Precisely, if
f : [a, b] → R is such a function, then

f

(
a + b

2

)
� 1

b − a

∫ b

a
f (x) dx � f (a) + f (b)

2
. (HH)

See D. S. Mitrinović and I. B. Lacković [8] for a complete history of this result.
In a recent paper, A. M. Fink [3] noticed that a Hermite-Hadamard type inequality

is still available for certain real Radon measures. His extension of (HH) is as follows:

f (xμ) � 1
μ([a, b])

∫ b

a
f (x) dμ(x) � b − xμ

b − a
· f (a) +

xμ − a

b − a
· f (b) (FHH)

for every continuous convex function f : [a, b] → R and every real Radon measure μ
on [a, b], provided that μ is “end positive” in the sense that

μ([a, b]) > 0,

∫ t

a
(t − x) dμ(x) � 0 and

∫ b

t
(x − t) dμ(x) � 0 (EP)

for every t ∈ [a, b] . Here xμ =
∫ b

a x dμ(x)/μ([a, b]) represents the barycenter of μ .
As we noticed in [9], in the case of Radon probability measures, Fink’s result

can be easily deduced from the Choquet theory, a theory whose highlights have been
presented by R. R. Phelps in his book [11]. The purpose of the present paper is to
indicate a slight generalization of the Choquet theory for signed measures, so that the
entire result of Fink be covered. It turns out that this extension encompasses many
other important results such as Steffensen’s inequality and the majorization principle of
Hardy, Littlewood and Polýa (as extended by L. Fuchs [4]).
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1. The barycenter of an essentially positive measure

Throughout this paper K will denote a compact convex subset of a locally convex
Hausdorff space E and C(K, R) will denote the space of all continuous real functions
on K . The classical Choquet theory relates the geometry of K with the cone C, of
all continuous convex real functions on K; C − C is dense in C(K, R) , by the Stone-
Weierstrass theorem. Much of that theory makes use of the space A(K, R) = C ∩ −C,
of all continuous affine functions on K . This is a rich space, as it contains

E′|K + R · 1 = {x′|K + α; x′ ∈ E′ and α ∈ R}
as a dense subspace. See [11], Ch. 4, Proposition 4.5.

An easy consequence of the Hahn-Banach separation theorem is that the convex
functions can be described as envelopes of affine functions. In fact, the following
assertion holds:

LEMMA 1. For every f ∈ C there exists a sequence of affine functions hn ∈
A(K, R) such that f = sup hn .

Proof. See [11], page 19, where the case of concave functions is described. �
The connection between the points of K and the positive functionals on C(K, R)

makes the object of Choquet’s theory, as presented in [11]. The key notion is that
of barycenter. Every point of K can be seen as the barycenter of a Radon probability
measure on K, and every such a measure has a barycenter. We shall enlarge this picture,
by allowing the participation of certain signed measures:

DEFINITION 1. A Popoviciu measure ( abbreviated, a P−measure ) is any real
Radon measure μ on K such that

μ(K) > 0 and
∫

K
f +(x) dμ(x) � 0 for every f ∈ C. (PM)

When K is an interval [a, b] and μ is a real Radon measure on [a, b] with
μ([a, b]) > 0, the condition (PM) coincides with the condition of end positivity (EP )
mentioned above, a fact which was known to T. Popoviciu [12]. In fact, (PM) yields

μ(K) > 0 and
∫

K
(x′(x) + t)+ dμ(x) � 0 for every x′ ∈ E′ and every t ∈ R

(wPM)
and the dual of R consists only of homoteties x′ : x → sx . T. Popoviciu’s argument for
the other implication, (EP ) ⇒ (PM) , was as follows: If f � 0 is a piecewise linear
continuous and convex function, then f can be represented as a finite combination with
non-negative coefficients of functions of the form 1, (x − t)+ and (t − x)+, so that∫

K
f (x) dμ(x) � 0;

in the general case, approximate f + by piecewise linear continuous and convex func-
tions. It is worth noticing that T. Popoviciu [12] was interested in a slightly different
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problem, precisely, when a real Radon measure on an interval [a, b] is non-negative for
all n− convex functions on that interval.

An alternative argument for (EP ) ⇒ (PM ), based on the integral representation
of convex functions on intervals, was done by Fink [3], Theorem 1.

EXAMPLE 1. (The discrete case). Suppose that x1 � . . . � xn are real points and
p1, . . . , pn are real weights. According to the discussion above, the discrete measure
μ =

∑n
k = 1 pk δxk is a Popoviciu measure if and only if

n∑
k = 1

pk > 0,

m∑
k = 1

pk(xm − xk) � 0 and
n∑

k = m

pk(xk − xm) � 0 (dEP)

for every m ∈ {1, . . . , n} . A special case when (dEP) holds is the following, used by
Steffensen in his famous extension of Jensen’s inequality:

n∑
k = 1

pk > 0, and 0 �
m∑

k = 1

pk �
n∑

k = 1

pk, for every m ∈ {1, . . . , n}. (dSt)

EXAMPLE 2. (The continuous case). In the case of absolutely continuousmeasures
dμ = p(x) dx, the condition (EP ) reads as:∫ b

a
p(x) dx > 0,

∫ t

a
(t − x)p(x) dx � 0 and

∫ b

t
(x − t)p(x) dx � 0 (cEP)

for every t ∈ [a, b] . As a particular case, we obtain that (x2 + a) dx is a Popoviciu
measure on [−1, 1] if a > −1/3 (though non-positive if a ∈ (−1/3, 0)) .

A stronger (but more suitable) condition than ( cEP ) is the following:∫ b

a
p(x) dx > 0 and 0 �

∫ t

a
p(x) dx �

∫ b

a
p(x) dx for every t ∈ [a, b]. (cSt)

Integrating inequalities is not generally possible in the framework of signed mea-
sures. However, for the Popoviciu measures this is possible under certain restrictions,
as (PM) yields easily the following implication:

LEMMA 2. Suppose that μ is a Popoviciu measure on K . Then h ∈ A(K, R), f ∈
C and h � f implies ∫

K
h(x) dμ(x) �

∫
K

f (x) dμ(x).

An immediate consequence is as follows:

COROLLARY 1. Suppose that μ is a Popoviciu measure on K and f is an affine
function on K such that α � f � β for some real numbers α, β . Then

α � 1
μ(K)

∫
K

f (x) dμ(x) � β .
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As a consequence of the above corollary, if μ is a Popoviciu measure on K, then
‖μ|A(K, R)‖ = μ(K) . However, the norm of μ/μ(K) as a Radon measure on K (i.e.,
as a functional on C(K, R)) can be arbitrarily large. In fact,∫ 1

−1
(x2 + a)dx =

2
3

+ 2a

and (
2
3

+ 2a

)−1 ∫ 1

−1

∣∣x2 + a
∣∣ dx =

1
1 + 3a

for a > −1/3 . This makes a serious difference with respect to the case of positive
Radon measures, where the norm of μ/μ(K) is 1.

LEMMA 3. Every Popoviciu measure μ on K admits a barycenter i.e., a point xμ
in K such that

f (xμ) =
1

μ(K)

∫
K

f (x) dμ(x) (B)

for every continuous linear functional f on E .
The barycenter xμ is unique with this property. This is a consequence of the

separability of the topology of the ambient spaceE .

Proof. We have to prove that⎛⎝⋂
f ∈E′

Hf

⎞⎠ ∩ K �= ∅

where Hf denotes the closed hyperplane {x; f (x) = μ(f )/μ(K)} associated to f ∈
E′ . As K is compact, it suffices to prove that(

n⋂
k=1′

Hfk

)
∩ K �= ∅

for every finite family f 1, . . . , f n of functionals in E′ . Equivalently, attaching to such
a family of functionals the operator

T : K → Rn, T(x) = (f 1(x), . . . , f n(x))

we have to prove that T(K) contains the point p = 1
μ(K) (μ(f 1), . . . ,μ(f n)) . For, if

p /∈ T(X), then a separation argument yields an a = (a1, . . . , an) ∈ Rn such that

〈 p, a〉 > sup
x∈K

〈T(x), a〉

i.e.,
1

μ(K)

n∑
k=1

akμ(f k) > sup
x∈K

n∑
k=1

akf k(x).

Then g =
∑n

k=1 akf k will provide an example of a continuous affine function on
K for which μ(g) > supx∈K g(x), a fact which contradicts Lemma 2. �
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When E is the Euclidean n−dimensional space, the norm and the weak conver-
gence are the same, so that the barycenter of every Popoviciu measure μ on K ⊂ Rn

is given by the formula

xμ =
1

μ(K)

∫
K

x dμ(x).

Two Popoviciu measures μ and ν on K, are said to be equivalent (abbreviated,
μ ∼ ν) provided that∫

K
f (x) dμ(x) =

∫
K

f (x) dν(x) for every f ∈ A(K, R).

Using the denseness of E′|K + R · 1 into A(K, R), we can rewrite the fact that x
is the barycenter of μ as

μ ∼ δx.

The following result extends the left side part of the Hermite-Hadamard inequality:

THEOREM 1. (The generalized Jensen-Steffensen inequality ) . Suppose that μ is
a real Radon measure on K with μ(K) > 0 . Then

f (xμ) � 1
μ(K)

∫
K

f (x) dμ(x) for every continuous convex function f on K

if (and only if ) μ is a Popoviciu measure.

Proof. The Necessity is clear. The Sufficiency follows from Lemmas 1 and 3
which give us

f (xμ) = sup
{
h(xμ); h ∈ A(K, R), h � f

}
= sup

{
1

μ(K)

∫
K

h dμ; h ∈ A(K, R), h � f

}
� 1

μ(K)

∫
K

f dμ. �

We shall illustrate Theorem 1 by an application to Steffensen’s inequality (in the
discrete case).

Suppose that x1 � . . . � xn are real points in an interval I and p1, . . . , pn are real
weights such that the condition (dSt ) above is verified; considering the partial sums
Sk =

∑k
i = 1 pi, this means

0 � Sk � Sn and Sn > 0.

Then the discrete measure μ =
∑n

k = 1 pk δxk is a Popoviciumeasurewith barycen-
ter

xμ =
1
Sn

n∑
k = 1

pk xk.
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According to Theorem 1 above, we are led to the classical Steffensen inequality
([7], p. 109): For every continuous convex function f : I → R,

f

(
1
Sn

n∑
k = 1

pk xk

)
� 1

Sn

n∑
k = 1

pk f (xk).

The continuous case can be obtained in a similar way. It is worth noticing that
Steffensen’s inequality also holds under the more general condition (dEP ) .

Another straightforward application of Theorem 1 is the following inequality of
G. Szegö: If a1 > a2 > .. > a2m−1 > 0 and f is a convex function in [0, a1], then

2m−1∑
k = 1

(−1)k−1f (ak) � f

(
2m−1∑
k = 1

(−1)k−1ak

)
.

This corresponds to the measure μ =
∑2m−1

k = 1 (−1)k−1δak , whose barycenter is

xμ =
∑2m−1

k = 1 (−1)k−1ak .
The reader can verify easily that many other inequalities with alternating signs are

consequences of Theorem 1.

2. The case of 0−mass measures

The discussion above left open the case of real Radon measures μ on K with
μ(K) = 0 . The analogue of Theorem 1 is the following result:

PROPOSITION 1. Let μ be a real Radon measure on K such that μ(K) = 0 and∫
K

f + dμ(x) � 0 for every continuous convex function f on K.

Then∫
K

f (x) dμ(x) � 0 for every continuous convex function f on K.

Proof. In fact, by replacing μ by με = μ + εδz (where z is any point of K and
ε > 0) we obtain a Popoviciu measure, which makes possible to apply Theorem 1.
Then

f (xμ) · (μ(K) + ε) �
∫

K
f (x) dμ(x) + εf (z)

for every continuous convex function f on K, and the conclusion follows by letting
ε → 0 . �

On intervals we can prove a better result:
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THEOREM 2. Let μ be a real Radon measure on [a, b] such that μ([a, b]) = 0
and ∫ t

a
(t − x) dμ(x) � 0 and

∫ b

t
(x − t) dμ(x) � 0

for every t ∈ R . Then ∫ b

a
f (x) dμ(x) � 0

for every convex function f on [a, b] .

Proof. See the Popoviciu approximation of convex functions, noticed in the pre-
ceding section. �

As an immediate consequence we obtain the following extension of the majoriza-
tion principle:

THEOREM 3. (L. Fuchs [4] ; see also [7], pp. 165-166 ) . Let f : [a, b] → R be a
convex function. Then for every x1, . . . , xn, y1, . . . , yn ∈ [a, b] and every p1, . . . , pn ∈ R
such that

i) x1 > . . . > xn, y1 > . . . > yn

ii)
r∑

k = 1
pk xk �

r∑
k = 1

pk yk for every r = 1, . . . , n − 1

iii)
n∑

k = 1
pk xk =

n∑
k = 1

pkyk

we have the inequality
n∑

k = 1

pk f (xk) �
n∑

k = 1

pk f (yk).

Proof. (In the case when all weights are non-negative) . It suffices to verify that

the measure μ =
n∑

k = 1
pk (δyk − δxk) fulfils the hypotheses of Theorem 2 above. For

example, to check that∫ t

a
(t − x) dμ(x) =

n∑
k = 1

pk (t − yk)+ −
n∑

k = 1

pk (t − xk)+ � 0

for all t it suffices to restrict to the case when t = xr . Or, in this case

n∑
k = 1

pk (t − yk)+ −
n∑

k = 1

pk (t − xk)+ =
n∑

k = 1

pk (xr − yk)+ −
n∑

k = 1

pk (xr − xk)+

�
n∑

k =r+ 1

pk (xr − yk) −
n∑

k =r+ 1

pk (xr − xk)

=
n∑

k =r+ 1

pk (xk − yk) � 0. �

We pass now to the case of absolutely continuous measures:
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PROPOSITION 2. Let p(x) be a [a, b] a continuous or a monotonic density p(x)
on an interval [a, b], such that∫ b

a
p(x) dx = 0 and

∫ t

a
p(x) dx � 0,

∫ b

t
p(x) dx � 0

for every t ∈ [a, b] . Then ∫ b

a
f (x) dμ(x) � 0

for every convex function f on [a, b] .

This allows us to retrieve the following remark due to L. Lupaş [6]: Suppose
that g : [−a, a] → R is an even function, nondecreasing on [0, a] and f : [−a, a] → R
is a convex function. Then

1
2a

∫ a

−a
f (x)g(x) dx �

(
1
2a

∫ a

−a
f (x)dx

)(
1
2a

∫ a

−a
g(x) dx

)
.

In fact, p(x) = g(x)− 1
2a

∫ a
−a g(x) dx fulfils the conditions of Proposition 2 above.

3. The extension of Choquet’s Theorem

The extension of the right hand inequality in (HH) is a bit more subtle and makes
the object of Choquet’s theory, briefly summarized in the sequel. Given two Popoviciu
measures μ and λ on K, we say that μ is majorized by λ (i.e., μ ≺ λ ) if

1
μ(K)

∫
K

f (x) dμ(x) � 1
λ (K)

∫
K

f (x) dλ (x)

for every continuous convex function f : K → R . The relation ≺ is a partial ordering
on the set of all essentially positive Radon measures on K; use the denseness of C−C
in C(K, R) .

Notice that μ ∼ δx implies δx ≺ μ (by Theorem 1, the generalized Jensen-
Steffensen inequality).

THEOREM 4. (The generalization of Choquet’s Theorem ) . Let μ be a Popoviciu
measure on a metrizable compact convex subset K of a locally convex Hausdorff space
E . Then there exists a probability Radon measure λ on K such that the following two
conditions are verified :

i) λ � μ and λ and μ have the same barycenter ;
ii) The set Ext K of all extremal points of K is a Gδ− subset of K and λ is

concentrated on Ext K ( i.e., λ (K \Ext K ) = 0) .

Under the hypotheses of Theorem 4 we get

f (xμ) � 1
μ(K)

∫
K

f (x) dμ(x) �
∫

Ext K
f (x) dλ (x) (Ch)
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for every continuous convex function f : K → R, a fact which represents a full
extension of (HH) in the case of metrizable compact convex sets. Notice that the right
part of (Ch) reflects the maximum principle for convex functions.

In general, λ is not unique, except for the case of simplices; see [11], ch. 9.

Proof. (of Theorem 4 ) . The fact that the set Ext K of all extremal points of K is
a Gδ− subset constitutes Proposition 1.3 in [11]. Here the assumption of metrizability
is essential. We pass now to the existence of λ .

The upper envelope of a function f in C(K, R),

f (x) = inf {h(x); h ∈ A(K, R) and h � f }
is concave, bounded and upper semicontinuous. Moreover:

i) f � f and f = f if f is concave.
ii) If f , g ∈ C(K, R), then f + g � f + g .
See [11], p. 19, for details. These properties show that the functional

p : C(K, R) → R, p(f ) = μ(f )/μ(K)

is subadditive and positive-homogeneous. According to the generalized Jensen-Steffensen
inequality, p dominates the linear functional

L : A(K, R) → R, L(h) = h(xμ).

By the Hahn-Banach extension theorem, there exists a functional ν : C(K, R) → R
which extends L and

ν(f ) � p(f ) for every f ∈ C(K, R).

If f ∈ C(K, R),with f � 0, then f � 0 and μ(f ) � 0 (as μ is a Popoviciu
measure). This fact shows that ν(f ) � 0, i.e., ν is a positive Radon measure. Since
ν(1) = L(1) = 1, ν is actually a Radon probability measure.

On the other hand, if f ∈ C then ν(−f ) � μ(−f )/μ(K) = μ(−f )/μ(K),
which yields μ ≺ ν . Moreover, μ and ν have the same barycenter (as they agree
on A(K, R) .The proof ends by choosing a maximal Radon probability measure λ � ν,
which does the job in the classical case of Choquet theory. The existence of λ is
motivated in [11], ch. 4. �

According to the above discussion, if K = [a, b], then necessarily λ is a convex
combination of the Dirac measures εa and εb, say λ = (1−α)εa +αεb . This remark
yields Fink’s Hermite-Hadamard type inequality [3]:

1
μ([a, b])

∫ b

a
f (x) dμ(x) � b − xμ

b − a
· f (a) +

xμ − a

b − a
· f (b) (FHH)

for every continuous convex functions f : [a, b] → R and every Popoviciu measureμ
on [a, b]; as usually, xμ denotes the barycenter of μ, i.e,

xμ =
1

μ([a, b])

∫ b

a
x dμ(x).
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In fact, checking

1
μ([a, b])

∫ b

a
f (x) dμ(x) � (1 − α) · f (a) + α · f (b)

for f (x) = (x − a)/(b − a) and f (x) = (b − x)/(b − a) we obtain

α � xμ − a

b − a
and respectively 1 − α � b − xμ

b − a

i.e., α = (xμ − a)/(b − a) .
The argument above can be extended easily for all continuous convex functions de-

fined on n -dimensional simplices K = [A0, A1, . . . , An] in Rn . Then the corresponding
analogue of (F) for Popoviciu measuresμ onK will read as

f (Xμ) � 1
μ([a, b])

∫
K

f (x) dμ �
n∑

k=0

Voln ([A0, A1, . . . , Âk, . . . , An] · f (Ak);

here Xμ denotes the barycenter of μ, and [A0, A1, . . . , Âk, . . . , An] denotes the sub-
simplex obtained by replacing Ak by Xμ ; this is the sub-simplex opposite to Ak, when
adding Xμ as a new vertex. Voln represents the Lebesgue measure in Rn .

In the case of closed balls K = BR(a) in R3, Ext K coincides with the sphere
SR(a) and the recent paper by Dragomir [2] illustrates the classical Choquet theory in
the case where μ is the normalized Lebesgue measure on BR(a) :

f (a) � 1

Vol BR(a)

∫∫∫
BR(a)

f (x) dV � 1
Area SR(a)

∫∫
SR(a)

f (x) dS.

His argument, based entirely on Calculus, avoids Choquet’s theory, but it cannot
be extended to arbitrary compact convex sets K and arbitrary Popoviciu measures on
K .

A final remark concerns the case of non-metrizable compact convex sets K . As
noticed E. Bishop and K. de Leeuw (Cf. [11], p. 7), in this case the set of extreme
points of K need not be a Borel set. However, by combining the argument of Theorem
4 above with their approach in the case of probability measures (Cf. [11], p. 24) we
obtain the following Choquet type theorem:

THEOREM 5. (The generalization of the Choquet-Bishop-de Leeuw Theorem ) .
Let μ be a Popoviciu measure on a compact convex subset K of a locally convex
Hausdorff space E . Then there exists a probability Radon measure λ on K such that
the following two conditions are verified :

i) λ � μ and λ and μ have the the same barycenter ;
ii) λ vanishes on every Baire subset of K which is disjoint from the set of extreme

points of K .

Our final remark concerns the necessity of hypotheses in the right hand side
inequality in (Ch). Precisely, it works beyond the framework of Popoviciu measures,
an example being (x2 − x) dx on [−1, 1] . See Fink [3], p. 230.
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[6] L. LUPAŞ, Problem E3322, Amer. Math. Month., 96 (1989), p. 357.
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