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INTEGRAL GENERALIZED MEANS

GHEORGHE TOADER

Abstract. Generalizing the integral representation of the arithmetic-geometric mean, some au-
thors characterized more means by integrals. In this paper we extend a modified method used by
Y.-H. Kim to construct generalized means.

1. Introduction

Let us denote

rn,θ(a, b) = (an cos2 θ + bn sin2 θ)1/n, n �= 0

and

r0,θ (a, b) = lim
n→0

rn,θ (a, b) = acos2 θbsin2 θ .

As was proved in [9], if p : R+ → R is a strictly monotonic function, then

Mp,n(a, b) = p−1

(
1
2π

∫ 2π

0
p(rn,θ(a, b))dθ

)

defines a symmetric mean. A well known example is given by the arithmetic-geometric
mean of Gauss (see [2]), where n = 2 and p(x) = x−1 . H. Haruki considered in [4] an
arbitrary p (also for n = 2) . Then the values n = −1 and n = 1 where studied in [5]
and [6]. The general case (of arbitrary n ) was studied in [9] and then in [10] and [12].

In [13] is considered the expression

Hp,n(a, b) =
1

H(a, b)
· p−1

(
1
2π

∫ 2π

0
p(r2

2n,θ (a, b))dθ

)
.

For n = ±1 it was already studied in [7]. This is a generalized mean not a mean. In this
paper we shall replace the mean H by an arbitrary generalized mean. We shall study
the same problems as those from [7], [9], [10], [12] and [13].
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2. Means and generalized means

A mean is defined usually as a function M : R2
+ → R+ which has the property

min(a, b) � M(a, b) � max(a, b), ∀a, b � 0.

Of course, each mean M is reflexive. Sometimes this weaker condition is taken as a
definition of means (see [1]). We call it a generalized mean. Thus, by generalized mean
we understand a function M : R2

+ → R+ with the property

M(a, a) = a, ∀a � 0.

A (generalized) mean is called symmetric if

M(b, a) = M(a, b), ∀a, b � 0.

In what follows we shall use weighted power means Pn,λ defined by

Pn,λ (a, b) =
{

[λ · an + (1 − λ ) · bn]1/n, n �= 0
aλ · b1−λ , n = 0

,

with λ ∈ [0, 1] fixed. For λ = 1/2 we get the (symmetric) power means Pn = Pn,1/2 .
The most important special cases are the arithmetic mean A = P1 , the geometric mean
G = P0 , and the harmonic mean H = P−1 .

We can compose three (generalized) means M , N and P obtaining the (general-
ized) mean M(N, P) given by

M(N, P)(a, b) = M(N(a, b), P(a, b)), ∀a, b � 0.

We shall use in what follows the mean Q defined in [7] by

Q(a, b) =
(

3
4
· a4 + b4

2
+

a2b2

4

)1/4

,

that is
Q = P4,3/4(P4, G).

3. An integral generalized mean

Given an arbitrary generalized mean N and a bijection p , let us consider the
expression

Np,n(a, b) =
1

N(a, b)
· p−1

(
1
2π

∫ 2π

0
p(r2

2n,θ (a, b))dθ

)
.

If we denote q(x) = p(x2) , we get

Np,n = M2
q,2n/N
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thus it is a generalized mean. The question is when it reduces at a given (generalized)
mean R . If we denote

f (a, b; p, n) =
1
2π

∫ 2π

0
p(r2

2n,θ(a, b))dθ,

the condition Np,n = R can be written as

f (a, b; p, n) = p(N(a, b) · R(a, b)). (1)

By direct computation, as in [9] we can prove the following

LEMMA 1. If p has a continuous second order derivative, then f has the following
partial derivatives

f ′′
a2(c, c; p, n) = [3c2p′′(c2) + (n + 1)p′(c2)]/2

and
f ′′
ab(c, c; p, n) = [c2p′′(c2) − (n − 1)p′(c2)]/2,

where c is an arbitrary positive number.

Using it we can prove

THEOREM 1. If Np,n = R then p satisfies the differential equations

c2p′′(c2)
{

3 − 2
[
N′

a(c, c) + R′
a(c, c)

]2}+ p′(c2)

·{n + 1 − 2c
[
N′′

a2(c, c) + R′′
a2(c, c)

]− 4N′
a(c, c)R′

a(c, c)} = 0 (2)

and

c2p′′(c2)
{
1 − 2

[
N′

a(c, c) + R′
a(c, c)

] [
N′

b(c, c) + R′
b(c, c)

]}
+p′(c2) · {1 − n − 2c

[
N′′

ab(c, c) + R′′
ab(c, c)

]
−2[N′

a(c, c)R′
b(c, c) + N′

b(c, c)R′
a(c, c)]} = 0. (3)

Proof. We calculate the partial derivatives of order two with respect to a of both
members of the relation (1). We get

f ′
a(a, b; p.n) = p′(N(a, b) · R(a, b)) · [N′

a(a, b) · R(a, b) + N(a, b) · R′
a(a, b)]

and then

f ′′
a2(a, b; p.n) = p′′(N(a, b) · R(a, b)) · [N′

a(a, b) · R(a, b) + N(a, b) · R′
a(a, b)]2

+ p′(N(a, b) · R(a, b)) · [N′′
a2(a, b) · R(a, b)

+ 2N′
a(a, b) · R′

a(a, b) + N(a, b) · R′′
a2(a, b)].

For a = b = c , taking into account the lemma, we obtain

[3c2p′′(c2) + (n + 1)p′(c2)]/2 = p′′(c2) · c2 · [N′
a(c, c) + ·R′

a(c, c)
]2

+p′(c2) · [N′′
a2(c, c) · c + 2 · N′

a(c, c) · R′
a(c, c) + c · R′′

a2(c, c)
]

which gives (2). In a similar way we can prove (6). �
As it is proved in [11] we have the following
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LEMMA 2. If N is a symmetric generalized mean then

N′
a(c, c) = 1/2 (4)

and
N′′

ab(c, c) = −N′′
a2(c, c). (5)

REMARK 1. The relation (4) was proved for a symmetric mean N in [3].

THEOREM 2. If Np,n = R , where N and R are symmetric generalized means, then
p satisfies the differential equation

c2p′′(c2) + p′(c2)
{
n − 2c

[
N′′

a2(c, c) + R′′
a2(c, c)

]}
= 0. (6)

Proof. Using (4) and (2) we get (6). Taking into account (5), (3) also reduces at
(6). �

THEOREM 3. If Hp,n = R , where R is a symmetric generalized mean, then p
satisfies the differential equation

c2p′′(c2) + p′(c2) · [n + 1 − 2cR′′
a2(c, c)

]
= 0. (7)

Proof. We have

H′′
a2(c, c) = − 1

2c
thus (6) reduces at (7). �

REMARK 2. In [11] it is shown that most of the symmetric generalized means verify
the hypotheses of the following

THEOREM 4. If Np,n = R where N and R are symmetric generalized means such
that

R′′
a2(c, c) =

α
c

, N′′
a2(c, c) =

β
c

with α + β �= n
2
,

then
p(x) = A · x2α+2β−n+1 + B,

where A and B are arbitrary constants.

Proof. The equation (3) becomes in this case

c2p′′(c2) + p′(c2) · (n − 2α − 2β) = 0.

Denoting c2 = x and p′ = z we get the equation

x · z′(x) + (n − 2α − 2β) · z(x) = 0

with the solution
z(x) = D · x2α+2β−n,

which, by integration, gives the expression of p . �
In the special case N = H we have
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THEOREM 5. If Hp,n = R where R is a symmetric generalized mean and

R′′
a2(c, c) =

α
c

, with α �= n + 1
2

,

then
p(x) = A · x2α−n + B,

where A and B are arbitrary constants.

REMARK 3. For n = ±1 the last theorem gives the results from [7]. There it is
proved also that in these cases the conditions are sufficient, thus we get the integral
representation of the following generalized means:

M1 = A

(
G
P2

)2

, M2 = A

(
G
Q

)2

, M3 = A
P2

G
, M4 = A

(
P2

G

)2

,

M5 = A

(
A
G

)2

, M6 = A
G
P2

, and M7 = A

(
Q
G

)2

.

In [11] it is shown that all these generalized means satisfy the conditions of the last
theorem with the following values of α :

R A H M 1 M 2 M 3 M 4 M 5 M 6 M 7

α 0 − 1
2 −1 − 3

2
1
2 1 1

2 − 1
2

3
2

.

REMARK 4. For arbitrary n , we get the results from [13] where R = Pq . Using
the values of α for other means N and R , we get new results.
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